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Abstract: Long-term exposure to high concentrations of fine particles can cause irreversible damage
to people’s health. Therefore, it is of extreme significance to conduct large-scale continuous spatial
fine particulate matter (PM2.5) concentration prediction for air pollution prevention and control in
China. The distribution of PM2.5 ground monitoring stations in China is uneven with a larger number
of stations in southeastern China, while the number of ground monitoring sites is also insufficient for
air quality control. Remote sensing technology can obtain information quickly and macroscopically.
Therefore, it is possible to predict PM2.5 concentration based on multi-source remote sensing data.
Our study took China as the research area, using the Pearson correlation coefficient and GeoDetector
to select auxiliary variables. In addition, a long short-term memory neural network and random
forest regression model were established for PM2.5 concentration estimation. We finally selected the
random forest regression model (R2 = 0.93, RMSE = 4.59 µg m−3) as our prediction model by the
model evaluation index. The PM2.5 concentration distribution across China in 2021 was estimated,
and then the influence factors of high-value regions were explored. It is clear that PM2.5 concentration
is not only related to the local geographical and meteorological conditions, but also closely related to
economic and social development.

Keywords: aerosol optical depth; fine particular matter; GeoDetector; random forest

1. Introduction

The inception of China’s urbanization development can be traced back to the 1950s
when it was primarily driven by heavy industrialization strategies [1]. And, the ensuing
urbanization process in China has been characterized by extensive and large-scale expan-
sion. However, this rapid urban growth has also given rise to a host of environmental
challenges due to the disregard for natural resource preservation and environmental protec-
tion. Among these challenges, haze composed of sulfur dioxide and inhalable particulate
matter has emerged as a prominent issue. Of particular concern is fine particulate matter
(PM2.5), which can readily infiltrate the human respiratory system, posing significant health
risks [2,3]. The Global Air Quality Report 2021, published by IQAir, is the first global air
quality report on PM2.5 released under the new standards after the World Health Organiza-
tion Air Quality Guidelines were updated. According to the report, the average annual
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concentration of PM2.5 in China has decreased by 21% since 2018. Compared with 2020, 66%
of cities saw a decrease in PM2.5 concentration, but none met the Air Quality Guideline’s
annual average PM2.5 concentration standard of 5 µg m−3 [4]. The concentration of PM2.5
in China’s most polluted cities was even more than 20 times the standard. Therefore, an
accurate understanding of the spatiotemporal distribution of PM2.5 concentrations and the
factors affecting them serve as a fundamental prerequisite for the effective implementation
of atmospheric pollution control measures.

To monitor atmospheric environmental qualities, the Chinese government has estab-
lished 1436 monitoring sites in 338 cities, forming a preliminary environmental monitoring
network. These observation stations rely on delicate automated instruments to conduct
real-time monitoring of surface atmospheric pollutants, providing essential baseline data
to support atmospheric pollution prevention and control. However, the spatial distri-
bution of ground-based monitoring stations is uneven, with a larger number of stations
distributed in the southeastern regions and urban areas. These result in an incomplete and
discontinuous representation of China’s environmental quality through its ground-based
monitoring network [5]. The rapid development of satellite remote sensing technology
has provided new insights for monitoring environmental quality. Satellite remote sensing
technology offers advantages such as wide coverage, low monitoring costs, and continuous
dynamic monitoring, which can effectively compensate for the limitations of ground-based
monitoring stations [6,7].

Aerosol optical depth (AOD), an indicator of atmospheric turbidity, refers to the
integral of the extinction coefficient of a medium in the vertical direction [8]. Many
studies have demonstrated a strong correlation between AOD and near-surface PM2.5
concentrations [9–11]. Satellite-based PM2.5 estimation generally involves two steps. First,
the retrieval of satellite observation data is used to obtain AOD distribution products, then
the estimation model of PM2.5 concentration is established based on AOD data and other
auxiliary data.

In early studies, scholars mainly used traditional linear regression models to explore
the relationship between PM2.5 and satellite-derived AOD [10]. However, the complex
temporal and spatial distribution of PM2.5 and the diversity of influencing factors limit the
accuracy of simple linear regression models. Therefore, scholars have gradually added
factors such as meteorological and land-related factors, leading to the development of mul-
tivariate regression models, such as the mixed-effects model [12], two-stage model [13,14],
geographically weighted regression model [15,16], and geographically and temporally
weighted regression model [17–19]. These models have further improved the accuracy of
PM2.5 concentration retrieval by incorporating multiple factors and considering their spatial
and temporal variations. However, these regression models still cannot fully capture the
complex relationships between PM2.5 and a wide range of factors. In recent years, machine
learning and deep learning models have been introduced to PM2.5 retrieval research. Com-
pared with the support vector machine model [20] and other machine learning models, the
random forest (RF) model [21–23] requires fewer parameters and has a higher prediction
accuracy and better robustness when dealing with large numbers of data [24–26]. And,
the RF model is better at processing data without dimensionality reduction [27]. By estab-
lishing a recurrent neural network [28], long short-term memory (LSTM) network [29,30],
convolutional neural network (CNN) [30,31], and other deep learning models, the spatial
and temporal heterogeneity of PM2.5 concentration distribution has been better captured
and its prediction accuracy further improved. Many scholars build LSTM models based
on hourly or daily data to explore the temporal correlations between PM2.5 concentration
and its controlling variables for its excellent ability to capture time dependencies [29,30,32].
The application of the LSTM network based on annual data needs further exploration.
Therefore, we evaluated the performances of the RF regression model and LSTM neural
network in annual PM2.5 concentration estimation.

An important step of model construction is the selection of independent variables.
Factor analysis, Pearson’s correlation coefficient, information gain, and other statistical
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methods are widely used in feature selection [33,34]. The Pearson’s correlation coeffi-
cient is easy to interpret and quantifies the linear relationship between two continuous
variables [35], but it does not consider the spatial pattern characteristics of geographic
data. The geographical detector model with a q-statistic is a statistical method used to
detect spatial heterogeneity and reveal its driving factors [36,37]. This method is good at
detecting the relationship of spatial variables between independent variables of type and
dependent variables of numerical type without a linear hypothesis. We can use the optimal
parameters-based geographical detector (OPGD) model to optimize the process of spatial
data discretization and spatial scales for spatial analysis and determine the best parameters
for the geographical detector model [38]. Due to its excellence, the geographical detector
model has been widely used to identify contributing factors of soil pollution [39,40], air
pollution [41], land use transformation [42], and so on. In this study, we combined Pear-
son’s correlation coefficient and GeoDetector to avoid multicollinearity and improve the
representativeness of the selected variables.

Therefore, this study took China as the research area, used the Pearson’s correlation
coefficient and GeoDetector to select auxiliary variables, and established two PM2.5 con-
centration estimation models, that is, the LSTM neural network and RF regression model.
After selecting the optimal model by the model evaluation index, the PM2.5 concentration
distribution in China in 2021 was estimated and then the influence factors of high-value
regions were explored.

2. Materials

All data products used in this study are shown in Table 1.

Table 1. Summary of the data sources and details.

Data Unit Spatial Resolution Temporal Resolution Source

PM2.5 µg m−3 – Hourly CNEMC
Aerosol Optical Depth (AOD) – 1 km × 1 km Daily

NASA LAADSNormalized Difference Vegetation Index
(NDVI) – 1 km × 1 km Monthly

Surface Pressure (P) Pa
0.5◦ × 0.5◦

Monthly
ERA5Boundary Layer Height (BLH) m Monthly

10 m Wind Speed (WS) m/s Monthly
Surface Air Relative Humidity (RHU) %

0.25◦ × 0.25◦
Monthly

ECVPrecipitation (PRE) m Monthly
Surface Air Temperature (TEMP) K Monthly
Digital Elevation Model (DEM) m 250 m Annual

RESDCLand Use and Land Cover Change
(LUCC) – 30 m 2015, 2018, 2020

2.1. Ground-Level PM2.5

The hourly average PM2.5 concentration data of the 2014 monitoring stations (Figure 1)
in China from January 2014 to December 2021 were downloaded from the official website
of the China Environmental Monitoring Center (CNEMC, https://air.cnemc.cn:18007/,
accessed on 22 March 2022). Then, the annual average PM2.5 concentration data from 2014
to 2021 of all ground monitoring stations with geographical location information were
obtained. The spatial distribution of monitoring stations generally presented heterogeneity
with a larger number of stations in the east of China (Figure 1).

https://air.cnemc.cn:18007/
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2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) AOD Product

MODIS is a passive satellite sensor [43] and was launched on Terra and Aqua space-
craft. With 36 spectral bands and a viewing swath width of 2330 km, MODIS can capture
data of the whole world every one to two days, which can be used for atmospheric, ter-
restrial, and oceanic change research [44,45]. Compared to the dark target and deep blue
algorithms, the multi-angle implementation of atmospheric correction (MAIAC) algorithm
can meet the requirements for providing aerosol retrieval products with higher spatial
resolution [46,47]. The MCD19A2 data product is an AOD gridded Level 2 product for
MODIS Terra and Aqua, based on the MAIAC algorithm, providing 1 km resolution of
daily AOD data at 550 nm [48,49].

ENVI IDL was used to conduct daily MODIS AOD data product geometric correction,
reprojection, mosaic, and other preprocessing operations, and the ArcGIS 10.3 spatial analy-
sis tool was used to synthesize the MODIS AOD annual images of China from 2014 to 2021.

Validation of the MODIS AOD against ground-level AOD was conducted to ensure the
satellite-derived AOD data were reliable, accurate, and could be used for the prediction of
PM2.5 concentration. Aerosol Robotic Network (AERONET) data are widely used to verify
satellite-derived AOD products due to their high accuracy [50,51]. AERONET has set up a
total of 81 stations in China. Because of their different setting times and running statuses,
the available data of each monitoring station varied greatly in terms of category and
coverage time range. AERONET Level 1.5 data (quality-assured) at 21 stations (Table A1)
across China providing ground-level AOD data at 440 and 870 nm from 2014 to 2021 were
used to verify the MODIS AOD products.

To compare with the MODIS AOD values, AERONET AOD data with a wavelength
of 550 nm were interpolated from AERONET AOD at 440 and 870 nm [15,52]. Compared
with AEROET AOD observations (Figure A1), the MODIS AOD (retrievals falling within
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the expected error range, EE = 78.52%, RMSE = 0.187) showed high accuracy, which was
sufficient to support our research.

2.3. Auxiliary Data

Previous studies have shown that meteorological and land cover-related factors have
significant positive or negative effects on PM2.5 concentration [53–58]. Therefore, a total of
six meteorology-related variables including surface pressure (P), boundary layer height
(BLH), surface air temperature (TEMP), surface air relative humidity (RHU), precipitation
(PRE), wind speed (WS) were selected for our study. We also chose three land cover-related
variables including the normalized difference vegetation index (NDVI), digital elevation
model (DEM), and land use and land cover change (LUCC) as auxiliary variables for PM2.5
retrieval and mapping.

2.3.1. Auxiliary Meteorological Variables

Meteorological factors interact with the PM2.5 concentration through different mecha-
nisms including the dispersion, growth, chemical components, optical properties, and deposi-
tion of PM2.5 [59,60]. Therefore, meteorological conditions including the P, BLH, TEMP, RHU,
PRE, and WS contribute significantly to the variation in PM2.5 concentrations [59,61,62].

The three monthly auxiliary meteorological factors including BLH, P, and WS were
downloaded from the official website of the fifth generation European Center for Medium
Weather Forecasting atmospheric reanalysis of the global climate (ERA5), with a spatial
resolution of 0.5◦ × 0.5◦. The global atmospheric reanalysis climate dataset ERA5 includes
various meteorological factors from 1979 to the present. The other three auxiliary mete-
orological factors, TEMP, RHU, and PRE, were obtained through the Essential Climate
Variable (ECV) data products with a resolution of 0.25◦ × 0.25◦. The ECV data product was
reanalyzed based on the ERA-Interim and ERA5 datasets. Atmospheric reanalysis refers
to the reprocessing and analysis of historical meteorological observational data through
modeling and assimilation analysis techniques to obtain long-term historical atmospheric
data with complete spatial coverage [63,64].

The temporal resolution of the auxiliary meteorological data was monthly, and the
annual data of each meteorological variable from 2014 to 2021 were obtained by averaging
using the ArcGIS 10.3 spatial analysis tool.

2.3.2. Auxiliary Land Use-Related Variables

The leaf surfaces of vegetation including grass and trees have a considerable ca-
pacity to reduce PM2.5 via dispersion and deposition [65,66]. Generally, an increase in
PM2.5 concentration is closely related to a decrease in vegetation greenness [67]. To indi-
cate vegetation greenness, the MODIS MOD13A3 data product provided by MODIS was
selected for the NDVI variable. MOD13A3 is a three-level gridded product with a sinu-
soidal projection, which provides 1 km monthly NDVI and other environmental variables.
MODIS NDVI is centered on the blue, red, and near-infrared wavelengths of 469, 645, and
858 nm, respectively.

In our study, the MOD13A3 NDVI data product was selected and the MRT tool
was used to mosaic and reproject the remote sensing images. Then, ArcGIS 10.3 was
used to obtain yearly NDVI images of China by maximum value composites from the
year 2014 to 2021.

Elevation acts as a constraining variable for PM2.5 transmission. Scholars have found
that the Yan Mountains in the north and Taihang Mountains in the west can trap PM2.5
from the lower elevations in the south and stop transmission to the higher elevations
in the northern part of the Beijing–Tianjin–Hebei region [68,69]. And, there is a positive
correlation between urbanization and PM2.5 concentration [70,71]. Generally, the PM2.5
concentrations on natural vegetation are much lower than those on artificial surfaces [72].
The annual DEM product at a 250 m resolution and LUCC data at a 30 m resolution were
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downloaded from the official website of the China Resource and Environment Science and
Data Center (RESDC).

3. Methods
3.1. Research Framework

Our study was constructed in several steps (Figure 2). Firstly, the ten factors in
Table 1 were used as independent variables, while PM2.5 concentrations were adopted as
the dependent variable. Since MODIS AOD, meteorological, and land-related data are
raster data, it was necessary to extract their values to each PM2.5 ground observation point
using the spatial analysis tool in ArcGIS 10.3. The PM2.5 dataset containing environmental
elements from 2014 to 2021 in China was then obtained.
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Secondly, we used Pearson’s correlation coefficient and GeoDetector to determine the
effective factors. Only one factor was retained when the Pearson correlation coefficient
of two variables was greater than 0.8 and the variance inflation factor (VIF) was greater
than 5 [73]. And, we excluded those variables with a p-value greater than 0.01 in GeoDe-
tector analysis. Then, according to the model evaluation indexes, we compared the RF
and LSTM models and selected the optimal PM2.5 predicting model to estimate PM2.5
concentration distribution based on multi-source satellite products across China in 2021.
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3.2. GeoDetector Analysis

GeoDetector is a statistical method used to detect the degree of spatial stratified
heterogeneity and reveal the driving factors. The coupled degree of the spatial distribution
of independent and dependent variables can be statistically measured by the q-statistic,
which increases as the strength of the stratified heterogeneity increases [36,37].

The GeoDetector method uses the q-statistic, ranging from 0 to 1, to reflect the spatial
correlation of the factors X and Y by the following equation [37]:

qX = 1 − ∑L
h=1 Nhσh

2

Nσ2 (1)

where N is the number of units in the study area, L is the number of strata of factor X, Nh
is the number of units in strata h of factor X, σ2 is the total variance of Y in the study area,
and σh

2 is the variance of Y within strata h of factor X.

3.3. RF Regression Model

Based on the bagging idea of ensemble learning, RF is an algorithm that integrates
multiple trees, and a decision tree is its basic unit [27]. Each node inside the regression
decision tree represents the judgment of a certain factor, different branches of the tree
represent different judgment results, and leaf nodes represent sample sets with the same
judgment results [74].

The results of random forest regression are based on the mean of each decision tree
{h(x, θt)}:

h =
1
T

T

∑
t=1

{h(x, θt)} (2)

where x is the independent variable, θt is an independent and identically distributed
random variable, T is the number of decision trees, and h(x, θt) is the output of each
decision tree based on x and θt.

The training samples of each decision tree are randomly selected by the bootstrap
method, and the features are selected and optimized randomly during node segmenta-
tion [75]. Therefore, the random forest is not prone to overfitting and has good anti-noise
ability [76].

We used Python’s scikit-learn machine learning library to build a random forest
regression model.

3.4. LSTM

The LSTM model is an improved approach to recurrent neural networks (RNNs) [77].
An RNN adds the relationship between before and after time series based on a fully
connected neural network, which can solve the problems related to time series, but the
explosion and disappearance of the gradient may occur at distant nodes [78]. LSTM is
designed to solve this problem. The LSTM consists of memory cells and a gate mechanism.
Each memory cell contains a cell state and three gates: the forget gate, input gate, and
output gate (Figure 3). The three gates have sigmoid activation function control which
changes in their cell state.

The forget gate can be computed as the following:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(3)

where ft represents the forget gate vector, W f and b f are the weight and bias vectors of
the forget gate, ht−1 is the output result at the last moment, xt is the input at the current
moment, [ht−1, xt] represents connecting two vectors into a longer vector, and σ represents
the activation function.
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The input gate and output gate can be computed as the following:

it = σ(Wi·[ht−1, xt] + bi) (4)

Ct = ft × Ct−1 + it × tanh(WC·[ht−1, xt] + bC) (5)

ot = σ(Wo·[ht−1, xt] + bo) (6)

ht = ot × tanh(Ct) (7)

where it, ot, and Ct are vectors of the input gate, output gate, and cell state, respectively,
ht is the vector of output, Wi, WC and Wo are the weights of the corresponding gate,
bi, bC, and bo represent the bias vector of the corresponding gate, and tanh is a kind of
activation function.

The LSTM model was implemented in the Python Keras module. We fed data into
the model after min–max normalization. In order to achieve the optimal performance of
the model, the optimizer of the LSTM model was Adam, the batch size was set to 72, and
epochs were set to 50. The time step was 3, which meant that the data in the previous
three years were used to predict the PM2.5 concentration.

3.5. Model Validation

Three cross-validation (CV) methods were chosen in terms of sample-based CV, tempo-
ral CV, and spatial CV to evaluate the performance of the models. For the sample-based CV
process, the dataset was divided into 10 folds randomly. One fold was used for validation
and the model was trained using the remaining nine folds, which were then rotated until
ten folds were used for validation again. Temporal CV involved excluding one year for
validation, with the remaining years utilized for model fitting. In spatial CV, the dataset
was partitioned into calibration and validation groups based on China’s geographical
divisions (Figure 1). The workflows for the temporal CV and spatial CV were similar to
the sample-based CV, differing only in the methods employed for dividing calibration and
validation sets.

This study selected indicators of the coefficient of determination (R2), root mean
square error (RMSE), and mean absolute error (MAE):

R2 = 1 − ∑(yt − yt)
2

∑(yi − yi)
2 (8)
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RMSE =

√
∑m

i=1
1
m
(yt − yi)

2 (9)

MAE =
1
m∑m

i=1|yi − yi| (10)

where yt and yi are the observed and predicted data, yt and yi are the averages of the
observed and predicted data, and m is the number of the sample.

4. Results
4.1. Descriptive Statistics

From 2014 to 2021, the annual average PM2.5 concentration at the ground monitor-
ing stations decreased steadily and reached the lowest value of 32.64 µg m−3 in 2021
(Table 2) during the study periods. The annual average PM2.5 concentration dropped by
29.98 µg m−3 in the eight years. According to Figure 4, in 2016, 2017, and 2020, there were
some abnormally high values of PM2.5 concentration with values over 170 µg m−3. In
addition, the PM2.5 concentrations across China changed the least in 2015 and 2021. While
the minimum PM2.5 concentration rose to approximately 6 µg m−3 during the COVID-19
lockdown period, the annual average concentration across China continued to decrease,
albeit at a slower rate.

Table 2. Summary of ground monitoring sites from 2014 to 2021.

Year Number Mean (µg m−3) Min (µg m−3) Max (µg m−3) SD (µg m−3)

2014 666 62.627 6.91 143.49 21.58
2015 1470 57.720 51.83 85.04 6.41
2016 1456 48.125 7.78 191.54 17.67
2017 1524 46.307 8.00 173.20 16.89
2018 1497 39.160 1.41 127.17 13.44
2019 1506 37.024 1.73 111.62 13.36
2020 1528 35.498 5.53 179.25 14.70
2021 1759 32.644 5.79 94.04 10.14
Total 11,406 43.244 1.41 191.54 16.98
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The spatial distributions of the annual average concentration of PM2.5 at each station
from 2014 to 2021 are shown in Figure 5. The ground-level PM2.5 concentration during these
eight years showed obvious spatial stratified heterogeneity with the high value centering
around North China. North China had a relatively high PM2.5 concentration, followed by
parts of the central region. By contrast, the concentrations of PM2.5 in the eastern coastal
region and Southwest China were at a low level.
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4.2. Variable Selection

Pearson’s correlation coefficient analysis was used to assess the correlation between
each dependent variable and PM2.5 concentration. The results of the Pearson’s correla-
tion coefficient showed that the relationship between independent variables and PM2.5
concentration was moderately positive and weakly negative (Figure 6), especially for the
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AOD (r = 0.45, p < 0.01) and PRE (r = −0.25, p < 0.01). In addition, considering the issue of
covariance among the independent variables, we used the VIF to make judgments. Table 3
shows a strong covariance between P and DEM (P ~ 16.91, DEM ~ 13.43). Differences
in atmospheric pressure in years would be more sensitive than in the DEM data, so the
variable P was chosen and the variable DEM was excluded.
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Table 3. Table of variance inflation factors.

Variable VIF

AOD 1.434
P 16.91

PRE 3.527
RHU 3.813
TEMP 3.637

WS 1.247
BLH 1.022
DEM 13.43
NDVI 1.368

GeoDetector analysis was used to compute the contribution of each factor toward
PM2.5 concentration. It was necessary to categorize all continuous variables by natural
break classification to conduct the GeoDetector analysis. In this study, AOD and TEMP
were divided into eight categories, while P, BLH, RHU, PRE, WS, and NDVI were separated
into ten categories. The results (Table 4) indicated that all the dependent variables, except
for LUCC (q = 0.076, p > 0.05), contributed to the spatial heterogeneity of the PM2.5
concentrations. Among them, TEMP (q = 0.34, p < 0.01), PRE (q = 0.23, p < 0.01), and AOD
(q = 0.17, p < 0.01) ranked in the top three.

Table 4. Results of factor detection by GeoDetector.

Variable AOD P PRE RHU TEMP WS BLH DEM NDVI LUCC

q-statistic 0.17 0.11 0.23 0.20 0.34 0.10 0.043 0.10 0.069 0.076
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.064
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Therefore, the eight explanatory variables, AOD, NDVI, surface pressure, precipitation,
surface air relative humidity, surface air temperature, wind speed, and boundary layer
height, were finally selected to invert the PM2.5 concentration distribution in China.

4.3. Model Fitting and Validation

Scatterplots illustrate the models’ accuracy in estimating PM2.5 concentrations across
China, with the results of three CV methods presented in Figure 7. Compared to spatial
CV and temporal CV, both the RF and LSTM models exhibited better performance in
sample-based CV with higher R2 values of 0.93 and 0.75, respectively. While the RF model
performed optimally in sample-based CV, its performance exhibited a decline in spatial and
temporal CV with R2 decreasing to 0.54 and 0.64, respectively. The LSTM model exhibited
relatively stable performance across three types of CVs, with R2 and RMSE values ranging
from 0.64 to 0.75 and 6.40 µg m−3 to 7.85 µg m−3.
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Figure 7. The density scatterplots of model validation results. (a) Sample-based CV for the RF model,
(b) Spatial CV for the RF model, (c) Temporal CV for the RF model, (d) Sample-based CV for the
LSTM model, (e) Spatial CV for the LSTM model, and (f) Temporal CV for the LSTM model. The
colors of points represent the percentages of the total number of points in the value range. The solid
red line denotes the line of best fit using linear regression and the gray dashed line represents the 1:1
line. The units of the RMSE and MAE are µg m−3.

The overall accuracy was assessed through a sample-based CV (Figure 7). The RF
model outperformed the LSTM model with a higher R2, lower RMSE, and MAE (R2 = 0.93,
RMSE = 4.59 µg m−3, MAE = 2.51 µg m−3), and the data points of the RF were more
concentrated. Though the LSTM model took the time series into consideration, the model
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performance did not increase. In addition, the predictive ability of both models for high-
value points was significantly weaker than that for low values. The high values tended
to be underestimated, while the median values (20–80 µg m−3) were often predicted
more accurately.

4.4. Spatial Distribution of PM2.5 Concentrations

According to the model validation results, we chose the RF model to estimate the
annual average PM2.5 concentration at a 10 km spatial resolution in 2021 (Figure 8).
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In 2021, the annual predicted average PM2.5 concentration in China was 26.93 ± 18.78 µg m−3,
lower than the average observed concentration (32.64 µg m−3). Spatially, the PM2.5 concen-
trations showed a clear trend of gradual increase from the south to the north. Highly PM2.5
concentrated areas over 50 µg m−3 were predominately located in North and Northwest
China. Approximately 29.8% of China’s land area had average concentrations ranging
between 30 and 50 µg m−3. Conversely, low-value regions were concentrated in Southwest
China and in southeast coastal areas, with the annual average PM2.5 falling between 10 and
30 µg m−3.

It was clear that the 30th parallel north divides China’s high and low PM2.5 concentra-
tion areas in a north–south direction except for the Qinghai–Tibetan Plateau. The east–west
split line between high- and low-value zones was consistent with the Heihe–Tengchong
Line. The spatial distribution of highly polluted areas of China was consistent with the distri-
bution of deserts in the Xinjiang Uygur Autonomous Region and the Beijing–Tianjin–Hebei
(BTH) region. In addition, high PM2.5 concentration zones were scattered in southeastern
Inner Mongolia and northern Shaanxi Province. The low PM2.5 concentration areas were
mainly located in the Qinghai–Tibetan Plateau, southern coastal areas, and Greater Khingan
Mountain region. The lowest PM2.5 concentration zone was near the Hengduan Mountain
range with around 10 µg m−3 in 2021.
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5. Discussion
5.1. Comparison with Recent Studies

Overall, our model used to estimate PM2.5 concentration across China obtained satis-
factory performance. Our feature selection method combining GeoDetector and Pearson’s
correlation coefficient provided statistical support for identifying effective factors, which
contributed to the improvement in model accuracy. Moreover, RF regression models
can avoid complex structures and consume less computational resources [79]; thus the
RF regression model outperformed the LSTM neural network in annual average PM2.5
concentration prediction.

The time effect in predicting model construction did not improve the precision and
accuracy of the model, and the R2 for the LSTM was only 0.75. Referring to previous
studies [38,80,81], this may have been caused by the low temporal resolution of data. We
used annual data for prediction, and as a result, the time characteristics of each variable
were smoothed. Kang et al. [82] built an LSTM model based on the hourly air quality
concentration data and meteorological data of Shanghai from January to October 2017,
which showed an excellent performance with an R2 value of 0.98 and RMSE of 2.98 µg m−3.
In contrast, prediction performance by RF on a monthly or yearly scale is better than that
on a daily scale [83].

We conducted three CV methods to assess the accuracy of the models. The models dis-
played relatively lower precision in temporal and spatial CV, primarily due to the diversity
of the PM2.5 concentrations at the temporal and spatial scales [25]. Upon the introduction of
spatiotemporal information into the regression model, the results of the three CV methods
might have become stable [83]. According to the model performance, the random forest
model was finally selected to monitor the temporal and spatial distribution of the annual
average PM2.5 concentration across China in 2021. The accuracy of the model in this study
on a national scale, characterized by a relatively higher validation R2 value and lower
RMSE, outperformed many statistical regression models (Table 5), including geographical
weighted regression (GWR), geographically and temporally weighted regression (GTWR),
and adaptive spatiotemporal regression (ASTR) models. And, many scholars [25,83] only
conducted a collinearity test to determine its effective factors without considering nonlinear
relationships between factors, whereas our study took advantage of the GeoDetector to fill
this gap for higher model accuracy.

There is however still room for predicting capability improvement. When input data
are subdivided into classes representing different aerosol types [84] and the estimation
models take the synergy of space–time information into account [83], the models may
perform better. Although the traditional GWR model and GTWR model make use of
spatial information, the performance of the models is still not as good as our model for
the limitation of regression ability (Table 5). In this study, we considered geographical
stratified heterogeneity to determine the contributing factors, which effectively improved
the accuracy of PM2.5 estimation. A further study with more focus on aggregating spatial in-
formation into a machine learning regression model [85] should be performed to investigate
this. Therefore, socioeconomic factors including population, light at night, road density,
and industrial emissions play an important role in the distribution of air pollutants [23,86].
Therefore, incorporating socioeconomic variables into a prediction model is a direction for
our future work.

Table 5. The model performance compared with other studies.

Research Area Model
Model Validation

R2 RMSE (µg m−3)

Our research China RF 0.93 4.59
Guo et al. [25] China RF 0.74 16.29
Wei et al. [83] China Space–time RF 0.85 15.57
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Table 5. Cont.

Research Area Model
Model Validation

R2 RMSE (µg m−3)

He et al. [9] China ASTER 0.77 8.55
Yang et al. [87] China GWR 0.85 –
Guo et al. [88] China GTWR 0.67 10.32

5.2. Heavy PM2.5 Pollution Area Analysis

The average annual PM2.5 concentration in the Xinjiang region was 29.33 ± 18.72 µg m−3,
ranging from 14.47 µg m−3 to 71.95 µg m−3. The NDVI and PRE values there were rel-
atively low, which was unbeneficial to particulate matter deposition. The deserts in the
Xinjiang region are widely distributed to provide rich material sources for the formation of
fine particles, and the specific topographic features hinder the diffusion of PM2.5, so the
concentration of PM2.5 in the Xinjiang region is relatively high [89]. The Qinghai–Tibetan
Plateau, which is bound by the Kunlun Mountains, Qilian Mountains, and Hengduan
Mountains, is only separated from the Xinjiang Province by a mountain, but it was a large
low-value area of PM2.5 concentration in China in 2021. Similarly, the unfavorable geo-
graphical conditions for PM2.5 transportation and dispersion also result in high pollution
in northern Shaanxi Province [90].

The variation in PM2.5 concentration is not only related to the local geographical
conditions, but also closely related to economic development situations [91,92]. The
BTH region was a PM2.5 heavily polluted area with an average annual concentration
of 35.64 ± 16.28 µg m−3, ranging from 19.33 µg m−3 to 47.92 µg m−3. Although this region
has favorable meteorological and topographical conditions, its high proportion of energy-
consuming industries with exhaust gas emission, continuous heating systems in winter,
vehicular emission, and rapid urbanization all contribute to heavy PM2.5 pollution [91–94].
Therefore, in order to reduce the level of PM2.5 concentration, the BTH region should make
full use of natural advantages such as wind power to develop new cleaning energy, as
well as improve the energy and industrial structure, together with continuing to promote
technological innovation [95].

The causes of high-value areas are different. Therefore, the Chinese government needs
to formulate guidelines and policies based on the actual causes of pollution.

6. Conclusions

In this study, a machine learning-based PM2.5 predicting model was established. The
Pearson’s correlation coefficient and GeoDetector were used to select independent variables
to monitor PM2.5 concentrations in China. The results showed that the RF model had a
better performance compared with the LSTM model with an R2 value of 0.94 and RMSE
of 4.59 µg m−3. The spatial distribution of PM2.5 across China in 2021 (Figure 8) was
generated using the RF model. In 2021, the annual average PM2.5 concentration was
26.93 ± 18.78 µg m−3. Spatially, the PM2.5 concentration showed a clear trend of a gradual
increase from the south to the north.

In the future, a high temporal and spatial resolution dataset can be used to improve
the model’s performance. Furthermore, the spatial heterogeneous distribution of PM2.5
ground monitoring stations with more sites distributed in the southeast of China could
make the results more representative of eastern China. This shortcoming could be resolved
by introducing economic and demographic variables.
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Table A1. Information on the AERONET monitoring sites across China.

Site Longitude (◦E) Latitude (◦N) Source

AOE_Baotou 109.629 40.852

https://aeronet.gsfc.
nasa.gov/, accessed

on 23 September 2023.

Beijing 116.381 39.977
Beijing_PKU 116.31 39.992

Beijing-CAMS 116.317 39.933
Beijing_RADI 116.379 40.005

Hong_Kong_PolyU 114.180 22.303
Hong_Kong_Sheung 114.117 22.483

Kashi 75.930 39.504
Lingshan_Mountain 115.496 40.054

NAM_CO 90.962 30.773
QOMS_CAS 86.948 28.365

SONET_Harbin 126.614 45.705

https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/
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Table A1. Cont.

Site Longitude (◦E) Latitude (◦N) Source

SONET_Hefei 117.162 31.905

https://aeronet.gsfc.
nasa.gov/, accessed

on 23 September 2023.

SONET_Nanjing 118.957 32.115
SONET_Xingtai 114.360 37.182

SONET_Zhoushan 122.188 29.994
Taihu 120.215 31.421

XiangHe 119.962 39.754
XingLong 117.578 40.396

XuZhou-CUMT 117.142 34.217
Yanqihu 116.674 40.408
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