An Integrated Drought Index (Vapor Pressure Deficit–Soil Moisture–Sun-Induced Chlorophyll Fluorescence Dryness Index, VMFDI) Based on Multisource Data and Its Applications in Agricultural Drought Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Data for Constructing the VMFDI
2.2.2. Data for Verifying the VMFDI
2.2.3. Data of Agricultural Status in Response to Drought
2.3. Methodology
2.3.1. Construction of VMFDI
2.3.2. Validation of VMFDI
2.3.3. Spatiotemporal Analysis of VMFDI
2.3.4. Identifying the Causal Relationship Method
3. Results
3.1. Verification of VMFDI
3.1.1. VMFDI vs. Other Dryness Indicators
3.1.2. Drought Monitoring Capability of VMFDI for Ecosystems
3.2. Spatiotemporal Changes in the VMFDI
3.2.1. The Spatiotemporal Heterogeneity of the VMFDI in the Yellow River Basin
3.2.2. The Migration of the Drought Center in the Yellow River Basin
3.3. The Responses of the Agroecosystem to the VMFDI
3.3.1. Changes in the VMFDI of the Agroecosystem of the Yellow River Basin
3.3.2. The Response of the Crop Growth Status to the VMFDI
4. Discussion
4.1. Driving Forces of Changes in Drought in Yellow River Basin
4.2. VPD Thresholds Affecting Crop Growth
4.3. Suggestions for Drought Risk Management in Agroecosystems: Insights from VMFDI and VPD Thresholds
4.4. Limitations of VMFDI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [PubMed]
- Mondal, S.; Mishra, A.K.; Leung, R.; Cook, B. Global droughts connected by linkages between drought hubs. Nat. Commun. 2023, 14, 144. [Google Scholar] [CrossRef]
- Dietz, K.J.; Zörb, C.; Geilfus, C.M. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [PubMed]
- Krishnamurthy, R.P.K.; Fisher, J.B.; Choularton, R.J.; Kareiva, P.M. Anticipating drought-related food security changes. Nat. Sustain. 2022, 5, 956–964. [Google Scholar]
- Manning, S.W.; Kocik, C.; Lorentzen, B.; Sparks, J.P. Severe multi-year drought coincident with Hittite collapse around 1198–1196 bc. Nature 2023, 614, 719–724. [Google Scholar]
- UNCCD. Drought in Numbers 2022: Restoration for Readiness and Resilience; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2022. [Google Scholar]
- Gupta, A.; Rico-Medina, A.; Cano-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar]
- Xu, F.; Qu, Y.; Bento, V.A.; Song, H.; Qiu, J.; Qi, J.; Wan, L.; Zhang, R.; Miao, L.; Zhang, X.; et al. Understanding climate change impacts on drought in China over the 21st century: A multi-model assessment from CMIP6. npj Clim. Atmos. Sci. 2024, 7, 1. [Google Scholar]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [PubMed]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 11–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef]
- Liu, X.; Feng, X.; Ciais, P.; Fu, B.; Hu, B.; Sun, Z. GRACE satellite-based drought index indicating increased impact of drought over major basins in China during 2002–2017. Agric. Forest Meteorol. 2020, 291, 108057. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res-Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Zhou, Z.; Tan, Y. Assessment of future socioeconomic drought based on CMIP6: Evolution, driving factors and propagation. J. Hydrol. 2023, 617, 129009. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Wang, K.; Niu, J. A new method and a new index for identifying socioeconomic drought events under climate change: A case study of the East River basin in China. Sci. Total Environ. 2018, 616, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Lai, R.; Zhou, Z. Socioeconomic drought analysis by standardized water supply and demand index under changing environment. J. Clean. Prod. 2022, 347, 131248. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC, 2013: Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, W.; Li, Q.; Shi, G. China Soil Moisture Dataset (2000–2020); A Big Earth Data Platform for Three Poles: Lanzhou, China, 2022; CSTR: 18406.11.Terre.tpdc.272415. [Google Scholar] [CrossRef]
- Cao, M.; Chen, M.; Liu, J.; Liu, Y. Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain. Agric. Water Manag. 2022, 263, 107450. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-sensor remote sensing for drought characterization: Current status, opportunities and a roadmap for the future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- Li, Y.; Yu, K.; Li, J.; Jin, T.; Chang, X.; Zhang, Q.; Yang, S. Measuring Soil Moisture with Refracted GPS Signals. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3161409. [Google Scholar] [CrossRef]
- Edokossi, K.; Jin, S.; Mazhar, U.; Molina, I.; Calabia, A.; Ullah, I. Monitoring the drought in Southern Africa from space-borne GNSS-R and SMAP data. Nat. Hazards 2024, 120, 7947–7967. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Williams, A.P.; Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 2019, 5, 5740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guan, K.; Peng, B.; Pan, M.; Zhou, W.; Jiang, C.; Kimm, H.; Franz, T.E.; Grant, R.F.; Yang, Y.; et al. Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nat. Commun. 2021, 12, 5549. [Google Scholar] [CrossRef]
- Wu, B.; Ma, Z.; Yan, N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Shen, Q.; Lin, J.; Yang, J.; Zhao, W.; Wu, J. Exploring the Potential of Spatially Downscaled Solar-Induced Chlorophyll Fluorescence to Monitor Drought Effects on Gross Primary Production in Winter Wheat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2012–2022. [Google Scholar] [CrossRef]
- De Natale, F.; Alilla, R.; Parisse, B.; Nardi, P. A bibliometric analysis on drought and heat indices in agriculture. Agric. Forest Meteorol. 2023, 341, 10962. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-soil Moisture Dryness Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Wei, W.; Pang, S.; Wang, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Temperature Vegetation Precipitation Dryness Index (TVPDI)-based dryness-wetness monitoring in China. Remote Sens. Environ. 2020, 248, 111957. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Dang, C.; Yue, H.; Wang, X.; Niu, H.; Zu, P.; Cao, M. A dryness index TSWDI based on land surface temperature, sun-induced chlorophyll fluorescence, and water balance. ISPRS J. Photogramm. 2023, 202, 581–598. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, K. Capability of Existing Drought Indices in Reflecting Agricultural Drought in China. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006064. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, L.; He, Y.; Cao, S.; Wei, X.; Guo, Y.; Ran, L.; Filonchyk, M. Spatiotemporal evolution of agricultural drought and its attribution under different climate zones and vegetation types in the Yellow River Basin of China. Sci. Total Environ. 2024, 914, 169687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, P.; Liu, J.; Zhang, X.; Zhao, Y.; Zhang, Q.; Li, L. Sustainable agricultural water management in the Yellow River Basin, China. Argic. Water Manag. 2023, 288, 108473. [Google Scholar] [CrossRef]
- Ma, Z.; Fu, C.; Zhou, T.; Yan, Z.; Li, M.; Zheng, Z.; Chen, L.; Lu, M. Status and Ponder of Climate and Hydrology Changes in the Yellow River Basin(in Chinese). Bull. Chin. Acad. Sci. 2020, 35, 52–60. [Google Scholar]
- Yang, F.; Zhang, H.; He, F.; Wang, Y.; Zhou, S.; Dong, G. A 1000-year history of cropland cover change along the middle and lower reaches of the Yellow River in China. J. Geogr. Sci. 2024, 34, 921–941. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, C.; Kang, R.; Yin, H.; Xu, T.; Kaufmann, H.J. Assessing the responses of ecosystem patterns, structures and functions to drought under climate change in the Yellow River Basin, China. Sci. Total Environ. 2024, 929, 172603. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, M.; Zhan, W.; Zhao, Y. A First 1 km High-Resolution Atmospheric Moisture Index Collection over China, 2003–2020; National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2023. [Google Scholar]
- Zhang, H.; Luo, M.; Zhan, W.; Zhao, Y.; Yang, Y.; Ge, E.; Ning, G.; Cong, J. HiMIC-Monthly: A 1 km high-resolution atmospheric moisture index collection over China, 2003–2020. Sci. Data 2024, 11, 425. [Google Scholar] [CrossRef]
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Huang, F.; Zhang, Y.; Wang, C.; Wang, D.; et al. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef]
- Wan, L.; Bento, V.A.; Qu, Y.; Qiu, J.; Song, H.; Zhang, R.; Wu, X.; Xu, F.; Lu, J.; Wang, Q. Drought characteristics and dominant factors across China: Insights from high-resolution daily SPEI dataset between 1979 and 2018. Sci. Total Environ. 2023, 901, 166362. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Slater, L.J.; Khouakhi, A.; Yu, L.; Liu, P.; Li, F.; Pokhrel, Y.; Gentine, P. GTWS-MLrec: Global terrestrial water storage reconstruction by machine learning from 1940 to present. Earth Syst. Sci. Data 2023, 15, 5597–5615. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2022); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Wang, K.; Ciais, P.; Tang, S.; Jin, L.; Li, L.; Piao, S. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agric. Forest Meteorol. 2021, 298–299, 108307. [Google Scholar] [CrossRef]
- Hu, Z.; Piao, S.; Knapp, A.K.; Wang, X.; Peng, S.; Yuan, W.; Running, S.; Mao, J.; Shi, X.; Ciais, P.; et al. Decoupling of greenness and gross primary productivity as aridity decreases. Remote Sens. Environ. 2022, 279, 113120. [Google Scholar] [CrossRef]
- Reichstein, M.; Tenhunen, J.D.; Roupsard, O.; Ourcival, J.M.; Rambal, S.; Miglietta, F.; Peressotti, A.; Pecchiari, M.; Tirone, G.; Valentini, R. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? Global Chang. Biol. 2002, 8, 999–1017. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Zhao, M.; Geruo, A.; Velicogna, I.; Kimball, J.S. Satellite Observations of Regional Drought Severity in the Continental United States Using GRACE-Based Terrestrial Water Storage Changes. J. Clim. 2017, 30, 6297–6308. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Batelaan, O.; Mcvicar, T.R.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, Y.; Wang, R.; Li, K.; Rong, G.; Zhang, J.; Zhao, C. Characteristics of drought, low temperature, and concurrent events of maize in Songliao Plain. Int. J. Climatol. 2023, 43, 3041–3071. [Google Scholar] [CrossRef]
- Ling, M.; Guo, X.; Shi, X.; Han, H. Temporal and spatial evolution of drought in Haihe River Basin from 1960 to 2020. Ecol. Indic. 2022, 138, 108809. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, S.; Li, K.; Zhang, J.; Wang, C. Drought risk assessment of millet and its dynamic evolution characteristics: A case study of Liaoning Province, China. Ecol. Indic. 2022, 143, 109407. [Google Scholar] [CrossRef]
- Liang, X.S. Information flow and causality as rigorous notionsab initio. Phys. Rev. E 2016, 94, 052201. [Google Scholar] [CrossRef]
- Liang, X.S. Unraveling the cause-effect relation between time series. Phys. Rev. E 2014, 90, 052150. [Google Scholar] [CrossRef]
- Zhong, Z.Q.; He, B.; Wang, Y.P.; Chen, H.W.; Chen, D.L.; Fu, Y.H.; Chen, Y.N.; Guo, L.L.; Deng, Y.; Huang, L.; et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv. 2023, 9, eadf3166. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.; Li, Y.; Huang, J.; Ma, Z.; Wang, Z.; Wang, S.; Wang, Y.; Zhang, Y. Causes and Changes of Drought in China: Research Progress and Prospects. J. Meteorol. Res. 2020, 34, 460–481. [Google Scholar] [CrossRef]
- Sun, M.; Li, X.; Xu, H.; Wang, K.; Anniwaer, N.; Hong, S. Drought thresholds that impact vegetation reveal the divergent responses of vegetation growth to drought across China. Global Chang. Biol. 2023, 30, 16998. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Huang, W. Weakened East Asian summer monsoon triggers increased precipitation in Northwest China. Sci. China Earth Sci. 2021, 64, 835–837. [Google Scholar] [CrossRef]
- Dai, Y.; Dong, J.; Wei, Y.; Xu, M.; Javed, T.; Ayantobo, O.O.; Yao, N.; Hu, B. Investigate the Spatiotemporal Evolution of Drought and Its Interaction with Atmospheric Circulation in the Yellow River Middle Basin. Water 2024, 16, 1786. [Google Scholar] [CrossRef]
- Tao, J.; Qiao, W.; Li, H.; Qu, X.; Gan, R. Spatial and temporal evolution characteristics and causes of drought and flood in the Henan section of the Yellow River. Nat. Hazards 2022, 113, 997–1016. [Google Scholar] [CrossRef]
- He, S.P.; Gao, Y.Q.; Li, F.; Wang, H.J.; He, Y.C. Impact of Arctic Oscillation on the East Asian climate: A review. Earth Sci. Rev. 2017, 164, 48–62. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, Q.; Zhu, F.; Lall, U.; Hu, P.; Jiang, Y.; Kan, G. The asymmetric effect of different types of ENSO and ENSO Modoki on rainy season over the Yellow River basin, China. Theor. Appl. Climatol. 2022, 149, 1567–1581. [Google Scholar] [CrossRef]
- Wang, J.; Shi, B.; Bai, T.; Yuan, Q. Spatio-temporal patterns of precipitation and its possible driving factors in the Yellow River Basin. J. Desert Res. 2022, 42, 94–102. [Google Scholar]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater Sensitivity to Drought Accompanies Maize Yield Increase in the US Midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef]
- López, J.; Way, D.A.; Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Chang. Biol. 2021, 27, 1704–1720. [Google Scholar] [CrossRef]
Data Type | Production /Tile | Spatial Resolution | Temporal Resolution | Unit | Data Period | Source |
---|---|---|---|---|---|---|
VPD | HiMIC | 1 km | Monthly | hPa | 2003–2020 | http://data.tpdc.ac.cn (accessed on 14 May 2024) |
SM | SMCI1.0 | 30″ | Daily | 0.001 m3/m3 | 2000–2020 | http://data.tpdc.ac.cn (accessed on 14 May 2024) |
SIF | GOSIF | 0.05° | Monthly | mW m−2 um−1 sr−1 | 2000–2023 | https://data.globalecology.unh.edu/data/GOSIF_v2/ (accessed on 14 May 2024) |
SPEI | SPEI base v2.8 | 0.5° | Monthly | / | 1901–2021 | https://spei.csic.es/spei_database (accessed on 15 May 2024) |
TWS | GTWS-MLrec | 0.25° | Monthly | mm | 1940–2022 | https://zenodo.org/records/10040927 (accessed on 15 May 2024) |
PRE | Precipitation | 1 km | Monthly | 0.1 mm | 1901–2022 | https://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2/ (accessed on 17 May 2024) |
ET | MOD16A2 | 500 m | 8-day | mm | 2001– | https://developers.google.cn/earth-engine/datasets (accessed on 17 May 2024) |
NDVI | MOD13A1 | 500 m | 16-day | / | 02/2000–12/2023 | |
GPP | MOD17A2H | 500 m | 8-day | gC m−2 | 02/2000–02/2023 | |
LAI | MOD15A2H | 500 m | 8-day | Area fraction | 02/2000– | |
Land | MCD12Q1 LC_Type1 | 500 m | Yearly | / | 01/2001–01/2022 | |
Maize Wheat | ChinaCropArea1km | 1 km | Yearly | / | 2003–2019 | https://www.nesdc.org.cn (accessed on 04/07/2024 and 16 July 2024) |
ChnaWheat/Maize10 | 10 m | Yearly | / | 2020 |
Degree of Drought | VMFDI | SPEI | GRACE-DSI |
---|---|---|---|
Drought | (−∞, ) | (−∞, −0.5] | (−∞, −0.5] |
No drought | [, +∞) | (−0.5, +∞) | (−0.5, +∞) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Zhang, L.; Xu, T.; Yang, S.; Guo, J.; Si, L.; Kang, R.; Kaufmann, H.J. An Integrated Drought Index (Vapor Pressure Deficit–Soil Moisture–Sun-Induced Chlorophyll Fluorescence Dryness Index, VMFDI) Based on Multisource Data and Its Applications in Agricultural Drought Management. Remote Sens. 2024, 16, 4666. https://doi.org/10.3390/rs16244666
Deng C, Zhang L, Xu T, Yang S, Guo J, Si L, Kang R, Kaufmann HJ. An Integrated Drought Index (Vapor Pressure Deficit–Soil Moisture–Sun-Induced Chlorophyll Fluorescence Dryness Index, VMFDI) Based on Multisource Data and Its Applications in Agricultural Drought Management. Remote Sensing. 2024; 16(24):4666. https://doi.org/10.3390/rs16244666
Chicago/Turabian StyleDeng, Caiyun, Li Zhang, Tianhe Xu, Siqi Yang, Jian Guo, Lulu Si, Ran Kang, and Hermann Josef Kaufmann. 2024. "An Integrated Drought Index (Vapor Pressure Deficit–Soil Moisture–Sun-Induced Chlorophyll Fluorescence Dryness Index, VMFDI) Based on Multisource Data and Its Applications in Agricultural Drought Management" Remote Sensing 16, no. 24: 4666. https://doi.org/10.3390/rs16244666
APA StyleDeng, C., Zhang, L., Xu, T., Yang, S., Guo, J., Si, L., Kang, R., & Kaufmann, H. J. (2024). An Integrated Drought Index (Vapor Pressure Deficit–Soil Moisture–Sun-Induced Chlorophyll Fluorescence Dryness Index, VMFDI) Based on Multisource Data and Its Applications in Agricultural Drought Management. Remote Sensing, 16(24), 4666. https://doi.org/10.3390/rs16244666