Multi-Year Hurricane Impacts Across an Urban-to-Industrial Forest Use Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mapping Pre-Hurricane Forest Cover
2.3. Classifying Forest Use Types
2.4. Analyzing Annual Forest Change
2.5. Classifying Post-Hurricane Forest NDVI Behavior
2.6. Isolating Post-Hurricane Salvage Logging Activity
3. Results
3.1. NDVI Annual Change of Forests
3.2. Post-Hurricane Forest Behavior
3.3. Isolating Post-Hurricane Salvage Logging Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Reed, K.A.; Wehner, M.F.; Zarzycki, C.M. Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nat. Commun. 2022, 13, 1905. [Google Scholar] [CrossRef] [PubMed]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 3785. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Ojha, S.K.; Dimov, L.D.; Vogel, J.G.; Nowak, J. Long-term effects of catastrophic wind on southern US coastal forests: Lessons from a major hurricane. PLoS ONE 2021, 16, e0243362. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Landsea, C.; Zhang, W.; Villarini, G.; Knutson, T. Changes in Atlantic major hurricane frequency since the late-19th century. Nat. Commun. 2021, 12, 4054. [Google Scholar] [CrossRef]
- Rutledge, B.T.; Cannon, J.B.; McIntyre, R.K.; Holland, A.M.; Jack, S.B. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. For. Ecol. Manag. 2021, 48, 118724. [Google Scholar] [CrossRef]
- Kenney, G.; Staudhammer, C.L.; Wiesner, S.; Brantley, S.T.; Bigelow, S.W.; Starr, G. Hurricane Michael Altered the Structure and Function of Longleaf Pine Woodlands. J. Geophys. Res. Biogeo. 2021, 126, e2021JG006452. [Google Scholar] [CrossRef]
- Mallin, M.A.; Corbett, C.A. How hurricane attributes determine the extent of environmental effects: Multiple hurricanes and different coastal systems. Estuar. Coast. 2006, 29, 1046–1061. [Google Scholar] [CrossRef]
- Cole, J.; Nowak, D.J.; Greenfield, E.J. Potential Hurricane Wind Risk to US Rural and Urban Forests. J. For. 2021, 119, 393–406. [Google Scholar] [CrossRef]
- McNulty, S.G. Hurricane impacts on US forest carbon sequestration. Environ. Pollut. 2002, 116, S17–S24. [Google Scholar] [CrossRef]
- Worley, E.; Liu, N.; Sun, G.; Norman, S.P.; Christie, W.M.; Gavazzi, M.; Boggs, J.; McNulty, S.G. Impacts of Hurricane Michael on Watershed Hydrology: A Case Study in the Southeastern United States. Forests 2022, 13, 904. [Google Scholar] [CrossRef]
- Zampieri, N.E.; Pau, S.; Okamoto, D.K. The impact of Hurricane Michael on longleaf pine habitats in Florida. Sci. Rep. 2020, 10, 8483. [Google Scholar] [CrossRef] [PubMed]
- Stanturf, J.A.; Goodrick, S.L.; Outcalt, K.W. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. For. Ecol. Manag. 2007, 250, 119–135. [Google Scholar] [CrossRef]
- Gong, Y.; Staudhammer, C.L.; Kenney, G.; Wiesner, S.; Zhang, Y.L.; Starr, G. Vegetation structure drives forest phenological recovery after hurricane. Sci. Total Environ. 2021, 774, 145651. [Google Scholar] [CrossRef]
- Dahal, D.; Liu, S.G.; Oeding, J. The Carbon Cycle and Hurricanes in the United States between 1900 and 2011. Sci. Rep. 2014, 4, 5197. [Google Scholar] [CrossRef] [PubMed]
- Landry, S.M.; Koeser, A.K.; Kane, B.; Hilbert, D.R.; McLean, D.C.; Andreu, M.; Staudhammer, C.L. Urban forest response to Hurricane Irma: The role of landscape characteristics and sociodemographic context. Urban For. Urban Green. 2021, 61, 127093. [Google Scholar] [CrossRef]
- vonHedeman, N.; Schultz, C.A. U.S. Family Forest Owners’ Forest Management for Climate Adaptation: Perspectives from Extension and Outreach Specialists. Front. Clim. 2021, 3, 674718. [Google Scholar] [CrossRef]
- Aslan, C.; Souther, S. The interaction between administrative jurisdiction and disturbance on public lands: Emerging socioecological feedbacks and dynamics. J. Environ. Manag. 2022, 319, 115682. [Google Scholar] [CrossRef]
- Singer, R. Recovering from the 2018 Storms. Hurricane Michael Brought Significant Losses -and Some Gains- to South Georgia’s Forest Owners. 2019. Available online: http://www.georgiaforestrymagazine.com/hurricanemichael.html (accessed on 15 July 2024).
- Aragon, A.; Gaither, C.J.; Madden, M.; Goodrick, S. The “Efficiency Concern”: Exploring Wildfire Risk on Heirs’ Property in Macon-Bibb County, Georgia, United States of America. Hum. Ecol. Rev. 2019, 25, 51–68. [Google Scholar] [CrossRef]
- Gan, J.B.; Jarrett, A.; Gaither, C.J. Landowner response to wildfire risk: Adaptation, mitigation or doing nothing. J. Environ. Manag. 2015, 159, 186–191. [Google Scholar] [CrossRef]
- de Beurs, K.M.; McThompson, N.S.; Owsley, B.C.; Henebry, G.M. Hurricane damage detection on four major Caribbean islands. Remote Sens. Environ. 2019, 229, 1–13. [Google Scholar] [CrossRef]
- Gang, C.C.; Pan, S.F.; Tian, H.Q.; Wang, Z.N.; Xu, R.T.; Bian, Z.H.; Pan, N.Q.; Yao, Y.Z.; Shi, H. Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico. For. Ecol. Manag. 2020, 472, 118243. [Google Scholar] [CrossRef]
- Wang, F.G.; D’Sa, E.J. Potential of MODIS EVI in Identifying Hurricane Disturbance to Coastal Vegetation in the Northern Gulf of Mexico. Remote. Sens. 2010, 2, 1–18. [Google Scholar] [CrossRef]
- Wang, W.T.; Qu, J.J.; Hao, X.J.; Liu, Y.Q.; Stanturf, J.A. Post-hurricane forest damage assessment using satellite remote sensing. Agric. For. Meteorol. 2010, 150, 122–132. [Google Scholar] [CrossRef]
- Cortes-Ramos, J.; Farfan, L.M.; Herrera-Cervantes, H. Assessment of tropical cyclone damage on dry forests using multispectral remote sensing: The case of Baja California Sur, Mexico. J. Arid. Environ. 2020, 178, 104171. [Google Scholar] [CrossRef]
- Liu, M.L.; Liu, X.N.; Wu, L.; Tang, Y.B.; Li, Y.; Zhang, Y.Q.; Ye, L.; Zhang, B.Y. Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecol. Indic. 2021, 121, 106985. [Google Scholar] [CrossRef]
- St Peter, J.; Anderson, C.; Drake, J.; Medley, P. Spatially Quantifying Forest Loss at Landscape-scale Following a Major Storm Event. Remote. Sens. 2020, 12, 1138. [Google Scholar] [CrossRef]
- Karaer, A.; Ulak, M.B.; Abichou, T.; Arghandeh, R.; Ozguven, E.E. Post-Hurricane Vegetative Debris Assessment Using Spectral Indices Derived from Satellite Imagery. Transp. Res. Rec. 2021, 2675, 504–523. [Google Scholar] [CrossRef]
- Hargrove, W.W.; Spruce, J.P.; Gasser, G.E.; Hoffman, F.M. Toward a National Early Warning System for Forest Disturbances Using Remotely Sensed Canopy Phenology. Photogramm. Eng. Remote. Sens. 2009, 75, 1150–1156. [Google Scholar]
- Beven, J.L.; Berg, R.; Hagen, A. National Hurricane Center. Tropical Cyclone Report Hurricane Michael; National Oceanic and Environmental Administration National Weather Service. 2018. Available online: https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf (accessed on 15 February 2023).
- Brandeis, T.; Turner, J.; Baeza Castro, A.; Brown, M.; Lambert, S. Assessing Forest Resource Damage Following Natural Disasters using national forest inventory plots: A case of Hurricane Michael. For. Serv. Res. Pap. 2022, 65, 1–30. [Google Scholar] [CrossRef]
- NLCD. National Land Cover Dataset. 2016. Available online: https://www.usgs.gov/data/nlcd-2016 (accessed on 25 July 2023).
- Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests 2019, 10, 989. [Google Scholar] [CrossRef]
- Coleman, R.W.; Stavros, N.; Yadav, V.; Parazoo, N. A Simplified Framework for High-Resolution Urban Vegetation Classification with Optical Imagery in the Los Angeles Megacity. Remote Sens. 2020, 12, 2399. [Google Scholar] [CrossRef]
- Erker, T.; Wang, L.; Lorentz, L.; Stoltman, A.; Townsend, P.A. A statewide urban tree canopy mapping method. Remote Sens. Environ. 2019, 229, 148–158. [Google Scholar] [CrossRef]
- NAIP. National Agriculture Imagery Program. 2017. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-aerial-photography-national-agriculture-imagery-program-naip?qt-science_center_objects=0#qt-science_center_objects (accessed on 25 April 2024).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rodgers, J.C.; Murrah, A.W.; Cooke, W.H. The Impact of Hurricane Katrina on the Coastal Vegetation of the Weeks Bay Reserve, Alabama from NDVI Data. Estuar. Coast. 2009, 32, 496–507. [Google Scholar] [CrossRef]
- Norman, S.P.; Christie, W.M. Precise mapping of disturbance impacts to U.S. forests using high-resolution satellite imagery. In Forest Health Monitoring: National Status, Trends, and Analysis 2021; Potter, K.M., Conkling, B.L., Eds.; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2022; p. 119. [Google Scholar]
- Giupponi, L.; Leoni, V.; Pedrali, D.; Giorgi, A. Restoration of Vegetation Greenness and Possible Changes in Mature Forest Communities in Two Forests Damaged by the Vaia Storm in Northern Italy. Plants 2023, 12, 1369. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal Avhrr Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, L.; Menenti, M.; Gorte, B. On the performance of remote sensing time series reconstruction methods—A spatial comparison. Remote Sens. Environ. 2016, 187, 367–384. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statitical Computing: Vienna, Austria, 2023.
- Pebesma, E.; Bivand, R. sp: Classes and Methods for Spatial Data. R Package Version 2.1-4. Available online: https://cran.r-project.org/web/packages/sp/index.html (accessed on 30 April 2024)).
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests, 0.7.2. 2023. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 25 July 2023).
- Leutner, B.; Horning, N.; Schwalb-Willmann, J. RStoolbox: Tools for Remote Sensing Data Analysis. R Package Version 0.3.0., R: 2022. Available online: https://bleutner.github.io/RStoolbox/ (accessed on 15 September 2022).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package, Version 3.6-26. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 15 July 2023).
- Erguner, Y.; Kumar, J.; Hoffman, F.M.; Dalfes, H.N.; Hargrove, W.W. Mapping ecoregions under climate change: A case study from the biological "crossroads’ of three continents, Turkey. Landsc. Ecol. 2019, 34, 35–50. [Google Scholar] [CrossRef]
- Hargrove, W.W.; Hoffman, F.M. Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ. Manag. 2004, 34, S39–S60. [Google Scholar] [CrossRef]
- Hovis, M.; Frey, G.; McGinley, K.; Cubbage, F.; Han, X.; Lupek, M. Ownership, Governance, Uses, and Ecosystem Services of Community Forests in the Eastern United States. Forests 2022, 13, 1577. [Google Scholar] [CrossRef]
- McGinley, K.A.; Gould, W.A.; Alvarez-Berrios, N.L.; Holupchinski, E.; Diaz-Camacho, T. READY OR NOT? Hurricane preparedness, response, and recovery of farms, forests, and rural communities in the US Caribbean. Int. J. Disaster Risk Reduct. 2022, 82, 103346. [Google Scholar] [CrossRef]
- Prestemon, J.P.; Holmes, T.P. Market dynamics and optimal timber salvage after a natural catastrophe. For. Sci. 2004, 50, 495–511. [Google Scholar] [CrossRef]
- Clarke, M.; Sharma, A.; Stein, T.; Vogel, J.; Nowak, J. Forest Disturbances and Nonindustrial Forest Landowners: Management of Invasive Plants, Fire Hazards and Wildlife Habitats After a Hurricane. J. For. 2023, 121, 419–431. [Google Scholar] [CrossRef]
- Turner, M.G.; Donato, D.C.; Romme, W.H. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: Priorities for future research. Landsc. Ecol. 2013, 28, 1081–1097. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Ibanez, I.; Acharya, K.; Juno, E.; Karounos, C.; Lee, B.R.; McCollum, C.; Schaffer-Morrison, S.; Tourville, J. Forest resilience under global environmental change: Do we have the information we need? A systematic review. PLoS ONE 2019, 14, e0222207. [Google Scholar] [CrossRef] [PubMed]
- Fisichelli, N.A.; Schuurman, G.W.; Hoffman, C.H. Is ‘Resilience’ Maladaptive? Towards an Accurate Lexicon for Climate Change Adaptation. Environ. Manag. 2016, 57, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, L. Ecological and Human Community Resilience in Response to Natural Disasters. Ecol. Soc. 2010, 15, 753–758. Available online: http://www.jstor.org/stable/26268155 (accessed on 27 March 2023). [CrossRef]
- Gunderson, L.H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 2000, 31, 425–439. [Google Scholar] [CrossRef]
- Gaither, C.J.; Carpenter, A.; McCurty, T.L.; Toering, S. Heirs’ Property and Land Fractionation: Fostering Stable Ownership to Prevent Land Loss and Abandonment; SRS-244; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2019; p. 105. [Google Scholar]
- Hilsenroth, J.; Grogan, K.A.; Crandall, R.M.; Bond, L.; Sharp, M. The Impact of COVID-19 on management of non-industrial private forests in the Southeastern United States. Trees For. People 2021, 6, 100159. [Google Scholar] [CrossRef]
Forest Use | Focal Area | |
---|---|---|
A | B | |
Timberland | 711 | 1128 |
Farm woodlots | 70 | 324 |
Woodlot | 248 | 313 |
Other | 129 | 150 |
Urban | 317 | 100 |
Total | 1475 | 2015 |
Forest Use Types | Cluster | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total | |
Timberland | 4.5% | 4.5% | 2.0% | 1.8% | 31.4% | 5.7% | 0.8% | 19.1% | 15.6% | 14.7% | 100% |
Farm woodlots | 2.6% | 3.8% | 0.2% | 0.4% | 28.3% | 4.6% | 0.2% | 15.4% | 21.5% | 23.1% | 100% |
Woodlot | 1.8% | 2.3% | 1.3% | 0.6% | 38.7% | 3.7% | 0.5% | 21.7% | 16.1% | 13.4% | 100% |
Other | 4.8% | 2.9% | 1.1% | 0.8% | 32.3% | 3.5% | 0.3% | 21.9% | 16.5% | 16.0% | 100% |
Urban | 5.3% | 4.2% | 1.5% | 2.0% | 25.4% | 5.5% | 0.6% | 16.4% | 17.7% | 21.4% | 100% |
Overall | 4.0% | 3.9% | 1.5% | 1.3% | 31.5% | 5.0% | 0.6% | 19.0% | 16.7% | 16.4% | 100% |
Forest Use Types | Baseline 2016–2017 | 2018–2019 | 2019–2020 | 2020–2021 | 2021–2022 | 2022–2023 |
---|---|---|---|---|---|---|
Timberland | 2.1 | 2.5 | 3.2 | 3.1 | 4.2 | 2.2 |
All other | 2.5 | 2.0 | 1.9 | 2.0 | 1.7 | 1.0 |
Forest overall | 2.2 | 2.3 | 2.8 | 2.8 | 3.5 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topete-Pozas, C.; Norman, S.P.; Christie, W.M. Multi-Year Hurricane Impacts Across an Urban-to-Industrial Forest Use Gradient. Remote Sens. 2024, 16, 3890. https://doi.org/10.3390/rs16203890
Topete-Pozas C, Norman SP, Christie WM. Multi-Year Hurricane Impacts Across an Urban-to-Industrial Forest Use Gradient. Remote Sensing. 2024; 16(20):3890. https://doi.org/10.3390/rs16203890
Chicago/Turabian StyleTopete-Pozas, Carlos, Steven P. Norman, and William M. Christie. 2024. "Multi-Year Hurricane Impacts Across an Urban-to-Industrial Forest Use Gradient" Remote Sensing 16, no. 20: 3890. https://doi.org/10.3390/rs16203890
APA StyleTopete-Pozas, C., Norman, S. P., & Christie, W. M. (2024). Multi-Year Hurricane Impacts Across an Urban-to-Industrial Forest Use Gradient. Remote Sensing, 16(20), 3890. https://doi.org/10.3390/rs16203890