A Novel Detection Transformer Framework for Ship Detection in Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and Polarimetric Techniques
Abstract
:1. Introduction
1.1. Related Work
1.1.1. Convolutional Neural Network (CNN)-Based SAR Image Object Detection
1.1.2. Transformer-Based SAR Image Object Detection
1.1.3. Polarimetric SAR (PolSAR) Image Object Detection
1.2. Contributions
- Feature Enhancement DETR (FEDETR)
- PolSAR Integration with Weighted Feature Fusion (WFF)
- Generalization and Applicability
2. Materials and Methods
2.1. Feature Enhancement DETR (FEDETR) Module
2.1.1. Pooling Methods In SAR Image Preprocessing
2.1.2. Data Preparation for Optimal Pooling Module
2.1.3. Optimal Configuration Determination for Labeling Data
- Evaluation of F1 scores for each pooling type and kernel size configuration to measure detection accuracy comprehensively. In turn, the highest F1 score is determined as follows:
- Integration of LSF and PSNR metrics to assess edge sharpness and image quality across different pooling configurations for the purpose of making well-informed decisions regarding the optimal pooling parameters for preprocessing SAR images. In fact, this methodical approach guarantees that the processed images retain sharp edges and high fidelity, thereby improving the overall efficacy of the FEDETR model in precisely detecting ships in complex environments.In the context of this process, the configuration with the lowest LSF and with the highest F1 score is selected:
- 3.
- Implementation of labelling steps: In the final stage, the selected pooling parameters are applied during the labeling process. This involves using these configurations to label and process SAR images, ensuring that the model’s performance is optimized based on the refined parameters. To facilitate this, a Pooling Optimization Dataset was created for the CNN module, which is designed to estimate these parameters effectively.
2.1.4. CNN Module for Pooling Parameter Estimation
Dataset Preparation and Structure for CNN Module
2.1.5. DETR Model
2.2. PolSAR Detection Module
2.2.1. Pauli Decomposition
2.2.2. Volume and Helix Scattering Module (FVh)
2.2.3. Thresholding Selecting
2.2.4. Weighted Feature Fusion (WFF) Module
2.3. Materials
2.3.1. Datasets
2.3.2. The Original SAR Imageries
3. Results
3.1. Experiments of FEDETR on Datasets
3.2. Ablation Study
4. Discussion
4.1. Implementation Details
4.2. FEDETR Module Effect Validation
WWF Module Effect Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Z.; Yao, X.; Liu, Y.; Dumitru, C.O.; Datcu, M.; Han, J. Physically explainable CNN for SAR image classification. ISPRS J. Photogramm. Remote Sens. 2022, 190, 25–37. [Google Scholar] [CrossRef]
- Zhao, S.; Luo, Y.; Zhang, T.; Guo, W.; Zhang, Z. A Feature Decomposition-Based Method for Automatic Ship Detection Crossing Different Satellite SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5234015. [Google Scholar] [CrossRef]
- Xue, R.; Bai, X.; Zhou, F. Spatial–Temporal Ensemble Convolution for Sequence SAR Target Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1250–1262. [Google Scholar] [CrossRef]
- He, Q.; Sun, X.; Diao, W.; Yan, Z.; Yin, D.; Fu, K. RETRACTED: Transformer-induced graph reasoning for multimodal semantic segmentation in remote sensing. ISPRS J. Photogramm. Remote Sens. 2022, 193, 90–103. [Google Scholar] [CrossRef]
- A Fast Threshold Neural Network for Ship Detection in Large-Scene SAR Images|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/9833220 (accessed on 29 July 2024).
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep Learning for SAR Ship Detection: Past, Present and Future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Kang, M.; Ji, K.; Leng, X.; Lin, Z. Contextual Region-Based Convolutional Neural Network with Multilayer Fusion for SAR Ship Detection. Remote Sens. 2017, 9, 860. [Google Scholar] [CrossRef]
- Detection Methods Based on Structured Covariance Matrices for Multivariate SAR Images Processing|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/8627919 (accessed on 29 July 2024).
- Fast and Automatic Ship Detection for SAR Imagery Based on Multiscale Contrast Measure|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/8716523 (accessed on 29 July 2024).
- Power Transformations and Feature Alignment Guided Network for SAR Ship Detection|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/9802634 (accessed on 29 July 2024).
- Yang, X.; Zhang, J.; Chen, C.; Yang, D. An Efficient and Lightweight CNN Model With Soft Quantification for Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5230713. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Liang, W.; Cao, Y.; Li, M. High Resolution SAR Image Classification Using Global-Local Network Structure Based on Vision Transformer and CNN. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4505405. [Google Scholar] [CrossRef]
- Vaswani, A. Attention Is All You Need. arXiv.org. Available online: https://arxiv.org/abs/1706.03762v7 (accessed on 29 July 2024).
- Dong, H.; Zhang, L.; Zou, B. Exploring Vision Transformers for Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5219715. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv 2020, arXiv:2403.06534. Available online: https://arxiv.org/abs/2005.12872v3 (accessed on 29 July 2024).
- Beal, J.; Kim, E.; Tzeng, E.; Park, D.H.; Zhai, A.; Kislyuk, D. Toward Transformer-Based Object Detection. arXiv 2020, arXiv:2012.09958. Available online: https://arxiv.org/abs/2012.09958v1 (accessed on 29 July 2024).
- End-to-End Method With Transformer for 3-D Detection of Oil Tank From Single SAR Image|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/9614654 (accessed on 29 July 2024).
- Gong, K.; Li, S.; Li, S.; Zhang, R.; Liu, C.H.; Chen, Q. Improving Transferability for Domain Adaptive Detection Transformers. arXiv 2022, arXiv:2204.14195. [Google Scholar]
- Li, Y.; Li, X.; Li, W.; Hou, Q.; Liu, L.; Cheng, M.M.; Yang, J. SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection. arXiv 2024, arXiv:2403.06534. [Google Scholar]
- Hajduch, G.; Kerbaol, V.; Joux, R. Ship Detection: From Processing to Instrument Characterisation; Special Publication; European Space Agency: Paris, France, 2008. [Google Scholar]
- Potin, P.; Rosich, B.; Miranda, N.; Grimont, P.; Shurmer, I.; O’Connell, A.; Krassenburg, M.; Gratadour, J.B. Copernicus Sentinel-1 Constellation Mission Operations Status. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019–2 August 2019; pp. 5385–5388. [Google Scholar] [CrossRef]
- Greidanus, H.; Alvarez, M.; Santamaria, C.; Thoorens, F.-X.; Kourti, N.; Argentieri, P. The SUMO Ship Detector Algorithm for Satellite Radar Images. Remote Sens. 2017, 9, 246. [Google Scholar] [CrossRef]
- Crisp, D.J. The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery; Defence Science and Technology Organisation Salisbury (Australia) info Sciences Lab: Finsbury, Australia, 2004. [Google Scholar]
- El-Darymli, K.; McGuire, P.; Power, D.; Moloney, C. Target detection in synthetic aperture radar imagery: A state-of-the-art survey. J. Appl. Remote Sens. 2013, 7, 071598. [Google Scholar] [CrossRef]
- Modeling SAR Images with a Generalization of the Rayleigh Distribution|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/1284389 (accessed on 29 July 2024).
- On the Empirical-Statistical Modeling of SAR Images With Generalized Gamma Distribution|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/5742676 (accessed on 29 July 2024).
- Xie, H.; Pierce, L.E.; Ulaby, F.T. Statistical properties of logarithmically transformed speckle. IEEE Trans. Geosci. Remote Sens. 2002, 40, 721–727. [Google Scholar] [CrossRef]
- Salembier, P.; Liesegang, S.; López-Martínez, C. Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2709–2724. [Google Scholar] [CrossRef]
- Snoeij, P.; Attema, E.; Davidson, M.; Duesmann, B.; Floury, N.; Levrini, G.; Rommen, B.; Rosich, B. The Sentinel-1 radar mission: Status and performance. In Proceedings of the 2009 International Radar Conference “Surveillance for a Safer World” (RADAR 2009), Bordeaux, France, 12–16 October 2009; Available online: https://www.semanticscholar.org/paper/The-Sentinel-1-radar-mission%3A-status-and-Snoeij-Attema/e4190ab1c1a0956902b8b5755fd0d39b81cbe53c (accessed on 29 July 2024).
- Zhang, T.; Marino, A.; Xiong, H. A ship detector applying principal component analysis to the Polarimetric Notch Filter. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1864–1867. [Google Scholar] [CrossRef]
- Pelich, R.; Chini, M.; Hostache, R.; Matgen, P.; Lopez-Martinez, C.; Nuevo, M.; Ries, P.; Eiden, G. Large-Scale Automatic Vessel Monitoring Based on Dual-Polarization Sentinel-1 and AIS Data. Remote Sens. 2019, 11, 1078. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Kaliuzhnyi, M. YOLOX-SAR: High-Precision Object Detection System Based on Visible and Infrared Sensors for SAR Remote Sensing. IEEE Sens. J. 2022, 22, 17243–17253. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M.; Xu, M.; Tang, R.; Wang, L.; Wang, H. Ship Detection in SAR Images Based on Feature Enhancement Swin Transformer and Adjacent Feature Fusion. Remote Sens. 2022, 14, 3186. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, Z.; Liu, J.; Wu, C. TSDet: End-to-End Method with Transformer for SAR Ship Detection. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Xia, R.; Chen, J.; Huang, Z.; Wan, H.; Wu, B.; Sun, L.; Yao, B.; Xiang, H.; Xing, M. CRTransSar: A Visual Transformer Based on Contextual Joint Representation Learning for SAR Ship Detection. Remote Sens. 2022, 14, 1488. [Google Scholar] [CrossRef]
- TSDet: End-to-End Method with Transformer for SAR Ship Detection|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/9891879 (accessed on 29 July 2024).
- Margarit, G.; Mallorqui, J.J.; Fortuny-Guasch, J.; Lopez-Martinez, C. Phenomenological Vessel Scattering Study Based on Simulated Inverse SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1212–1223. [Google Scholar] [CrossRef]
- Batool, S.; Frezza, F.; Mangini, F.; Simeoni, P. Introduction to Radar Scattering Application in Remote Sensing and Diagnostics: Review. Atmosphere 2020, 11, 517. [Google Scholar] [CrossRef]
- Zhaoying, H.; Jinsong, C. A review of ship detection algorithms in polarimetric SAR images. In Proceedings of the 7th International Conference on Signal Processing, 2004. Proceedings. ICSP ’04. 2004, Beijing, China, 31 August–4 September 2004; pp. 2155–2158. [Google Scholar] [CrossRef]
- PolSAR Ship Detection Based on the Polarimetric Covariance Difference Matrix|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/7883820 (accessed on 29 July 2024).
- Jin, R.; Zhou, W.; Yin, J.; Yang, J. CFAR Line Detector for Polarimetric SAR Images Using Wilks’ Test Statistic. IEEE Geosci. Remote Sens. Lett. 2016, 13, 711–715. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Yang, J. Ship Detection Using Polarization Cross-Entropy. IEEE Geosci. Remote Sens. Lett. 2009, 6, 723–727. [Google Scholar] [CrossRef]
- Sugimoto, M.; Ouchi, K.; Nakamura, Y. On the novel use of model-based decomposition in SAR polarimetry for target detection on the sea. Remote Sens. Lett. 2013, 4, 843–852. Available online: https://www.tandfonline.com/doi/abs/10.1080/2150704X.2013.804220 (accessed on 29 July 2024). [CrossRef]
- Zhang, C.; Gao, G.; Zhang, L.; Chen, C.; Gao, S.; Yao, L.; Bai, Q.; Gou, S. A Novel Full-Polarization SAR Images Ship Detector Based on the Scattering Mechanisms and the Wave Polarization Anisotropy. arXiv 2021, arXiv:2112.02965. [Google Scholar] [CrossRef]
- Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/8763918 (accessed on 29 July 2024).
- Gao, G.; Bai, Q.; Zhang, C.; Zhang, L.; Yao, L. Dualistic cascade convolutional neural network dedicated to fully PolSAR image ship detection. ISPRS J. Photogramm. Remote Sens. 2023, 202, 663–681. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, P.; Wang, N.; Liu, T. A Lightweight Theory-Driven Network and Its Validation on Public Fully Polarized Ship Detection Dataset. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3755–3767. [Google Scholar] [CrossRef]
- A Novel Full-Polarization SAR Images Ship Detector Based on the Scattering Mechanisms and the Wave Polarization Anisotropy,” ar5iv. Available online: https://ar5iv.labs.arxiv.org/html/2112.02965 (accessed on 17 October 2024).
- Zhao, L.; Zhang, Z. A improved pooling method for convolutional neural networks. Sci. Rep. 2024, 14, 1589. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Tsumura, N. Measuring method for the line spread function of specular reflection. OSA Continuum OSAC 2020, 3, 864–877. [Google Scholar] [CrossRef]
- Sethi, D.; Bharti, S.; Prakash, C. A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, future work. Artif. Intell. Med. 2022, 129, 102314. [Google Scholar] [CrossRef]
- Ahmed, M.; El-Sheimy, N.; Leung, H.; Moussa, A. Enhancing Object Detection in Remote Sensing: A Hybrid YOLOv7 and Transformer Approach with Automatic Model Selection. Remote Sens. 2024, 16, 51. [Google Scholar] [CrossRef]
- End-to-End Object Detection with Transformers; SpringerLink: Cham, Switzerland, 2020; Available online: https://link.springer.com/chapter/10.1007/978-3-030-58452-8_13 (accessed on 9 August 2024).
- Zhang, C.; Zhang, X.; Gao, G.; Lang, H.; Liu, G.; Cao, C.; Song, Y.; Guan, Y.; Dai, Y. Development and Application of Ship Detection and Classification Datasets: A review. IEEE Geosci. Remote Sens. Mag. 2024, 2–36. [Google Scholar] [CrossRef]
- (PDF) Efficient Graph-Friendly COCO Metric Computation for Train-Time Model Evaluation. Available online: https://www.researchgate.net/publication/362251958_Efficient_Graph-Friendly_COCO_Metric_Computation_for_Train-Time_Model_Evaluation (accessed on 28 August 2024).
Datasets | Res. (m) | Band | Satellites | Polarization |
---|---|---|---|---|
SSDD | 1∼15 m | C/X | S-1 RadarSat-2 TerraSAR-X | HH VV VH HV |
SAR-Ship-Dataset | 3∼25 m | C | S-1, GF-3 |
Model | AP (%) | AP50 (%) | AP75 (%) | APS (%) | APM (%) | APL (%) |
---|---|---|---|---|---|---|
DETR | 53 | 93 | 55 | 46 | 48 | 68 |
Area. | Polarization | Method | Precision % | Recall % | F1 Score % | Pooling Type | Kernel Size |
---|---|---|---|---|---|---|---|
Onshore1 | VV | DETR | 89 | 80 | 84 | - | - |
FEDETR | 88 | 70 | 78 | Median | 3 | ||
VH | DETR | 98 | 80 | 89 | |||
FEDETR | 99 | 90 | 95 | Maximum | 5 | ||
Onshore2 | VV | DETR | 99 | 50 | 67 | - | - |
FEDETR | 75 | 99 | 86 | Median | 7 | ||
VH | DETR | 40 | 50 | 44 | - | - | |
FEDETR | 43 | 75 | 55 | Maximum | 3 | ||
Offshore1 | VV | DETR | 99 | 95 | 98 | - | |
FEDETR | 98 | 82 | 90 | Median | 5 | ||
VH | DETR | 98 | 86 | 93 | - | ||
FEDETR | 99 | 91 | 95 | Maximum | 5 | ||
Offshore2 | VV | DETR | 98 | 83 | 91 | - | |
FEDTR | 99 | 80 | 89 | Median | 7 | ||
VH | DETR | 98 | 79 | 88 | - | ||
FEDTR | 99 | 84 | 91 | Maximum | 5 |
Area | Method | Precision % | Recall % | F1 Score % |
---|---|---|---|---|
Onshore1 | FEDETR | 99 | 90 | 95 |
Fvh | 25 | 57 | 30 | |
Pauli basis | 47 | 100 | 64 | |
WFF | 100 | 91 | 95 | |
Onshore2 | FEDETR | 75 | 99 | 86 |
Fvh | 67 | 100 | 80 | |
Pauli basis | 50 | 38 | 43 | |
WFF | 100 | 80 | 89 | |
Offshore1 | FEDETR | 99 | 91 | 95 |
Fvh | 91 | 87 | 89 | |
Pauli basis | 87 | 100 | 93 | |
WFF | 96 | 100 | 98 | |
Offshore2 | FEDETR | 99 | 84 | 91 |
Fvh | 100 | 81 | 89 | |
Pauli basis | 100 | 83 | 91 | |
WFF | 97 | 97 | 97 |
Area | Polarization | Mean (Images) | Std Dev (Images) | Mean (Ships) | Std Dev (Ships) |
---|---|---|---|---|---|
Onshore1 | VV | 146.20 | 39.38 | 125.99 | 11.38 |
VH | 99.55 | 25.85 | 86.73 | 3.96 | |
Onshore2 | VV | 125.14 | 18.43 | 190.59 | 58.80 |
VH | 124.86 | 48.86 | 125.88 | 65.72 | |
Offshore1 | VV | 146.14 | 20.77 | 142.62 | 13.69 |
VH | 100.37 | 15.16 | 98.32 | 3.33 | |
Offshore2 | VV | 144.34 | 19.60 | 135.09 | 10.30 |
VH | 103.08 | 10.93 | 101.23 | 3.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; El-Sheimy, N.; Leung, H. A Novel Detection Transformer Framework for Ship Detection in Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and Polarimetric Techniques. Remote Sens. 2024, 16, 3877. https://doi.org/10.3390/rs16203877
Ahmed M, El-Sheimy N, Leung H. A Novel Detection Transformer Framework for Ship Detection in Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and Polarimetric Techniques. Remote Sensing. 2024; 16(20):3877. https://doi.org/10.3390/rs16203877
Chicago/Turabian StyleAhmed, Mahmoud, Naser El-Sheimy, and Henry Leung. 2024. "A Novel Detection Transformer Framework for Ship Detection in Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and Polarimetric Techniques" Remote Sensing 16, no. 20: 3877. https://doi.org/10.3390/rs16203877
APA StyleAhmed, M., El-Sheimy, N., & Leung, H. (2024). A Novel Detection Transformer Framework for Ship Detection in Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and Polarimetric Techniques. Remote Sensing, 16(20), 3877. https://doi.org/10.3390/rs16203877