Attribution of Vegetation Dynamics in the Yellow River Water Conservation Area Based on the Deep ConvLSTM Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. NDVI Data
2.2.2. Climate Data
2.2.3. Land Use Data
2.2.4. Topographic and Soil Data
2.3. Method
2.3.1. Time-Lag Weighted Climate Factors
2.3.2. Residual Trend Method
2.3.3. ConvLSTM and RF
2.3.4. Attributional Analysis
2.3.5. Anthropogenic Magnitude
3. Results
3.1. Dynamics in NDVI and Environmental Factors
3.2. Response of Different Vegetation Types to Climate Factors
3.3. Residual Trend Analysis
3.4. Contributions of Climate Change and Human Activities on NDVI Since 2000
3.5. Effects of Regional Ecological Programs
4. Discussion
5. Conclusions
- (1)
- Vegetation in the YRWCA has undergone extensive and significant growth trends in response to climate change and human activities over the decades, with a regional NDVI growth trend of 0.00085 yr−1. This is especially most significant in the Wei River basin, the Yi-Luo River basin, and the northeast part of the A, which are predominantly dryland areas and where there was extensive over-farming human activities pre-2000.
- (2)
- Changes in the drivers of vegetation variation around 2000 are due to human ecological programs implemented after 2000. NDVI trends in the Wei River basin, Yi-Luo River basin, and the northeast part of Area A were driven by climate changes before 2000 and by human activities after 2000, while the declining vegetation trend in the Guanzhong Plain is mainly attributed to the suppressive effects of human activities after 2000.
- (3)
- The deep ConvLSTM model demonstrates superiority over the RF model in simulating the impact of climate change on vegetation growth. The model, which uses climate and terrestrial factors as inputs and the NDVI as the output, can be broadly applied to other scenarios.
- (4)
- Anthropogenic contributions to the NDVI have been particularly significant in the drylands, especially in 2006–2015. Ecological restoration processes have a lagging effect on promoting vegetation growth, and returning farmland to forest and grassland has a stronger restoring effect on vegetation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dobson, A.P.; Bradshaw, A.D.; Baker, A.J.M. Hopes for the Future: Restoration Ecology and Conservation Biology. Science 1997, 277, 515–522. [Google Scholar] [CrossRef]
- Young, T.P. Restoration Ecology and Conservation Biology. Biol. Conserv. 2000, 92, 73–83. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Delang, C.O.; Yuan, Z. China’s Reforestation and Rural Development Programs. In China’s Grain for Green Program: A Review of the Largest Ecological Restoration and Rural Development Program in the World; Delang, C.O., Yuan, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–35. ISBN 978-3-319-11505-4. [Google Scholar]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X.; et al. Multiple Afforestation Programs Accelerate the Greenness in the ‘Three North’ Region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Liu, J.; Feng, L.; Zhao, Y. Assessing the Effects of Drought and “Grain for Green” Program on Vegetation Dynamics in China’s Loess Plateau from 2000 to 2014. CATENA 2019, 175, 446–455. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L. The Impacts of Climate Change and Land Cover/Use Transition on the Hydrology in the Upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Wang, B.; Gao, P.; Niu, X.; Sun, J. Policy-Driven China’s Grain to Green Program: Implications for Ecosystem Services. Ecosyst. Serv. 2017, 27, 38–47. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W. Vegetation Dynamics and the Relations with Climate Change at Multiple Time Scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being—Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Thuiller, W. Climate Change and the Ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and Attribution of Vegetation Greening Trend in China over the Last 30 Years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent Ecological Transitions in China: Greening, Browning and Influential Factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Piao, S.; Shen, Z.; Ciais, P.; Sun, Z.; Chen, S.; Bacour, C.; Peylin, P.; Chen, A. Precipitation Amount, Seasonality and Frequency Regulate Carbon Cycling of a Semi-Arid Grassland Ecosystem in Inner Mongolia, China: A Modeling Analysis. Agric. For. Meteorol. 2013, 178–179, 46–55. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Casazza, M.; Dumontet, S.; Yang, Z. Ecosystem Restoration Programs Challenges under Climate and Land Use Change. Sci. Total Environ. 2022, 807, 150527. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-Based Vegetation Dynamics and Its Response to Climate Changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Wu, D.; Piao, S.; Zhu, D.; Wang, X.; Ciais, P.; Bastos, A.; Xu, X.; Xu, W. Accelerated Terrestrial Ecosystem Carbon Turnover and Its Drivers. Glob. Chang. Biol. 2020, 26, 5052–5062. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, Z.; Wang, D.; Luo, F.; Bai, J.; Fu, Y. Impact of Vegetation Restoration on Ecosystem Services in the Loess Plateau, a Case Study in the Jinghe Watershed, China. Ecol. Indic. 2022, 142, 109183. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation Dynamics and Responses to Climate Change and Human Activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Quantitatively Distinguishing the Impact of Climate Change and Human Activities on Vegetation in Mainland China with the Improved Residual Method. GIScience Remote Sens. 2021, 58, 235–260. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Fu, J. Vegetation Response to Precipitation Anomalies under Different Climatic and Biogeographical Conditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Z.; Peng, S. Global Analysis of Time-Lag and -Accumulation Effects of Climate on Vegetation Growth. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Band, L.E.; Sun, G.; Li, J. Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products: Browning or Greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, C.; Chen, T.; Zhang, A. A Weighted-Time-Lag Method to Detect Lag Vegetation Response to Climate Variation: A Case Study in Loess Plateau, China, 1982–2013. Remote Sens. 2021, 13, 923. [Google Scholar] [CrossRef]
- Funk, C.C.; Brown, M.E. Intra-Seasonal NDVI Change Projections in Semi-Arid Africa. Remote Sens. Environ. 2006, 101, 249–256. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, W.; Hong, Z.; Meng, L. Forecasting NDVI in Multiple Complex Areas Using Neural Network Techniques Combined Feature Engineering. Int. J. Digit. Earth 2020, 13, 1733–1749. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Nicolau, J.M.; Vicente, E.; Moreno-de Las Heras, M. Assessing Vegetation Recovery in Reclaimed Opencast Mines of the Teruel Coalfield (Spain) Using Landsat Time Series and Boosted Regression Trees. Sci. Total Environ. 2020, 717, 137250. [Google Scholar] [CrossRef]
- Wu, T.; Fu, H.; Feng, F.; Bai, H. A New Approach to Predict Normalized Difference Vegetation Index Using Time-Delay Neural Network in the Arid and Semi-Arid Grassland. Int. J. Remote Sens. 2019, 40, 9050–9063. [Google Scholar] [CrossRef]
- Wilkinson, D.M. The Fundamental Processes in Ecology: Life and the Earth System; Oxford University Press: Oxford, UK, 2023; ISBN 978-0-19-288466-4. [Google Scholar]
- Xu, X.; Trugman, A.T. Trait-Based Modeling of Terrestrial Ecosystems: Advances and Challenges under Global Change. Curr. Clim. Chang. Rep. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; WOO, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canda, 7–12 December 2015; Volume 28. [Google Scholar]
- Xu, Z.; Lv, Y. Att-ConvLSTM: PM2.5 Prediction Model and Application. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, Proceedings of the 15th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Kunming, China, 20–22 July 2019; Liu, Y., Wang, L., Zhao, L., Yu, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 30–40. [Google Scholar]
- Mu, B.; Peng, C.; Yuan, S.; Chen, L. ENSO Forecasting over Multiple Time Horizons Using ConvLSTM Network and Rolling Mechanism. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Ma, Y.; Hu, Y.; Moncrieff, G.R.; Slingsby, J.A.; Wilson, A.M.; Maitner, B.; Zhou, R.Z. Forecasting Vegetation Dynamics in an Open Ecosystem by Integrating Deep Learning and Environmental Variables. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103060. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.P.; et al. Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef]
- Lawrence Lodge, R.H.E.; Anderson, B.J.; de Groot, A.; Bill, A.; McQueen, A.A.M.; Steel, J.B.; Mistral, M.; Mason, N.W.H.; Bastow Wilson, J. Spatial Autocorrelation in Plant Communities: Vegetation Texture versus Species Composition. Ecography 2007, 30, 801–811. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Gonçalves, W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.; Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A Random Forest Ranking Approach to Predict Yield in Maize with Uav-Based Vegetation Spectral Indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, N.; Ma, X.; Wu, B.; He, Q.; Yue, C.; Yu, Q. Attribution of Climate and Human Activities to Vegetation Change in China Using Machine Learning Techniques. Agric. For. Meteorol. 2020, 294, 108146. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal Responses of NDVI to Precipitation and Temperature in the Central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Bagherzadeh, A.; Liu, M. Spatio-Temporal Variation Characteristics of NDVI and Its Response to Climate on the Loess Plateau from 1985 to 2015. CATENA 2021, 203, 105331. [Google Scholar] [CrossRef]
- The National Center for Atmospheric Research. Global GIMMS NDVI3g v1 Dataset (1981–2015); The National Center for Atmospheric Research: Boulder, CO, USA, 2018. [Google Scholar]
- An, S.; Zhu, X.; Shen, M.; Wang, Y.; Cao, R.; Chen, X.; Yang, W.; Chen, J.; Tang, Y. Mismatch in Elevational Shifts between Satellite Observed Vegetation Greenness and Temperature Isolines during 2000–2016 on the Tibetan Plateau. Glob. Chang. Biol. 2018, 24, 5411–5425. [Google Scholar] [CrossRef]
- Wang, X.; Ciais, P.; Wang, Y.; Zhu, D. Divergent Response of Seasonally Dry Tropical Vegetation to Climatic Variations in Dry and Wet Seasons. Glob. Chang. Biol. 2018, 24, 4709–4717. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Yang, J.; Lin, K.; Du, G. NDVI Indicated Inter-Seasonal Non-Uniform Time-Lag Responses of Terrestrial Vegetation Growth to Daily Maximum and Minimum Temperature. Glob. Planet. Chang. 2019, 177, 27–38. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts. ERA5-Land Hourly Data from 1950 to Present; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2019. [Google Scholar]
- Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing Vegetation Response to Climatic Variations and Human Activities: Spatiotemporal NDVI Variations in the Hexi Corridor and Surrounding Areas from 2000 to 2010. Theor. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences. Resource and Environmental Science Data Center Landuse Dataset in China (1980–2015); Chinese Academy of Sciences: Beijing, China, 2019. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. ISBN 978-3-642-00295-3. [Google Scholar]
- McDowell, J.J.; Calvin, O.L.; Klapes, B. A Survey of Residual Analysis and a New Test of Residual Trend. J. Exp. Anal. Behav. 2016, 105, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-Lag Effects of Global Vegetation Responses to Climate Change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.; Iyer, H.; Malm, W. Linear Trend Analysis: A Comparison of Methods. Atmos. Environ. 2001, 35, 5211–5222. [Google Scholar] [CrossRef]
- Wu, X.; Wu, Z.; Zhang, J.; Ju, L.; Wang, S. SalSAC: A Video Saliency Prediction Model with Shuffled Attentions and Correlation-Based ConvLSTM. Proc. AAAI Conf. Artif. Intell. 2020, 34, 12410–12417. [Google Scholar] [CrossRef]
- Sala, O.E.; Gherardi, L.A.; Reichmann, L.; Jobbágy, E.; Peters, D. Legacies of Precipitation Fluctuations on Primary Production: Theory and Data Synthesis. Phil. Trans. R. Soc. B 2012, 367, 3135–3144. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual Variations of Monthly and Seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999. J. Geophys. Res. Atmos. 2003, 108, 1–13. [Google Scholar] [CrossRef]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-Based Increase in Growth of Temperate Grasslands and Its Responses to Climate Changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Bunde, A.; Ludescher, J.; Franzke, C.L.E.; Büntgen, U. How Significant Is West Antarctic Warming? Nat. Geosci. 2014, 7, 246–247. [Google Scholar] [CrossRef]
- Yang, L.; Guan, Q.; Lin, J.; Tian, J.; Tan, Z.; Li, H. Evolution of NDVI Secular Trends and Responses to Climate Change: A Perspective from Nonlinearity and Nonstationarity Characteristics. Remote Sens. Environ. 2021, 254, 112247. [Google Scholar] [CrossRef]
- Beigaitė, R.; Tang, H.; Bryn, A.; Skarpaas, O.; Stordal, F.; Bjerke, J.W.; Žliobaitė, I. Identifying Climate Thresholds for Dominant Natural Vegetation Types at the Global Scale Using Machine Learning: Average Climate versus Extremes. Glob. Chang. Biol. 2022, 28, 3557–3579. [Google Scholar] [CrossRef]
- Li, C.; Zhou, M.; Dou, T.; Zhu, T.; Yin, H.; Liu, L. Convergence of Global Hydrothermal Pattern Leads to an Increase in Vegetation Net Primary Productivity. Ecol. Indic. 2021, 132, 108282. [Google Scholar] [CrossRef]
- He, L.; Li, Z.-L.; Wang, X.; Xie, Y.; Ye, J.-S. Lagged Precipitation Effect on Plant Productivity Is Influenced Collectively by Climate and Edaphic Factors in Drylands. Sci. Total Environ. 2021, 755, 142506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Cao, Y.; Deng, Y.; Li, Q.; Li, C.; Wu, L.; et al. Limitations of Soil Moisture and Formation Rate on Vegetation Growth in Karst Areas. Sci. Total Environ. 2022, 810, 151209. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, P.; Yu, J. Vegetation Greening and Climate Change Promote an Increase in Evapotranspiration across Siberia. J. Hydrol. 2022, 610, 127965. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A. Multivariate Climate Departures Have Outpaced Univariate Changes across Global Lands. Sci. Rep. 2020, 10, 3891. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-Temporal Analysis of Vegetation Variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal Evolution and Driving Mechanisms of Vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the Cumulative and Time-Lag Effects of Drought on Grassland Vegetation: A Case Study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Y.; Huang, H.; Li, A.; Yang, L.; Zhou, C. A CNN-LSTM Model for Soil Organic Carbon Content Prediction with Long Time Series of MODIS-Based Phenological Variables. Remote Sens. 2022, 14, 4441. [Google Scholar] [CrossRef]
- Borowiec, M.L.; Dikow, R.B.; Frandsen, P.B.; McKeeken, A.; Valentini, G.; White, A.E. Deep Learning as a Tool for Ecology and Evolution. Methods Ecol. Evol. 2022, 13, 1640–1660. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Gao, J.; Shi, Y.; Ma, G. Influences of Pika and Simulated Grazing Disturbances on Bare Patches of Alpine Meadow in the Yellow River Source Zone. J. Mt. Sci. 2021, 18, 1307–1320. [Google Scholar] [CrossRef]
- Qian, C.; Shao, L.; Hou, X.; Zhang, B.; Chen, W.; Xia, X. Detection and Attribution of Vegetation Greening Trend across Distinct Local Landscapes under China’s Grain to Green Program: A Case Study in Shaanxi Province. CATENA 2019, 183, 104182. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Yu, X. Impact of China’s Grain for Green Project on the Landscape of Vulnerable Arid and Semi-arid Agricultural Regions: A Case Study in Northern Shaanxi Province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar] [CrossRef]
- Mu, W.; Zhu, X.; Ma, W.; Han, Y.; Huang, H.; Huang, X. Impact Assessment of Urbanization on Vegetation Net Primary Productivity: A Case Study of the Core Development Area in Central Plains Urban Agglomeration, China. Environ. Res. 2023, 229, 115995. [Google Scholar] [CrossRef]
- Cao, S.; Ma, H.; Yuan, W.; Wang, X. Interaction of Ecological and Social Factors Affects Vegetation Recovery in China. Biol. Conserv. 2014, 180, 270–277. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; O’Connor, P.; Xu, H.; Li, Y.; Lu, F.; Robinson, B.E.; Ouyang, Z.; Hai, Y.; Daily, G.C. Time and Space Catch up with Restoration Programs That Ignore Ecosystem Service Trade-Offs. Sci. Adv. 2021, 7, eabf8650. [Google Scholar] [CrossRef]
- Wang, Z.; Song, W.; Yin, L. Responses in Ecosystem Services to Projected Land Cover Changes on the Tibetan Plateau. Ecol. Indic. 2022, 142, 109228. [Google Scholar] [CrossRef]
- Niu, M.; Li, Y.; Wang, C.; Han, K. RFAmyloid: A Web Server for Predicting Amyloid Proteins. Int. J. Mol. Sci. 2018, 19, 2071. [Google Scholar] [CrossRef]
Area Proportion | NDVI Multi-Year Average | NDVI Multi-Year Trend | Significant Area | Growing Season Duration | |
---|---|---|---|---|---|
Units | (%) | (yr−1·10−3) | (%) | (month) | |
Region | 0.53 | 0.85 | 52.1 | 6.3 | |
Dryland | 17.1 | 0.43 | 1.59 | 80.6 | 9.0 |
Forest | 6.2 | 0.64 | 1.18 | 71.0 | 8.8 |
Shrubland | 2.7 | 0.63 | 0.58 | 41.7 | 6.3 |
Meadow | 32.0 | 0.62 | 0.46 | 35.8 | 6.0 |
Grassland | 40.9 | 0.46 | 0.81 | 50.5 | 4.9 |
Wetland | 1.1 | 0.61 | 0.66 | 56.7 | 5.9 |
t2m | tmax | tmin | tp | ssrd | d2m | u10 | v10 | sp | |
---|---|---|---|---|---|---|---|---|---|
Time-Lag | (month) | ||||||||
Region | 0.28 | 1.22 | 0.44 | 1.09 | 1.58 | 0.30 | 1.08 | 1.53 | 1.67 |
Dryland | 0.08 | 0.76 | 0.11 | 0.60 | 1.28 | 0.06 | 1.32 | 1.31 | 0.94 |
Forest | 0.16 | 1.00 | 0.09 | 0.84 | 1.64 | 0.10 | 1.43 | 1.39 | 1.43 |
Shrubland | 0.20 | 1.42 | 0.32 | 1.27 | 1.92 | 0.23 | 1.01 | 1.65 | 1.96 |
Meadow | 0.23 | 1.36 | 0.45 | 1.16 | 1.82 | 0.27 | 0.85 | 1.64 | 2.01 |
Grassland | 0.45 | 1.31 | 0.64 | 1.28 | 1.48 | 0.45 | 1.14 | 1.56 | 1.72 |
Wetland | 0.17 | 1.47 | 0.32 | 1.15 | 2.06 | 0.16 | 0.49 | 1.29 | 1.82 |
t2m | tmax | tmin | tp | ssrd | d2m | u10 | v10 | sp | |
---|---|---|---|---|---|---|---|---|---|
Region | 0.81 * | 0.78 * | 0.77 * | 0.65 * | 0.32 * | 0.80 | −0.53 * | −0.23 | 0.33 |
Dryland | 0.75 * | 0.72 | 0.68 * | 0.45 * | 0.72 | 0.69 | −0.22 | 0.29 | −0.47 |
Forest | 0.87 * | 0.87 * | 0.81 | 0.58 | 0.83 * | 0.82 | −0.34 | 0.32 * | −0.37 |
Shrubland | 0.89 * | 0.86 * | 0.87 * | 0.74 | 0.63 * | 0.88 * | −0.64 * | −0.28 | 0.56 * |
Meadow | 0.88 | 0.83 * | 0.85 | 0.75 * | 0.37 | 0.88 * | −0.68 | −0.44 * | 0.63 * |
Grassland | 0.77 | 0.73 | 0.73 * | 0.66 * | 0.02 | 0.76 | −0.56 * | −0.36 * | 0.50 * |
Wetland | 0.88 * | 0.85 * | 0.87 | 0.79 * | 0.39 * | 0.88 * | −0.78 * | −0.66 | 0.78 |
Metrics | R2 | MAE (10−3) | RMSE (10−3) | |
---|---|---|---|---|
RF | training period | 0.9860 | 16.3 | 22.1 |
validation period | 0.9430 | 33.7 | 44.7 | |
Modified deep ConvLSTM | training period | 0.9995 | 3.3 | 4.2 |
validation period | 0.9910 | 13.0 | 17.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Sun, R.; Duan, Q. Attribution of Vegetation Dynamics in the Yellow River Water Conservation Area Based on the Deep ConvLSTM Model. Remote Sens. 2024, 16, 3875. https://doi.org/10.3390/rs16203875
Liang Z, Sun R, Duan Q. Attribution of Vegetation Dynamics in the Yellow River Water Conservation Area Based on the Deep ConvLSTM Model. Remote Sensing. 2024; 16(20):3875. https://doi.org/10.3390/rs16203875
Chicago/Turabian StyleLiang, Zhi, Ruochen Sun, and Qingyun Duan. 2024. "Attribution of Vegetation Dynamics in the Yellow River Water Conservation Area Based on the Deep ConvLSTM Model" Remote Sensing 16, no. 20: 3875. https://doi.org/10.3390/rs16203875
APA StyleLiang, Z., Sun, R., & Duan, Q. (2024). Attribution of Vegetation Dynamics in the Yellow River Water Conservation Area Based on the Deep ConvLSTM Model. Remote Sensing, 16(20), 3875. https://doi.org/10.3390/rs16203875