Adapting CuSUM Algorithm for Site-Specific Forest Conditions to Detect Tropical Deforestation
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Forest Sites
2.2. Satellite Dataset
2.3. Validation Dataset
3. Methodology
3.1. S-1 Data Processing with ISCE
3.2. Cumulative Sums of Change
3.3. Adaptive Thresholding
3.4. Seasonal Analysis
3.5. Post-Processing
3.6. Accuracy Assessment
4. Results and Discussion
4.1. Polarization Channel: Co-Pol vs. Cross-Pol
4.2. Spatial Resolution: 25 m vs. 100 m
4.3. Impact of Soil Moisture
4.4. Seasonal Analysis
4.5. Impact of Eco-Region and Management Practice
4.6. Application to Other Tropical Sites
4.7. Final Result: Change Maps
5. Conclusions
- Threshold optimization: this was site specific, with Kalimantan showing an overall increase of 5.54% in the Kappa coefficient; however, it had no discernible effect on the accuracy for Haldwani and Mondah.
- Polarization: the cross-pol C-band SAR backscatter was more effective for logging detection in all three forest sites due to the dominance of volumetric scattering.
- Resolution: the results for Kalimantan were better at a coarser resolution of 100 m, in contrast with Haldwani and Mondah, where a better accuracy was observed at the 25 m spatial resolution.
- Forest management: the large difference in accuracy between the 25 m and 100 m spatial resolutions was due to the varied forest management practices at the three sites, which directly affected the logged area.
- Ecoregion: This study showed that the algorithm worked well for all three test sites, which covered different eco-regions. This confirmed the robustness of the method and also the scope of scalability.
- Frequency: Changes in the soil and vegetation moisture affect SAR backscatter, and is directly proportional to the frequency of SAR. As seen in this work, these changes affected the accuracy of deforestation detection algorithms. Thus, the impact would be much less with L-band time-series data.
- Seasonal analysis: The results for the Haldwani post-seasonal analysis show a high accuracy with an average Kappa coefficient of 0.85 for the VH polarization at the 25 m spatial resolution in the dry season. It is advisable to eliminate the wet season for change detection to reduce false positives. However, with this approach, errors may remain for the changes that occur throughout the rainy season.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molua, E. Discourse on Climate-Smart Agriculture for REDD+ Strategy in the Congo Basin. J. Sustain. Dev. 2012, 5, 77–88. [Google Scholar] [CrossRef]
- Busch, J.; Ferretti-Gallon, K.; Engelmann, J.; Wright, M.; Austin, K.G.; Stolle, F.; Turubanova, S.; Potapov, P.V.; Margono, B.; Hansen, M.C.; et al. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc. Natl. Acad. Sci. USA 2015, 112, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K.M.; Curran, L.M.; Asner, G.P.; Pittman, A.M.D.; Trigg, S.N.; Marion Adeney, J. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat. Clim. Chang. 2013, 3, 283–287. [Google Scholar] [CrossRef]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef]
- Hethcoat, M.G.; Carreiras, J.M.; Edwards, D.P.; Bryant, R.G.; Quegan, S. Detecting tropical selective logging with C-band SAR data may require a time series approach. Remote Sens. Environ. 2021, 259, 112411. [Google Scholar] [CrossRef]
- Wagner, F.H.; Dalagnol, R.; Silva-Junior, C.H.L.; Carter, G.; Ritz, A.L.; Hirye, M.C.M.; Ometto, J.P.H.B.; Saatchi, S. Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021. Remote Sens. 2023, 15, 521. [Google Scholar] [CrossRef]
- Ygorra, B.; Frappart, F.; Wigneron, J.; Moisy, C.; Catry, T.; Baup, F.; Hamunyela, E.; Riazanoff, S. Monitoring loss of tropical forest cover from Sentinel-1 time-series: A CuSum-based approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102532. [Google Scholar] [CrossRef]
- Motohka, T.; Shimada, M.; Uryu, Y.; Setiabudi, B. Using time series PALSAR gamma nought mosaics for automatic detection of tropical deforestation: A test study in Riau, Indonesia. Remote Sens. Environ. 2014, 155, 79–88. [Google Scholar] [CrossRef]
- Vásquez-Grandón, A.; Donoso, P.J.; Gerding, V. Forest Degradation: When Is a Forest Degraded? Forests 2018, 9, 726. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, D.L.; Gao, Y.; Solórzano, J.V.; Skutsch, M.; Pérez-Salicrup, D.R.; Salinas-Melgoza, M.A.; Farfán, M. Mapping Forest Degradation and Contributing Factors in a Tropical Dry Forest. Front. Environ. Sci. 2022, 10, 912873. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
- Ortega, M.X.; Feitosa, R.Q.; Bermudez, J.D.; Happ, P.N.; De Almeida, C.A. Comparison of Optical and SAR Data for Deforestation Mapping in the Amazon Rainforest with Fully Convolutional Networks. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3769–3772. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Yu, L.; Yang, J.; Coomes, D.; Kanniah, K.; Fu, H.; Gong, P. Mapping Annual Global Forest Gain From 1983 to 2021 with Landsat Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4195–4204. [Google Scholar] [CrossRef]
- Ritchie, H. Deforestation and Forest Loss. Our World in Data 2021. Available online: https://ourworldindata.org/deforestation (accessed on 12 July 2024).
- Mermoz, S.; Réjou-Méchain, M.; Villard, L.; Le Toan, T.; Rossi, V.; Gourlet-Fleury, S. Decrease of L-band SAR backscatter with biomass of dense forests. Remote Sens. Environ. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Musthafa, M.; Singh, G. Improving Forest Above-Ground Biomass Retrieval Using Multi-Sensor L- and C- Band SAR Data and Multi-Temporal Spaceborne LiDAR Data. Front. For. Glob. Chang. 2022, 5, 822704. [Google Scholar] [CrossRef]
- Khati, U.; Lavalle, M.; Shiroma, G.H.X.; Meyer, V.; Chapman, B. Assessment of Forest Biomass Estimation from Dry and Wet SAR Acquisitions Collected during the 2019 UAVSAR AM-PM Campaign in Southeastern United States. Remote Sens. 2020, 12, 3397. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, Q.; Xiang, H.; Chen, X.; Sakai, T. Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data. Remote Sens. 2021, 13, 174. [Google Scholar] [CrossRef]
- Pourshamsi, M.; Xia, J.; Yokoya, N.; Garcia, M.; Lavalle, M.; Pottier, E.; Balzter, H. Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning. ISPRS J. Photogramm. Remote Sens. 2021, 172, 79–94. [Google Scholar] [CrossRef]
- Cazcarra-Bes, V.; Tello-Alonso, M.; Fischer, R.; Heym, M.; Papathanassiou, K. Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography. Remote Sens. 2017, 9, 1229. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Tateishi, R.; Nguyen, H.T.; Sharma, R.C.; To, T.T.; Le, S.M. Estimation of Tropical Forest Structural Characteristics Using ALOS-2 SAR Data. Adv. Remote Sens. 2016, 5, 131–144. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Lim, S. Burned area detection using Sentinel-1 SAR data: A case study of Kangaroo Island, South Australia. Appl. Geogr. 2023, 151, 102854. [Google Scholar] [CrossRef]
- Jiang, J.; Xing, Y.; Wei, W.; Yan, E.; Xiang, J.; Mo, D. DSNUNet: An Improved Forest Change Detection Network by Combining Sentinel-1 and Sentinel-2 Images. Remote Sens. 2022, 14, 5046. [Google Scholar] [CrossRef]
- Tomppo, E.; Ronoud, G.; Antropov, O.; Hytönen, H.; Praks, J. Detection of Forest Windstorm Damages with Multitemporal SAR Data—A Case Study: Finland. Remote Sens. 2021, 13, 383. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Deutscher, J.; Sobe, C.; Bouvet, A.; Mermoz, S.; Schardt, M. Use of SAR and Optical Time Series for Tropical Forest Disturbance Mapping. Remote Sens. 2020, 12, 727. [Google Scholar] [CrossRef]
- Akbari, V.; Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T. A change detector for polarimetric SAR data based on the relaxed Wishart distribution. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3806–3809. [Google Scholar] [CrossRef]
- Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887. [Google Scholar] [CrossRef]
- Quin, G.; Pinel-Puyssegur, B.; Nicolas, J.M.; Loreaux, P. MIMOSA: An Automatic Change Detection Method for SAR Time Series. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5349–5363. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef]
- Hoekman, D.; Kooij, B.; Quiñones, M.; Vellekoop, S.; Carolita, I.; Budhiman, S.; Arief, R.; Roswintiarti, O. Wide-Area Near-Real-Time Monitoring of Tropical Forest Degradation and Deforestation Using Sentinel-1. Remote Sens. 2020, 12, 3263. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [Google Scholar] [CrossRef]
- Pardini, M.; Cantini, A.; Kugler, F.; Papathanassiou, K.; Lombardini, F. Monitoring dynamics in time of forest vertical structure with multibaseline PolInSAR data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3366–3369, ISSN: 2153-7003. [Google Scholar] [CrossRef]
- Conradsen, K.; Nielsen, A.; Schou, J.; Skriver, H. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4–19. [Google Scholar] [CrossRef]
- Noordermeer, L.; Økseter, R.; Ørka, H.O.; Gobakken, T.; Næsset, E.; Bollandsås, O.M. Classifications of Forest Change by Using Bitemporal Airborne Laser Scanner Data. Remote Sens. 2019, 11, 2145. [Google Scholar] [CrossRef]
- Yin, H.; Ma, C.; Weng, L.; Xia, M.; Lin, H. Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture. Remote Sens. 2023, 15, 4186. [Google Scholar] [CrossRef]
- Marsocci, V.; Coletta, V.; Ravanelli, R.; Scardapane, S.; Crespi, M. Inferring 3D change detection from bitemporal optical images. ISPRS J. Photogramm. Remote Sens. 2023, 196, 325–339. [Google Scholar] [CrossRef]
- Manogaran, G.; Lopez, D. Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput. Electr. Eng. 2018, 65, 207–221. [Google Scholar] [CrossRef]
- Meli Fokeng, R.; Gadinga Forje, W.; Meli Meli, V.; Nyuyki Bodzemo, B. Multi-temporal forest cover change detection in the Metchie-Ngoum Protection Forest Reserve, West Region of Cameroon. Egypt. J. Remote Sens. Space Sci. 2020, 23, 113–124. [Google Scholar] [CrossRef]
- Rosa, R.A.S.; Fernandes, D.; Barreto, T.L.M.; Wimmer, C.; Nogueira, J.B. Change detection under the forest in multitemporal full-polarimetric P-band SAR images using Pauli decomposition. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6213–6216, ISSN: 2153-7003. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-Type Forest Change Detection Using BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote Sens. 2020, 12, 341. [Google Scholar] [CrossRef]
- Conradsen, K.; Nielsen, A.A.; Skriver, H. Determining the Points of Change in Time Series of Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3007–3024. [Google Scholar] [CrossRef]
- Inglada, J.; Mercier, G. A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Conradsen, K.; Skriver, H.; Canty, M.J. Visualization of and Software for Omnibus Test-Based Change Detected in a Time Series of Polarimetric SAR Data. Can. J. Remote Sens. 2017, 43, 582–592. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Connetable, P.J.; Conradsen, K.; Skriver, H.; Krogager, E. Change Detection in Single- and Multi-Look Polarimetric SAR Data. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ruiz-Ramos, J.; Marino, A.; Boardman, C.; Suarez, J. Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseries. Remote Sens. 2020, 12, 3061. [Google Scholar] [CrossRef]
- Trisasongko, B.H. The Use of Polarimetric SAR Data for Forest Disturbance Monitoring. Sens. Imaging Int. J. 2010, 11, 1–13. [Google Scholar] [CrossRef]
- Sugimoto, R.; Kato, S.; Nakamura, R.; Tsutsumi, C.; Yamaguchi, Y. Deforestation detection using scattering power decomposition and optimal averaging of volume scattering power in tropical rainforest regions. Remote Sens. Environ. 2022, 275, 113018. [Google Scholar] [CrossRef]
- Gong, M.; Yang, H.; Zhang, P. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS J. Photogramm. Remote Sens. 2017, 129, 212–225. [Google Scholar] [CrossRef]
- Li, L.; Ma, H.; Jia, Z. Change Detection from SAR Images Based on Convolutional Neural Networks Guided by Saliency Enhancement. Remote Sens. 2021, 13, 3697. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dong, J.; Zhang, S.; Du, Q. Change Detection from Synthetic Aperture Radar Images via Graph-Based Knowledge Supplement Network. arXiv 2022, arXiv:2201.08954. [Google Scholar]
- Ruiz-Ramos, J. Continuous Monitoring of Environmental Disturbances by Cumulative Sums of Dense SAR Satellite Timeseries. Ph.D. Thesis, The Open University, Milton Keynes, UK, 2023. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Conradsen, K.; Skriver, H. Omnibus test for change detection in a time sequence of polarimetric SAR data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3398–3401. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H.; Fu, R.; Sun, Y. A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102615. [Google Scholar] [CrossRef]
- Pantze, A.; Santoro, M.; Fransson, J.E. Change detection of boreal forest using bi-temporal ALOS PALSAR backscatter data. Remote Sens. Environ. 2014, 155, 120–128. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Conradsen, K.; Henning, S. Change Detection in Full and Dual Polarization, Single- and Multifrequency SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4041–4048. [Google Scholar] [CrossRef]
- Khati, U.; Kumar, V.; Bandyopadhyay, D.; Musthafa, M.; Singh, G. Identification of forest cutting in managed forest of Haldwani, India using ALOS-2/PALSAR-2 SAR data. J. Environ. Manag. 2018, 213, 503–512. [Google Scholar] [CrossRef]
- Masolele, R.N.; Marcos, D.; De Sy, V.; Abu, I.O.; Verbesselt, J.; Reiche, J.; Herold, M. Mapping the diversity of land uses following deforestation across Africa. Sci. Rep. 2024, 14, 1681. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, A.; Saatchi, S.; Xu, L.; Hagen, S.; Chave, J.; Yu, Y.; Meyer, V.; Garcia, M.; Silva, C.; Roswintiart, O.; et al. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ. Res. Lett. 2018, 13, 095001. [Google Scholar] [CrossRef]
- Nicolau, A.P.; Flores-Anderson, A.; Griffin, R.; Herndon, K.; Meyer, F.J. Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102214. [Google Scholar] [CrossRef]
- Ygorra, B.; Frappart, F.; Wigneron, J.P.; Catry, T.; Pillot, B.; Pfefer, A.; Courtalon, J.; Riazanoff, S. A near-real-time tropical deforestation monitoring algorithm based on the CuSum change detection method. Front. Remote Sens. 2024, 5, 1416550. [Google Scholar] [CrossRef]
- NISAR. NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2018; 261p. [Google Scholar]
- Gaveau, D.L.A.; Kshatriya, M.; Sheil, D.; Sloan, S.; Molidena, E.; Wijaya, A.; Wich, S.; Ancrenaz, M.; Hansen, M.; Broich, M.; et al. Reconciling Forest Conservation and Logging in Indonesian Borneo. PLoS ONE 2013, 8, e69887. [Google Scholar] [CrossRef]
- Reiche, J.; Mullissa, A.; Slagter, B.; Gou, Y.; Tsendbazar, N.E.; Odongo-Braun, C.; Vollrath, A.; Weisse, M.J.; Stolle, F.; Pickens, A.; et al. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environ. Res. Lett. 2021, 16, 024005. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Silvianingsih, Y.A.; Hairiah, K.; Suprayogo, D.; Van Noordwijk, M. Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability. Land 2021, 10, 856. [Google Scholar] [CrossRef]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 730–735. [Google Scholar] [CrossRef]
- Khati, U.; Singh, G.; Ferro-Famil, L. Analysis of seasonal effects on forest parameter estimation of Indian deciduous forest using TerraSAR-X PolInSAR acquisitions. Remote Sens. Environ. 2017, 199, 265–276. [Google Scholar] [CrossRef]
- Khati, U.; Lavalle, M.; Singh, G. The Role of Time-Series L-Band SAR and GEDI in Mapping Sub-Tropical Above-Ground Biomass. Front. Earth Sci. 2021, 9, 752254. [Google Scholar] [CrossRef]
- Musthafa, M.; Singh, G. Forest above-ground woody biomass estimation using multi-temporal space-borne LiDAR data in a managed forest at Haldwani, India. Adv. Space Res. 2022, 69, 3245–3257. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.M.; Agram, P.; Cohen, J.; Lavalle, M.; Riel, B.V.; Fattahi, H.; Aivazis, M.A.; Simons, M.; Buckley, S.M. The InSAR Scientific Computing Environment 3.0: A Flexible Framework for NISAR Operational and User-Led Science Processing. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4897–4900, ISSN: 2153-7003. [Google Scholar] [CrossRef]
- Galeano, P. The use of cumulative sums for detection of changepoints in the rate parameter of a Poisson Process. Comput. Stat. Data Anal. 2007, 51, 6151–6165. [Google Scholar] [CrossRef]
- Flynn, T.; Yoo, S. Change Detection with the Kernel Cumulative Sum Algorithm. arXiv 2019, arXiv:1903.01661. [Google Scholar] [CrossRef]
- Rajeevan, M. Northeast Monsoon of South Asia. Meteorol. Monogr. 2022, 27, 1–216. [Google Scholar]
Year of Analysis | Kalimantan | Haldwani | Mondah |
---|---|---|---|
2017 | 29 | 27 | 31 |
2018 | 29 | 26 | 28 |
2019 | 28 | 21 | 31 |
2020 | 24 | 25 | 30 |
2021 | 25 | 28 | 31 |
2022 | 26 | 24 | 27 |
Total number of | |||
acquisitions | 161 | 151 | 178 |
Parameter | Value |
---|---|
Temporal window | 12 or 24 days |
Change-point threshold | 0.1 |
Bootstraps | 50 |
Season | From | To | Acquisitions |
---|---|---|---|
Dry_2017 | January 2017 | May 2017 | 12 |
Dry_2017_18 | October 2017 | May 2018 | 17 |
Dry_2018_19 | October 2018 | May 2019 | 8 |
Dry_2019_20 | October 2019 | May 2020 | 17 |
Dry_2020_21 | October 2020 | May 2021 | 18 |
Dry_2021_22 | October 2021 | May 2022 | 18 |
Dry_2022 | October 2022 | December 2022 | 8 |
Wet_2017 | June 2017 | September 2017 | 9 |
Wet_2018 | June 2018 | September 2018 | 10 |
Wet_2019 | June 2019 | September 2019 | 8 |
Wet_2020 | June 2020 | September 2020 | 10 |
Wet_2021 | June 2021 | September 2021 | 10 |
Wet_2022 | June 2022 | September 2022 | 10 |
VH | VV | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | F1 | K | F1 | K | ||||||||
Kalimantan | 25 m resolution | 2017 | 0.82 | 0.95 | 0.82 | 0.88 | 0.54 | 0.78 | 0.96 | 0.76 | 0.85 | 0.49 |
2018 | 0.68 | 0.84 | 0.54 | 0.66 | 0.39 | 0.69 | 0.86 | 0.55 | 0.67 | 0.41 | ||
2019 | 0.85 | 0.73 | 0.76 | 0.74 | 0.64 | 0.82 | 0.71 | 0.64 | 0.67 | 0.55 | ||
2020 | 0.74 | 0.26 | 0.41 | 0.32 | 0.17 | 0.76 | 0.31 | 0.49 | 0.38 | 0.24 | ||
2021 | 0.64 | 0.72 | 0.64 | 0.67 | 0.27 | 0.61 | 0.75 | 0.51 | 0.61 | 0.25 | ||
2022 | 0.63 | 0.64 | 0.38 | 0.48 | 0.22 | 0.68 | 0.70 | 0.48 | 0.57 | 0.33 | ||
100 m resolution | 2017 | 0.97 | 0.98 | 0.97 | 0.98 | 0.90 | 0.92 | 0.98 | 0.91 | 0.94 | 0.78 | |
2018 | 0.72 | 0.96 | 0.52 | 0.67 | 0.46 | 0.80 | 0.96 | 0.67 | 0.79 | 0.61 | ||
2019 | 0.90 | 0.97 | 0.77 | 0.86 | 0.78 | 0.87 | 0.97 | 0.71 | 0.82 | 0.73 | ||
2020 | 0.70 | 0.69 | 0.58 | 0.63 | 0.38 | 0.69 | 0.68 | 0.52 | 0.59 | 0.35 | ||
2021 | 0.51 | 0.50 | 0.65 | 0.57 | 0.04 | 0.61 | 0.59 | 0.66 | 0.62 | 0.22 | ||
2022 | 0.70 | 0.88 | 0.52 | 0.65 | 0.42 | 0.68 | 0.85 | 0.49 | 0.62 | 0.37 | ||
VH | VV | |||||||||||
Year | F1 | K | F1 | K | ||||||||
Haldwani | 25 m resolution | 2017 | 0.76 | 0.70 | 0.27 | 0.39 | 0.28 | 0.77 | 0.68 | 0.37 | 0.48 | 0.34 |
2018 | 0.40 | 0.99 | 0.29 | 0.45 | 0.11 | 0.54 | 0.98 | 0.46 | 0.62 | 0.19 | ||
2019 | 0.37 | 0.81 | 0.11 | 0.19 | 0.03 | 0.50 | 0.97 | 0.28 | 0.43 | 0.18 | ||
2020 | 0.61 | 0.70 | 0.33 | 0.45 | 0.20 | 0.57 | 0.63 | 0.27 | 0.38 | 0.13 | ||
2021 | 0.56 | 0.83 | 0.41 | 0.55 | 0.21 | 0.51 | 0.81 | 0.32 | 0.45 | 0.14 | ||
2022 | 0.45 | 0.79 | 0.23 | 0.35 | 0.08 | 0.37 | 0.62 | 0.14 | 0.23 | −0.02 | ||
100 m resolution | 2017 | 0.69 | 0.74 | 0.18 | 0.29 | 0.17 | 0.68 | 0.62 | 0.21 | 0.31 | 0.16 | |
2018 | 0.52 | 1.00 | 0.42 | 0.60 | 0.20 | 0.57 | 0.99 | 0.48 | 0.65 | 0.22 | ||
2019 | 0.50 | 0.84 | 0.30 | 0.44 | 0.18 | 0.53 | 0.92 | 0.35 | 0.50 | 0.22 | ||
2020 | 0.42 | 0.81 | 0.27 | 0.40 | 0.10 | 0.41 | 0.80 | 0.32 | 0.46 | 0.16 | ||
2021 | 0.61 | 0.73 | 0.29 | 0.42 | 0.22 | 0.57 | 0.60 | 0.21 | 0.31 | 0.18 | ||
2022 | 0.59 | 0.81 | 0.31 | 0.45 | 0.20 | 0.49 | 0.82 | 0.29 | 0.43 | 0.14 | ||
VH | VV | |||||||||||
Year | F1 | K | F1 | K | ||||||||
Mondah | 25 m | 2017 | 0.70 | 0.70 | 0.64 | 0.64 | 0.88 | 0.87 | 0.74 | 0.74 | 0.42 | 0.40 |
2018 | 0.84 | 0.83 | 0.86 | 0.80 | 0.85 | 0.88 | 0.85 | 0.84 | 0.68 | 0.67 | ||
2019 | 0.82 | 0.80 | 0.83 | 0.76 | 0.84 | 0.84 | 0.84 | 0.80 | 0.65 | 0.64 | ||
100 m | 2017 | 0.46 | 0.54 | 0.66 | 0.60 | −0.17 | 0.67 | 0.72 | 0.80 | 0.76 | 0.21 | |
2018 | 0.50 | 0.50 | 0.42 | 0.46 | - | 0.42 | 0.50 | 0.37 | 0.42 | −0.12 | ||
2019 | 0.60 | - | - | - | - | 0.60 | 0.50 | 0.50 | 0.50 | 0.66 |
VH | VV | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Season | F1 | K | F1 | K | ||||||||
Dry season | 25 m resolution | Dry_2017_18 | 0.98 | 0.91 | 1.0 | 0.95 | 0.95 | 0.96 | 0.96 | 0.96 | 0.21 | 0.21 |
Dry_2017_18 | 0.90 | 0.92 | 0.87 | 0.89 | 0.79 | 0.77 | 0.77 | 0.77 | 0.76 | 0.55 | ||
Dry_2018_19 | 0.98 | 0.83 | 0.95 | 0.88 | 0.87 | 0.90 | 0.90 | 0.90 | 0.40 | 0.35 | ||
Dry_2019_20 | 0.90 | 0.97 | 0.78 | 0.86 | 0.79 | 0.76 | 0.76 | 0.76 | 0.59 | 0.45 | ||
Dry_2020_21 | 0.96 | 0.98 | 0.96 | 0.97 | 0.92 | 0.92 | 0.92 | 0.92 | 0.93 | 0.84 | ||
Dry_2021_22 | 0.92 | 0.86 | 0.85 | 0.86 | 0.80 | 0.89 | 0.89 | 0.89 | 0.80 | 0.72 | ||
Dry_2022 | 0.99 | 0.80 | 0.90 | 0.85 | 0.84 | 0.94 | 0.94 | 0.94 | 0.16 | 0.12 | ||
100 m resolution | Dry_2017 | 0.88 | 0.50 | 0.73 | 0.59 | 0.53 | 0.91 | 1.00 | 0.27 | 0.42 | 0.39 | |
Dry_2017_18 | 0.86 | 0.92 | 0.78 | 0.84 | 0.71 | 0.71 | 0.70 | 0.74 | 0.72 | 0.43 | ||
Dry_2018_19 | 0.87 | 0.37 | 0.82 | 0.51 | 0.44 | 0.86 | 0.07 | 0.06 | 0.06 | −0.01 | ||
Dry_2019_20 | 0.59 | 0.62 | 0.24 | 0.34 | 0.12 | 0.55 | 0.52 | 0.31 | 0.39 | 0.07 | ||
Dry_2020_21 | 0.79 | 0.80 | 0.83 | 0.81 | 0.56 | 0.77 | 0.80 | 0.80 | 0.80 | 0.53 | ||
Dry_2021_22 | 0.82 | 0.74 | 0.73 | 0.74 | 0.59 | 0.82 | 0.83 | 0.60 | 0.70 | 0.57 | ||
Dry_2022 | 0.91 | 0.17 | 0.20 | 0.18 | 0.13 | 0.90 | 0.00 | 0.00 | 0.00 | −0.06 | ||
Wet season | 25 m resolution | Wet_2017 | 0.91 | 0.20 | 0.94 | 0.34 | 0.31 | 0.94 | 0.00 | 0.00 | 0.00 | −0.03 |
Wet_2018 | 0.98 | 0.28 | 0.91 | 0.43 | 0.40 | 0.96 | 0.25 | 0.20 | 0.22 | 0.18 | ||
Wet_2019 | 0.97 | 0.38 | 0.92 | 0.54 | 0.50 | 0.97 | 0.40 | 0.35 | 0.37 | 0.32 | ||
Wet_2020 | 0.96 | 0.35 | 0.94 | 0.50 | 0.46 | 0.94 | 0.41 | 0.37 | 0.39 | 0.33 | ||
Wet_2021 | 0.97 | 0.43 | 0.98 | 0.60 | 0.55 | 0.96 | 0.56 | 0.57 | 0.56 | 0.52 | ||
Wet_2022 | 0.97 | 0.31 | 0.91 | 0.47 | 0.44 | 0.96 | 0.49 | 0.49 | 0.49 | 0.44 | ||
100 m resolution | Wet_2017 | 0.97 | 0.39 | 0.88 | 0.54 | 0.50 | 0.96 | 0.50 | 0.47 | 0.48 | 0.43 | |
Wet_2018 | 0.95 | 0.29 | 0.35 | 0.32 | 0.28 | 0.92 | 0.18 | 0.21 | 0.19 | 0.13 | ||
Wet_2019 | 0.91 | 0.32 | 0.43 | 0.37 | 0.33 | 0.86 | 0.26 | 0.33 | 0.29 | 0.21 | ||
Wet_2020 | 0.96 | 0.27 | 0.87 | 0.41 | 0.37 | 0.93 | 0.29 | 0.29 | 0.29 | 0.24 | ||
Wet_2021 | 0.98 | 0.28 | 0.96 | 0.43 | 0.40 | 0.97 | 0.34 | 0.36 | 0.35 | 0.31 | ||
Wet_2022 | 0.98 | 0.29 | 0.94 | 0.44 | 0.40 | 0.95 | 0.35 | 0.33 | 0.34 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, A.; Khati, U.; Lavalle, M.; Srivastava, H.S. Adapting CuSUM Algorithm for Site-Specific Forest Conditions to Detect Tropical Deforestation. Remote Sens. 2024, 16, 3871. https://doi.org/10.3390/rs16203871
Sabir A, Khati U, Lavalle M, Srivastava HS. Adapting CuSUM Algorithm for Site-Specific Forest Conditions to Detect Tropical Deforestation. Remote Sensing. 2024; 16(20):3871. https://doi.org/10.3390/rs16203871
Chicago/Turabian StyleSabir, Anam, Unmesh Khati, Marco Lavalle, and Hari Shanker Srivastava. 2024. "Adapting CuSUM Algorithm for Site-Specific Forest Conditions to Detect Tropical Deforestation" Remote Sensing 16, no. 20: 3871. https://doi.org/10.3390/rs16203871
APA StyleSabir, A., Khati, U., Lavalle, M., & Srivastava, H. S. (2024). Adapting CuSUM Algorithm for Site-Specific Forest Conditions to Detect Tropical Deforestation. Remote Sensing, 16(20), 3871. https://doi.org/10.3390/rs16203871