Spectral Discrimination of Common Karoo Shrub and Grass Species Using Spectroscopic Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preparation
2.3. Plant Survey
2.4. In Situ Hyperspectral Data Acquisition (Spectroradiometer)
2.5. Camera Used in the Multispectral Remote Sensing Surveys
2.6. Camera Used in the Hyperspectral Remote Sensing Surveys
2.7. Spectroscopy and UAV Data Analysis
3. Results
3.1. Spectral Responses of Plant Species
3.2. Classification Accuracies and Variable Importance
3.2.1. Overall Accuracies
3.2.2. Species-Specific Accuracies
3.2.3. Most Important Bands
3.2.4. Classification Results Using Selected Bands
4. Discussion
4.1. Classification of ASD Measurements, HR Imagery and MS Imagery
4.2. Species-Specific Accuracies
4.3. Most Important Bands
4.4. Recommendations and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An International Terminology for Grazing Lands and Grazing Animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Zerga, B. Rangeland Degradation and Restoration: A Global Perspective. Point J. Agric. Biotechnol. Res. 2015, 1, 37–54. [Google Scholar]
- Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Hanson, J.D.; Frank, A.B.; Phillips, R.L. Soil Response to Long-Term Grazing in the Northern Great Plains of North America. Agric. Ecosyst. Environ. 2006, 115, 270–276. [Google Scholar] [CrossRef]
- Stocking, M.A.; Mumaghan, N. Handbook for the Field Assessment of Land Degradation. London: Earthscan In (O’Higgin, RC, Eds), Savannah Woodland Degradation Assessments in Ghana: Integrating Ecological Indicators with Local Perceptions. Earth Environ. 2001, 3, 246–281. [Google Scholar]
- Schwilch, G.; Hessel, R.; Verzandvoort, S. (Eds.) Desire for Greener Land. In Options for Sustainable Land Management in Drylands; University of Bern, Centre for Development and Environment CDE: Bern, Switzerland; Alterra: Wageningen, The Netherlands; ISRIC—World Soil Information: Wageningen, The Netherlands; CTA—Technical Centre for Agricultural and Rural Cooperation: Wageningen, The Netherlands, 2012. [Google Scholar]
- Nachtergaele, F.; Petri, M.; Biancalani, R.; van Lynden, G.; van Velthuizen, H.; Bloise, M. Global Land Degradation Information System (GLADIS). Beta Version. An Information Database for Land Degradation Assessment at Global Level; Land Degradation Assessment in Drylands Technical Report; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; Volume 17. [Google Scholar]
- Von Braun, J.; Gatzweiler, F.W. Marginality: Addressing the Nexus of Poverty, Exclusion and Ecology; Springer Nature: Berlin, Germany, 2014. [Google Scholar]
- Barbier, E.B.; Hochard, J.P. Does Land Degradation Increase Poverty in Developing Countries? PLoS ONE 2016, 11, e0152973. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hochard, J.P. Land Degradation and Poverty. Nat. Sustain. 2018, 1, 623–631. [Google Scholar] [CrossRef]
- Hoffmann, T.; Todd, S.; Ntshona, Z.; Turner, S. Land Degradation in South Africa; University of Cape Town: Cape Town, South Africa, 2014. [Google Scholar]
- Middleton, N.; Thomas, D. World Atlas of Desertification, 2nd ed.; Arnold, Hodder Headline, PLC: London, UK, 1997; ISBN 0340691662. [Google Scholar]
- Hoffman, T.; Ashwell, A. Nature Divided: Land Degradation in South Africa; University of Cape Town Press: Cape Town, South Africa, 2001; ISBN 1919713549. [Google Scholar]
- Mani, S.; Osborne, C.P.; Cleaver, F. Land Degradation in South Africa: Justice and Climate Change in Tension. People Nat. 2021, 3, 978–989. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and Environmental Change in Arid Central Asia: Impacts, Vulnerability, and Adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- MacKellar, N.; New, M.; Jack, C. Observed and Modelled Trends in Rainfall and Temperature for South Africa: 1960–2010. S. Afr. J. Sci. 2014, 110, 1–13. [Google Scholar] [CrossRef]
- Barry, P.S.; Mendenhall, J.; Jarecke, P.; Folkman, M.; Pearlman, J.; Markham, B. EO-1 Hyperion Hyperspectral Aggregation and Comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1648–1651. [Google Scholar]
- Johansen, K.; Phinn, S.; Dixon, I.; Douglas, M.; Lowry, J. Comparison of Image and Rapid Field Assessments of Riparian Zone Condition in Australian Tropical Savannas. For. Ecol. Manag. 2007, 240, 42–60. [Google Scholar] [CrossRef]
- Huylenbroeck, L.; Laslier, M.; Dufour, S.; Georges, B.; Lejeune, P.; Michez, A. Using Remote Sensing to Characterize Riparian Vegetation: A Review of Available Tools and Perspectives for Managers. J. Environ. Manag. 2020, 267, 110652. [Google Scholar] [CrossRef] [PubMed]
- Mureriwa, N.; Adam, E.; Sahu, A.; Tesfamichael, S. Examining the Spectral Separability of Prosopis Glandulosa from Co-Existent Species Using Field Spectral Measurement and Guided Regularized Random Forest. Remote Sens. 2016, 8, 144. [Google Scholar] [CrossRef]
- Crisóstomo de Castro Filho, H.; Abílio de Carvalho Júnior, O.; Ferreira de Carvalho, O.L.; Pozzobon de Bem, P.; dos Santos de Moura, R.; Olino de Albuquerque, A.; Silva, C.R.; Ferreira, P.H.G.; Guimarães, R.F.; Gomes, R.A.T. Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series. Remote Sens. 2020, 12, 2655. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Cord, A.F.; Meentemeyer, R.K.; Leitão, P.J.; Václavík, T. Modelling Species Distributions with Remote Sensing Data: Bridging Disciplinary Perspectives. J. Biogeogr. 2013, 40, 2226–2227. [Google Scholar] [CrossRef]
- Yang, D.; Meng, R.; Morrison, B.D.; McMahon, A.; Hantson, W.; Hayes, D.J.; Breen, A.L.; Salmon, V.G.; Serbin, S.P. A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra. Remote Sens. 2020, 12, 2638. [Google Scholar] [CrossRef]
- van den Berg, E.C.; Kotze, I.; Beukes, H. Detection, Quantification and Monitoring of Prosopis in the Northern Cape Province of South Africa Using Remote Sensing and GIS. S. Afr. J. Geomat. 2013, 2, 68–81. [Google Scholar]
- Hudak, A.T.; Wessman, C.A. Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna. Remote Sens. Environ. 1998, 66, 317–330. [Google Scholar] [CrossRef]
- Symeonakis, E.; Higginbottom, T. Bush encroachment monitoring using multi-temporal landsat data and random forests. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 10, 29–35. [Google Scholar] [CrossRef]
- Ludwig, A.; Meyer, H.; Nauss, T. Automatic Classification of Google Earth Images for a Larger Scale Monitoring of Bush Encroachment in South Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 89–94. [Google Scholar] [CrossRef]
- Shekede, M.D.; Murwira, A.; Masocha, M. Wavelet-Based Detection of Bush Encroachment in a Savanna Using Multi-Temporal Aerial Photographs and Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 209–216. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping Cropping Intensity in China Using Time Series Landsat and Sentinel-2 Images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Afifi, A.A.; Scopa, A. A Time Series Investigation to Assess Climate Change and Anthropogenic Impacts on Quantitative Land Degradation in the North Delta, Egypt. ISPRS Int. J. Geoinf. 2021, 11, 30. [Google Scholar] [CrossRef]
- Kumar, A.; Manjunath, K.R.; Bala, R.; Sud, R.K.; Singh, R.D.; Panigrahy, S. Field Hyperspectral Data Analysis for Discriminating Spectral Behavior of Tea Plantations under Various Management Practices. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 352–359. [Google Scholar] [CrossRef]
- Mudereri, B.T.; Dube, T.; Niassy, S.; Kimathi, E.; Landmann, T.; Khan, Z.; Abdel-Rahman, E.M. Is It Possible to Discern Striga Weed (Striga Hermonthica) Infestation Levels in Maize Agro-Ecological Systems Using in-Situ Spectroscopy? Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102008. [Google Scholar] [CrossRef]
- Hughes, G. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-Based Crop Classification with Landsat-MODIS Enhanced Time-Series Data. Remote Sens. 2015, 7, 16091–16107. [Google Scholar] [CrossRef]
- Walsh, O.S.; Marshall, J.M.; Nambi, E.; Jackson, C.A.; Ansah, E.O.; Lamichhane, R.; McClintick-Chess, J.; Bautista, F. Wheat Yield and Protein Estimation with Handheld and Unmanned Aerial Vehicle-Mounted Sensors. Agronomy 2023, 13, 207. [Google Scholar] [CrossRef]
- Neupane, K.; Baysal-Gurel, F. Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review. Remote Sens. 2021, 13, 3841. [Google Scholar] [CrossRef]
- Nebiker, S.; Lack, N.; Abächerli, M.; Läderach, S. Light-Weight Multispectral UAV Sensors and Their Capabilities for Predicting Grain Yield and Detecting Plant Diseases. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 963–970. [Google Scholar] [CrossRef]
- Song, B.; Park, K. Detection of Aquatic Plants Using Multispectral UAV Imagery and Vegetation Index. Remote Sens. 2020, 12, 387. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An Automatic Object-Based Method for Optimal Thresholding in UAV Images: Application for Vegetation Detection in Herbaceous Crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Carvajal-Ramírez, F.; da Silva, J.R.M.; Agüera-Vega, F.; Martínez-Carricondo, P.; Serrano, J.; Moral, F.J. Evaluation of Fire Severity Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV. Remote Sens. 2019, 11, 993. [Google Scholar] [CrossRef]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops Using Small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef]
- González-Jaramillo, V.; Fries, A.; Bendix, J. AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and Multispectral Images Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2019, 11, 1413. [Google Scholar] [CrossRef]
- Hill, D.J.; Tarasoff, C.; Whitworth, G.E.; Baron, J.; Bradshaw, J.L.; Church, J.S. Utility of Unmanned Aerial Vehicles for Mapping Invasive Plant Species: A Case Study on Yellow Flag Iris (Iris pseudacorus L.). Int. J. Remote Sens. 2017, 38, 2083–2105. [Google Scholar] [CrossRef]
- de Castro, A.I.; Peña, J.M.; Torres-Sánchez, J.; Jiménez-Brenes, F.M.; Valencia-Gredilla, F.; Recasens, J.; López-Granados, F. Mapping Cynodon Dactylon Infesting Cover Crops with an Automatic Decision Tree-OBIA Procedure and UAV Imagery for Precision Viticulture. Remote Sens. 2020, 12, 56. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Pearse, G.D. Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data. Remote Sens. 2019, 11, 1812. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Adão, T.; Hruška, J.; Peres, E.; Sousa, A.; Sousa, J.J. UAV-Based Automatic Detection and Monitoring of Chestnut Trees. Remote Sens. 2019, 11, 855. [Google Scholar] [CrossRef]
- Müllerová, J.; Pergl, J.; Pyšek, P. Remote Sensing as a Tool for Monitoring Plant Invasions: Testing the Effects of Data Resolution and Image Classification Approach on the Detection of a Model Plant Species Heracleum Mantegazzianum (Giant Hogweed). Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 55–65. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C.; Palmer, A.R.; Milton, S.J.; Scott, L.; Lloyd, J.W.; Van der Merwe, B.; Hoare, D.B.; Bezuidenhout, H.; Vlok, J.H.J. Nama-Karoo Biome. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 2006, 19, 324–347. [Google Scholar]
- Pfitzner, K.; Bartolo, R.; Whiteside, T.; Loewensteiner, D.; Esparon, A. Hyperspectral Monitoring of Non-Native Tropical Grasses over Phenological Seasons. Remote Sens. 2021, 13, 738. [Google Scholar] [CrossRef]
- Meyer, T.C. Weikapasiteitstudies Op Veld in Die Ariede Karoo. Master’s Thesis, University of the Orange Free State, Bloemfontein, South Africa, 1992, unpublished. [Google Scholar]
- O’connor, T.G.; Roux, P.W. Vegetation Changes (1949–71) in a Semi-Arid, Grassy Dwarf Shrubland in the Karoo, South Africa: Influence of Rainfall Variability and Grazing by Sheep. J. Appl. Ecol. 1995, 32, 612–626. [Google Scholar] [CrossRef]
- Milton, S.J.; Dean, W.R.J. Anthropogenic Impacts and Implications for Ecological Restoration in the Karoo, South Africa. Anthropocene 2021, 36, 100307. [Google Scholar] [CrossRef]
- Van der Merwe, H.; Du Toit, J.C.O.; Van den Berg, L.; O’Connor, T.G. Impact of Sheep Grazing Intensity on Vegetation at the Arid Karoo Stocking Rate Trial after 27 Years, Carnarvon, South Africa. J. Arid Environ. 2018, 155, 36–45. [Google Scholar] [CrossRef]
- Trimble Trimble R8 GNSS System. In Trimble Datasheet; Trimble Navigation Limited: Westminster, CO, USA, 2012.
- Sibanda, M.; Mutanga, O.; Rouget, M.; Odindi, J. Exploring the Potential of in Situ Hyperspectral Data and Multivariate Techniques in Discriminating Different Fertilizer Treatments in Grasslands. J. Appl. Remote Sens. 2015, 9, 096033. [Google Scholar] [CrossRef]
- Olsson, P.-O.; Vivekar, A.; Adler, K.; Garcia Millan, V.E.; Koc, A.; Alamrani, M.; Eklundh, L. Radiometric Correction of Multispectral Uas Images: Evaluating the Accuracy of the Parrot Sequoia Camera and Sunshine Sensor. Remote Sens. 2021, 13, 577. [Google Scholar] [CrossRef]
- Thomson, E.R.; Spiegel, M.P.; Althuizen, I.H.J.; Bass, P.; Chen, S.; Chmurzynski, A.; Halbritter, A.H.; Henn, J.J.; Jónsdóttir, I.S.; Klanderud, K.; et al. Multiscale Mapping of Plant Functional Groups and Plant Traits in the High Arctic Using Field Spectroscopy, UAV Imagery and Sentinel-2A Data. Environ. Res. Lett. 2021, 16, 055006. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- McNemar, Q. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Kurihara, J.; Viray, F.A.; Namuco, S.B.; Paringit, E.C.; Perez, G.J.; Takahashi, Y.; Marciano, J.J., Jr. A Novel Approach for Vegetation Classification Using UAV-Based Hyperspectral Imaging. Comput. Electron. Agric. 2018, 144, 80–85. [Google Scholar] [CrossRef]
- Yan, Y.; Deng, L.; Liu, X.; Zhu, L. Application of UAV-Based Multi-Angle Hyperspectral Remote Sensing in Fine Vegetation Classification. Remote Sens. 2019, 11, 2753. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous Tree Species Classification Using Object-Based Analysis and Machine Learning with Unmanned Aerial Vehicle Multispectral Data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Gini, R.; Sona, G.; Ronchetti, G.; Passoni, D.; Pinto, L. Improving Tree Species Classification Using UAS Multispectral Images and Texture Measures. ISPRS Int. J. Geoinf. 2018, 7, 315. [Google Scholar] [CrossRef]
- Grybas, H.; Congalton, R.G. A Comparison of Multi-Temporal RGB and Multispectral UAS Imagery for Tree Species Classification in Heterogeneous New Hampshire Forests. Remote Sens. 2021, 13, 2631. [Google Scholar] [CrossRef]
- Louargant, M.; Villette, S.; Jones, G.; Vigneau, N.; Paoli, J.-N.; Gée, C. Weed Detection by UAV: Simulation of the Impact of Spectral Mixing in Multispectral Images. Precis. Agric. 2017, 18, 932–951. [Google Scholar] [CrossRef]
- Lisein, J.; Michez, A.; Claessens, H.; Lejeune, P. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery. PLoS ONE 2015, 10, e0141006. [Google Scholar] [CrossRef]
- Michez, A.; Piégay, H.; Jonathan, L.; Claessens, H.; Lejeune, P. Mapping of Riparian Invasive Species with Supervised Classification of Unmanned Aerial System (UAS) Imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 88–94. [Google Scholar] [CrossRef]
- Weil, G.; Lensky, I.M.; Resheff, Y.S.; Levin, N. Optimizing the Timing of Unmanned Aerial Vehicle Image Acquisition for Applied Mapping of Woody Vegetation Species Using Feature Selection. Remote Sens. 2017, 9, 1130. [Google Scholar] [CrossRef]
- Joubert, J.P.J. Section of Toxicology on Geigeria ornativa. J. S. Afr. Vet. Assoc. 1983, 54, 255. [Google Scholar] [PubMed]
- Stapleton, A.E. Ultraviolet Radiation and Plants: Burning Questions. Plant Cell 1992, 4, 1353. [Google Scholar] [CrossRef]
- Brosché, M.; Strid, Å. Molecular Events Following Perception of Ultraviolet-B Radiation by Plants. Physiol. Plant. 2003, 117, 1–10. [Google Scholar] [CrossRef]
- Fedina, I.; Velitchkova, M.; Georgieva, K.; Demirevska, K.; Simova, L. UV-B Response of Green and Etiolated Barley Seedlings. Biol. Plant. 2007, 51, 699–706. [Google Scholar] [CrossRef]
- Valenta, K.; Dimac-Stohl, K.; Baines, F.; Smith, T.; Piotrowski, G.; Hill, N.; Kuppler, J.; Nevo, O. Ultraviolet Radiation Changes Plant Color. BMC Plant Biol. 2020, 20, 253. [Google Scholar] [CrossRef]
- Court, D. Succulent Flora of Southern Africa (Revised Edition), 3rd ed.; Struik Nature: Cape Town, South Africa, 2010. [Google Scholar]
- Gibson, A.C. Succulent Photosynthetic Organs. In Structure-Function Relations of Warm Desert Plants; Springer: Berlin/Heidelberg, Germany, 1996; pp. 117–142. [Google Scholar]
- Jacobs, J.F.; Koper, G.J.M.; Ursem, W.N.J. UV Protective Coatings: A Botanical Approach. Prog. Org. Coat. 2007, 58, 166–171. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef]
- Feroz, S.; Abu Dabous, S. Uav-Based Remote Sensing Applications for Bridge Condition Assessment. Remote Sens. 2021, 13, 1809. [Google Scholar] [CrossRef]
- Oktay, T.; Celik, H.; Turkmen, I. Maximizing Autonomous Performance of Fixed-Wing Unmanned Aerial Vehicle to Reduce Motion Blur in Taken Images. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2018, 232, 857–868. [Google Scholar] [CrossRef]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. UAV Image Blur–Its Influence and Ways to Correct It. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 33–39. [Google Scholar] [CrossRef]
- Poona, N.K.; Ismail, R. Developing Optimized Spectral Indices Using Machine Learning to Model Fusarium Circinatum Stress in Pinus Radiata Seedlings. J. Appl. Remote Sens. 2019, 13, 34515. [Google Scholar] [CrossRef]
- Poona, N.K.; Ismail, R. Using Boruta-Selected Spectroscopic Wavebands for the Asymptomatic Detection of Fusarium Circinatum Stress. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3764–3772. [Google Scholar] [CrossRef]
Species | Palatability (1 to 4) | ASD Training Samples (70%) | ASD Test Samples (30%) | Total ASD Samples | UAV Training Samples (70%) | UAV Test Samples (30%) | Total UAV Samples |
---|---|---|---|---|---|---|---|
Eragrostis lehmanniana (Era leh) | 3 | 126 | 54 | 180 | 28 | 12 | 40 |
Eriocephalus ericiodes (Eri eri) | 3 | 126 | 54 | 180 | 28 | 12 | 40 |
Geigeria filifolia (Gei fil) | * | 126 | 54 | 180 | 28 | 12 | 40 |
Helichrysum rosum var. arcuatum (Hel ros) | 3 | 126 | 54 | 180 | 28 | 12 | 40 |
Lycium cinerium (Lyc cin) | 1 | 126 | 54 | 180 | 28 | 12 | 40 |
Pentzia spinecense (Pen spi) | 3 | 126 | 54 | 180 | 28 | 12 | 40 |
Plinthus karooicus (Pli kar) | 4 | 126 | 54 | 180 | 28 | 12 | 40 |
Prosopis glandulosa (Pro gla) | * | 126 | 54 | 180 | 28 | 12 | 40 |
Pteronia glomerata (Pte glo) | 1 | 126 | 54 | 180 | 28 | 12 | 40 |
Rhigozum trichotomum (Rhi tri) | * | 126 | 54 | 180 | 28 | 12 | 40 |
Roepera lichtensteiniana (Roe lic) | 2 | 126 | 54 | 180 | 28 | 12 | 40 |
Rosenia humilis (Ros hum) | 1 | 126 | 54 | 180 | 28 | 12 | 40 |
Ruschia intricata (Rus int) | 1 | 126 | 54 | 180 | 28 | 12 | 40 |
Salsola calluna (Sal cal) | 4 | 126 | 54 | 180 | 28 | 12 | 40 |
Stipagrostis obtusa (Sti obt) | 4 | 126 | 54 | 180 | 28 | 12 | 40 |
Total samples | 1764 | 756 | 2520 | 438 | 188 | 626 |
Class | Eraleh | Erieri | Geifil | Heldre | Lyccin | Penspi | Plikar | Progla | Pteglo | Rhitri | Roelic | Roshum | Rusint | Salcal | Stiobt | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eraleh | 123 | 0 | 0 | 0 | 0 | 10 | 0 | 1 | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 140 | 87.9 |
Erieri | 0 | 106 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 126 | 84.1 |
Geifil | 0 | 7 | 101 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 115 | 87.8 |
Heldre | 0 | 0 | 0 | 110 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 10 | 0 | 122 | 90.2 |
Lyccin | 0 | 0 | 0 | 9 | 110 | 7 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 6 | 0 | 152 | 72.4 |
Penspi | 2 | 0 | 0 | 3 | 3 | 99 | 0 | 16 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 132 | 75.0 |
Plikar | 0 | 1 | 8 | 0 | 0 | 0 | 102 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 131 | 77.9 |
Progla | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 109 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 127 | 85.8 |
Pteglo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 103 | 0 | 0 | 0 | 0 | 9 | 0 | 112 | 92.0 |
Rhitri | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 124 | 0 | 0 | 0 | 0 | 0 | 125 | 99.2 |
Roelic | 0 | 0 | 0 | 0 | 11 | 7 | 0 | 0 | 0 | 0 | 97 | 0 | 0 | 0 | 0 | 115 | 84.3 |
Roshum | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99 | 4 | 0 | 0 | 104 | 95.2 |
Rusint | 0 | 8 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 10 | 116 | 0 | 3 | 142 | 81.7 |
Salcal | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 101 | 0 | 122 | 82.8 |
Stiobt | 0 | 4 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 103 | 125 | 82.4 |
Total | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 1890 | |
PA | 97.6 | 84.1 | 80.2 | 87.3 | 87.3 | 78.6 | 81.0 | 86.5 | 81.7 | 98.4 | 77.0 | 78.6 | 92.1 | 80.2 | 81.7 | ||
Overall accuracy = 84.82% Kappa = 0.8308 |
Class | Eraleh | Erieri | Geifil | Heldre | Lyccin | Penspi | Plikar | Progla | Pteglo | Rhitri | Roelic | Roshum | Rusint | Salcal | Stiobt | Total | UA |
Eraleh | 32 | 0 | 1 | 9 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 48 | 66.7 |
Erieri | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 0 | 1 | 5 | 0 | 0 | 40 | 67.5 |
Geifil | 0 | 0 | 31 | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 37 | 83.8 |
Heldre | 1 | 0 | 0 | 27 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 32 | 84.4 |
Lyccin | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 14 | 71.4 |
Penspi | 0 | 0 | 3 | 0 | 1 | 26 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 4 | 1 | 37 | 70.3 |
Plikar | 0 | 1 | 1 | 0 | 0 | 1 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 43 | 83.7 |
Progla | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 35 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 45 | 77.8 |
Pteglo | 0 | 5 | 0 | 0 | 9 | 1 | 1 | 0 | 21 | 0 | 0 | 2 | 1 | 7 | 0 | 47 | 44.7 |
Rhitri | 0 | 1 | 0 | 0 | 6 | 1 | 0 | 4 | 1 | 33 | 0 | 0 | 0 | 0 | 0 | 46 | 71.7 |
Roelic | 3 | 1 | 0 | 4 | 1 | 0 | 0 | 0 | 2 | 0 | 36 | 0 | 2 | 1 | 0 | 50 | 72.0 |
Roshum | 0 | 4 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 2 | 32 | 2 | 1 | 0 | 44 | 72.7 |
Rusint | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 5 | 24 | 3 | 0 | 37 | 64.9 |
Salcal | 0 | 1 | 3 | 0 | 0 | 7 | 1 | 0 | 5 | 0 | 0 | 0 | 3 | 18 | 0 | 38 | 47.4 |
Stiobt | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 34 | 42 | 81.0 |
Total | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 600 | |
PA | 80.0 | 67.5 | 77.5 | 67.5 | 25.0 | 65.0 | 90.0 | 87.5 | 52.5 | 82.5 | 90.0 | 80.0 | 60.0 | 45.0 | 85.0 | ||
Overall accuracy = 70.33% Kappa = 0.7013 |
Class | Eraleh | Erieri | Geifil | Heldre | Lyccin | Penspi | Plikar | Progla | Pteglo | Rhitri | Roelic | Roshum | Rusint | Salcal | Stiobt | Total | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eraleh | 14 | 1 | 3 | 3 | 4 | 1 | 3 | 7 | 0 | 2 | 0 | 1 | 0 | 6 | 4 | 49 | 28.6 |
Erieri | 2 | 15 | 4 | 2 | 3 | 1 | 2 | 0 | 7 | 1 | 0 | 7 | 12 | 0 | 0 | 56 | 26.8 |
Geifil | 2 | 4 | 16 | 4 | 3 | 5 | 4 | 0 | 6 | 7 | 0 | 4 | 1 | 5 | 0 | 61 | 26.2 |
Heldre | 4 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 1 | 1 | 0 | 14 | 21.4 |
Lyccin | 1 | 1 | 0 | 2 | 11 | 0 | 0 | 4 | 1 | 1 | 3 | 2 | 1 | 1 | 0 | 28 | 39.3 |
Penspi | 0 | 1 | 0 | 2 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 22 | 59.1 |
Plikar | 5 | 1 | 0 | 2 | 3 | 2 | 11 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 30 | 36.7 |
Progla | 4 | 0 | 0 | 1 | 5 | 1 | 2 | 25 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 43 | 58.1 |
Pteglo | 0 | 9 | 6 | 1 | 0 | 3 | 0 | 0 | 16 | 2 | 0 | 2 | 2 | 8 | 0 | 49 | 32.7 |
Rhitri | 0 | 0 | 5 | 4 | 6 | 4 | 4 | 0 | 2 | 18 | 0 | 0 | 0 | 3 | 0 | 46 | 39.1 |
Roelic | 1 | 2 | 1 | 9 | 19 | 2 | 0 | 1 | 1 | 3 | 34 | 0 | 1 | 5 | 0 | 79 | 43.0 |
Roshum | 0 | 2 | 1 | 5 | 1 | 4 | 0 | 0 | 1 | 1 | 0 | 7 | 4 | 0 | 0 | 26 | 26.9 |
Rusint | 0 | 4 | 1 | 1 | 1 | 8 | 0 | 0 | 5 | 3 | 0 | 8 | 15 | 2 | 0 | 48 | 31.3 |
Salcal | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 5 | 20.0 |
Stiobt | 7 | 0 | 2 | 1 | 2 | 1 | 14 | 3 | 0 | 0 | 0 | 3 | 0 | 1 | 36 | 70 | 51.4 |
Total | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 626 | |
PA | 35.0 | 37.5 | 40.0 | 7.5 | 18.3 | 28.3 | 27.5 | 62.5 | 40.0 | 45.0 | 85.0 | 17.5 | 37.5 | 2.5 | 90.0 | ||
Overall accuracy = 37.54% Kappa = 0.3709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmse, C.J.; van Niekerk, A. Spectral Discrimination of Common Karoo Shrub and Grass Species Using Spectroscopic Data. Remote Sens. 2024, 16, 3869. https://doi.org/10.3390/rs16203869
Harmse CJ, van Niekerk A. Spectral Discrimination of Common Karoo Shrub and Grass Species Using Spectroscopic Data. Remote Sensing. 2024; 16(20):3869. https://doi.org/10.3390/rs16203869
Chicago/Turabian StyleHarmse, Christiaan Johannes, and Adriaan van Niekerk. 2024. "Spectral Discrimination of Common Karoo Shrub and Grass Species Using Spectroscopic Data" Remote Sensing 16, no. 20: 3869. https://doi.org/10.3390/rs16203869
APA StyleHarmse, C. J., & van Niekerk, A. (2024). Spectral Discrimination of Common Karoo Shrub and Grass Species Using Spectroscopic Data. Remote Sensing, 16(20), 3869. https://doi.org/10.3390/rs16203869