Comparison of Non-Contact Measurement Technologies Applied on the Underground Glacier—The Choice for Long-Term Monitoring of Ice Changes in Dobšiná Ice Cave
Abstract
:1. Introduction
1.1. Non-Contact Measurement Technologies in Ice Caves
1.2. Study Area
2. Materials and Methods
2.1. Measurement Technologies
2.2. Data Acquisition and Registration
2.3. Data Comparison
- 1.
- C2C distance:
- After georeferencing point clouds, Cloud to Cloud (C2C) distance to a reference base (point cloud from tacheometry or photogrammetry) provided us with information about possible position errors at a mesoscale (e.g., a hall, a corridor, and a tunnel).
- 2.
- Fine C2C registration:
- As each georeferenced point cloud had a different registration error with no perfect match in a geographical space, the clouds were hard to compare. For better results, fine C2C registration was applied to each locality, which we wanted to compare. The reference base for the registration was the cloud from the photogrammetry or the tacheometry. This step was not applied to Leica C10’s cloud, as the resulting information would be meaningless based on recent ice changes.
- 3.
- Cross-sections selection:
- To find information about diverse types of ice, or its layers, roughness maps were created. Although the places with higher curvature could also be seen on these maps, higher roughness values navigated us to noisy parts or places with higher penetration and more outliers, too. Also, as the point clouds from the scanners on tripods have a higher density around the scanning positions, we tried to choose the localities of the cross-sections near those positions.
- 4.
- Comparison of noise and penetration on cross-section:
- Leica RTC360 automatically filters multiple reflections while scanning, so the “raw” data are almost free of outliers, and the noise is lowered too. Scanning with the iPhone is based on LiDAR, but the first result is not the point cloud; it is an automatically processed mesh created from the scanned data, and the point cloud can only be extracted from the mesh in the following step. So, we do not have true information about penetration or noise because it was lost in such a process, and the extracted point cloud is thin and clean (except for some artefacts). In fact, if we do not count Leica C10, the point cloud from the Zeb Horizon is the only one that needs filtration in post-processing. Accordingly, we provide both results reached with Zeb Horizon: the first without the noise filtration—to save the information about how much or whether any such work is needed and the second with the filtration—to have more comparable data. In each case, data from all the devices were exported without any additional simplification. On the cross-sections, the places with maximal noise and laser penetration values were identified visually.
- 5.
- C2C distances between the cross-sections:
- C2C distances were computed again (this time after fine C2C registration) to quantify possible offset, shift, or deformation on the cross-section. Distances were not computed for the Leica C10, as they could refer to a loss of ice. In this case, C2C distances on the cross-sections of Zeb Horizon’s cloud are provided just after filtration, as the values could be distorted by the higher thickness of the cloud.
3. Results
3.1. Horizontal Ice
3.2. Vertical Ice
3.3. Artificial Ice Tunnel
4. Discussion
5. Conclusions
- -
- Leica RTC360
- -
- the best details,
- -
- the best registration error,
- -
- the least postprocessing,
- -
- the worst on the water,
- -
- the need for light for registration (visual SLAM algorithm),
- -
- Leica C10
- -
- the longest in situ registration,
- -
- the deepest penetration,
- -
- the highest weight,
- -
- bad on the water,
- -
- the lowest noise (in case of no penetration),
- -
- GeoSLAM Zeb Horizon
- -
- the most universal,
- -
- the highest noise,
- -
- the highest speed of scanning,
- -
- the shortest in situ registration,
- -
- additional noise filtration recommended,
- -
- Iphone 14 Pro
- -
- the lowest weight and dimensions,
- -
- the smallest field of view,
- -
- the shortest range,
- -
- the longest scanning time,
- -
- the most deformations and artificial features in the cloud,
- -
- raw data unavailable (automatic mesh processing in app).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zlot, R.; Bosse, M. Three-dimensional mobile mapping of caves. J. Cave Karst Stud. 2014, 76, 191–206. [Google Scholar] [CrossRef]
- Cosso, T.; Ferrando, I.; Orlando, A. Surveying and mapping a cave using 3D Laser Scanner: The Open Challenge with free and open source software. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL–5, 181–186. [Google Scholar] [CrossRef]
- Bartos, K.; Pukanska, K.; Rakay, S.; Sabova, J.; Bella, P. 3D digital mapping of cave spaces in Slovakia by Terrestrial Laser Scanning. In Advances and Trends in Geodesy, Cartography and Geoinformatics, 1st ed.; Molčíková, S., Hurčíková, V., Zelizňaková, V., Blišt’an, P., Eds.; CRC Press: London, UK, 2018; pp. 9–14. [Google Scholar]
- Pukanská, K.; Bartoš, K.; Sabová, J.; Tometzová, D. High-resolution 3-D mapping for the survey of valuable inaccessible Medvedia cave in the National Park of slovenský raj. In Advances and Trends in Geodesy, Cartography and Geoinformatics, 1st ed.; Molčíková, S., Hurčíková, V., Zelizňaková, V., Blišt’an, P., Eds.; CRC Press: London, UK, 2018; pp. 89–94. [Google Scholar]
- Pukanská, K.; Bartoš, K.; Bella, P.; Gašinec, J.; Blistan, P.; Kovanič, Ľ. Surveying and high-resolution topography of the Ochtiná aragonite cave based on TLS and digital photogrammetry. Appl. Sci. 2020, 10, 4633. [Google Scholar] [CrossRef]
- Herich, P. Mobilné laserové skenovanie jaskýň–prvé výsledky a skúsenosti. Aragonit 2021, 26, 77–79. [Google Scholar]
- Bella, P.; Littva, J.; Pukanská, K.; Gašinec, J.; Bartoš, K. Využitie terestrického laserového skenovania pri skúmaní štruktúrno-geologických diskontinuít a morfológie jaskýň: Príklad jaskyne Dúpnica v Západných Tatrách. Acta Geol. Slovaca 2015, 7, 93–102. [Google Scholar]
- Hofierka, J.; Hochmut, Z.; Kaňuk, J.; Gallay, M.; Gessert, A. Mapovanie jaskyne Domica pomocou terestrického laserového skenovania. Geogr. Časopis 2016, 68, 25–38. [Google Scholar]
- Gallay, M.; Kaňuk, J.; Hochmuth, Z.; Meneely, J.; Hofierka, J.; Sedlák, V. Large-scale and high-resolution 3-D cave mapping by Terrestrial Laser Scanning: A case study of the Domica cave, Slovakia. Int. J. Speleol. 2015, 44, 277–291. [Google Scholar] [CrossRef]
- Gallay, M.; Hochmuth, Z.; Kaňuk, J.; Hofierka, J. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning. Hydrol. Earth Syst. Sci. 2016, 20, 1827–1849. [Google Scholar] [CrossRef]
- Pukanská, K.; Bartoš, K.; Bella, P.; Rákay, Š.; Sabová, J. Comparison of non-contact surveying technologies for modelling underground morphological structures. Acta Montan. Slovaca 2017, 22, 246–256. [Google Scholar]
- Fabbri, S.; Sauro, F.; Santagata, T.; Rossi, G.; Waele, J.D. High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: An example from the Lessini mountains (North Italy). Geomorphology 2017, 280, 16–29. [Google Scholar] [CrossRef]
- Pukanská, K.; Blistan, P.; Bartoš, K.; Kovanič, Ľ. Surveying the Ochtiná Aragonite Cave, Slovakia with terrestrial laser scanning and digital photogrammetry: High resolution phreatic and epiphreatic morphologies originated in slowly moving and standing water, and comparing the applicability of these methods. In Specific Irregular Surfaces: Laser Scanning and Structure from Motion Approach, 1st ed.; Pukanská, K., Blistan, P., Bartoš, K., Kovanič, Ľ., Eds.; Tribun EU s.r.o.: Brno, Czech Republic, 2020; pp. 96–116. [Google Scholar]
- Šupinský, J.; Kaňuk, J.; Hochmuth, Z.; Gallay, M. Detecting dynamics of cave floor ice with selective cloud-to-cloud approach. Cryosphere 2019, 13, 2835–2851. [Google Scholar] [CrossRef]
- Hochmuth, Z.; Šupinský, J.; Stankovič, J.; Halama, J.; Kaňuk, J. Dynamics of temperature changes in the Silická ľadnica cave (Slovak karst) and its influence on the ice accumulations. Aragonit 2020, 25, 42–43. [Google Scholar]
- Šupinský, J.; Nováková, M.; Gallay, M.; Kaňuk, J. Microclimatic and ice accumulation change monitoring in Silická ľadnica cave. In Proceedings of the 10th International Workshop on Ice Caves, Werfenweng, Austria, 12–18 May 2024; p. 39. [Google Scholar] [CrossRef]
- Shazali, N.; Chew, T.H.; Shamsir, M.S.; Tawie Tingga, R.C.H.; Mohd-Ridwan, A.R.; Anwarali Khan, F.A. Assessing Bat Roosts Using the LiDAR System at Wind Cave Nature Reserve in Sarawak. Acta Chiropterologica 2017, 19, 199–210. [Google Scholar] [CrossRef]
- Oludare Idrees, M.; Pradhan, B. A decade of modern cave surveying with Terrestrial Laser Scanning: A review of sensors, method and application development. Int. J. Speleol. 2016, 45, 71–88. [Google Scholar] [CrossRef]
- Persoiu, A.; Onac, B.P.; Wynn, J.G.; Bojar, A.-V.; Holmgren, K. Stable isotope behavior during cave ice formation by water freezing in Scărisoara Ice Cave, Romania. J. Geophys. Res. Atmos. 2011, 116, D02111. [Google Scholar] [CrossRef]
- Feurdean, A.; Persoiu, A.; Pazdur, A.; Onac, B.P. Evaluating the palaeoecological potential of pollen recovered from ice in caves: A case study from Scărisoara Ice Cave, Romania. Rev. Palaeobot. Palynol. 2011, 165, 1–10. [Google Scholar] [CrossRef]
- Petters, C.; Milius, J.; Buchroithner, M.F. Eisriesenwelt: Terrestrial laser scanning and 3D visualisation of the largest ice cave on Earth. In Proceedings of the European LiDAR Mapping Forum, Salzburg, Austria, 29–30 November 2011; pp. 1–10. [Google Scholar]
- Milius, J.; Petters, C. Eisriesenwelt -From laser scanning to photo-realistic 3D model of the biggest ice cave on Earth. In Proceedings of the GI-Forum 2012: Geovisualization, Society and Learning, Salzburg, Austria, 3–6 July 2012; Wichmann Verlag: Berlin, Germany, 2012; pp. 513–523. [Google Scholar]
- Gómez-Lende, M.; Berenguer, F.; Serrano, E. Morphology, ice types and thermal regime in a high mountain ice cave. First studies applying terrestrial laser scanner in the Peña Castil ice cave (Picos de Europa, northern Spain). Geogr. Fis. Din. Quat. 2014, 37, 141–150. [Google Scholar]
- Berenguer-Sempere, F.; Gómez-Lende, M.; Serrano, E.; de Sanjosé-Blasco, J.J. Orthothermographies and 3D models as potential tools in ice cave studies: The Peña Castil Ice Cave (Picos de Europa, Northern Spain). Int. J. Speleol. 2014, 43, 35–43. [Google Scholar] [CrossRef]
- Gómez-Lende, M.; Sánchez-Fernández, M. Cryomorphological topographies in the study of Ice Caves. Geosciences 2018, 8, 274. [Google Scholar] [CrossRef]
- Kamintzis, J.E.; Jones, J.P.; Irvine-Fynn, T.D.; Holt, T.O.; Bunting, P.; Jennings, S.J.; Porter, P.R.; Hubbard, B. Assessing the applicability of Terrestrial Laser Scanning for mapping Englacial Conduits. J. Glaciol. 2017, 64, 37–48. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Rutzinger, M.; Spötl, C. Terrestrial laser scanning for 3D mapping of an alpine ice cave. Photogramm. Rec. 2023, 38, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Blatnik, M.; Obu, J.; Košutnik, J.; Gabrovšek, F. Use of Terrestrial LiDAR Scanner for Monitoring of Ice Thickness in Ice Caves; Examples from Slovenia. In Proceedings of the EuroKarst 2022, Málaga, Spain, 22–25 June 2022. [Google Scholar] [CrossRef]
- Securo, A.; Forte, E.; Martinucci, D.; Pillon, S.; Colucci, R.R. Long-term mass-balance monitoring and evolution of ice in caves through structure from motion–multi-view stereo and ground-penetrating radar techniques. Prog. Phys. Geogr. Earth Environ. 2022, 46, 422–440. [Google Scholar] [CrossRef]
- Bartoš, K.; Pukanská, K.; Kseňak, Ľ.; Gašinec, J.; Bella, P. Cross-Polarized SfM Photogrammetry for the Spatial Reconstruction of Challenging Surfaces, the Case Study of Dobšiná Ice Cave (Slovakia). Remote Sens. 2023, 15, 4481. [Google Scholar] [CrossRef]
- Bella, P.; Tulis, J.; Zelinka, J.; Papáč, V.; Višňovská, Z.; Haviarová, D. Dobšiná Ice cave (Slovakia, central Europe) and its unique underground glacier originated in the mid-mountain position of the moderate climate zone. Aragonit 2020, 25, 4–16. [Google Scholar]
- Lalkovič, M. On the problems of the ice filling in the Dobšiná Ice Cave. Acta Carsol. 1995, 24, 313–322. [Google Scholar]
- Pelech, J.E. A Sztracenai Völgy és a Dobsinai Jégbarlang [The Stratená Valley and Dobšiná Ice Cave]. Külön-lenyomat a Magyarországi Kárpátegylet 1878, 5, 29. (In Hungarian) [Google Scholar]
- Pelech, J.E. Valley of Stracena and the Dobschau Ice-Cavern; Trubner & Co.: Ludgate Hill, London, 1879; p. 31. [Google Scholar]
- Pelech, J.E. Das Stracenaer Thal und die Dobschauer Eishöhle; Buchdruckerei des Franklin-Verein: Budapest, Hungary, 1884; p. 51. [Google Scholar]
- Droppa, A. Dobšinská Ľadová Jaskyňa [Dobšiná Ice Cave]; Šport: Bratislava, Slovakia, 1960; 115p, (In Slovak with Russian, German and French summary). [Google Scholar]
- Novotný, L.; Tulis, J. Výsledky najnovších výskumov v Dobšinskej ľadovej jaskyni. Slov. Kras 1996, 34, 139–147. [Google Scholar]
- Tulis, J. Výskum Dobšinskej ľadovej jaskyne. Aragonit 2001, 6, 4. [Google Scholar]
- Zelinka, J. Speleoklimatický a glaciologický výskum a monitoring od roku 1990. Aragonit 2009, 14, 104–109. [Google Scholar]
- Gašinec, J.; Gašincová, S.; Černota, P.; Staňková, H. Uses of Terrestrial Laser Sanning in Mnitoring of Ground Ice within Dobšinská Ice Cave. Inz. Miner. 2012, 13, 31–42. [Google Scholar]
- Herich, P. Mobile laser scanning in ice caves–preliminary results. Conference poster. In Proceedings of the 9th International Workshop on Ice Caves (IWIC–IX), Liptovský Mikuláš, Slovakia, 9–13 May 2022. [Google Scholar]
- Forbes. Available online: https://www.forbes.com/sites/sabbirrangwala/2020/11/12/the-iphone-12lidar-at-your-fingertips/?sh=5a4db3d43e28 (accessed on 6 August 2024).
- Geotech. Available online: https://www.geotech.sk/Produkty/Laserove-skenery-HDS/Leica-RTC360.html (accessed on 6 August 2024).
- 3gon Positioning. Available online: https://cz.3gon.eu/produkt/zeb-horizon (accessed on 6 August 2024).
- Geotech. Available online: https://www.geotech.sk/Produkty/Laserove-skenery-HDS/Leica-ScanStation-C10.html (accessed on 6 August 2024).
- Istores. Available online: https://www.istores.sk/produkt/iphone-14-pro-1-tb-temne-fialovy-2214586 (accessed on 6 August 2024).
- Gašinec, J.; Gašincová, S.; Gergeľová, M. Tvorba priestorového modelu Dobšinskej ľadovej jaskyne a jeho pripojenie na JTSK03. Geod. A Kartogr. Obz. 2012, 58, 221–223. [Google Scholar]
- Pukanská, K.; Bartoš, K.; Gašinec, J.; Pašteka, R.; Zahorec, P.; Papčo, J.; Kseňak, Ľ.; Bella, P.; Andrássy, E.; Dušeková, L.; et al. Measurement of spatio-temporal changes of cave ice using geodetic and geophysical methods: Dobšiná Ice Cave, Slovakia. Cryosphere Discuss. 2023, 2023, 1–29. [Google Scholar] [CrossRef]
- Leica Geosystems. Available online: https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360/visual_inertial_system_technology (accessed on 6 August 2024).
- Available online: https://www.danielgm.net/cc/ (accessed on 8 October 2024).
- Available online: https://poly.cam/ (accessed on 8 October 2024).
- Smith, M.W.; Vericat, D. Evaluating shallow-water bathymetry from through-water terrestrial laser scanning under a range of hydraulic and physical water quality conditions. River Res. Appl. 2014, 30, 905–924. [Google Scholar] [CrossRef]
- Trzeciak, M.P.; Brilakis, I. Comparison of accuracy and density of static and mobile laser scanners. In Proceedings of the 2021 European Conference on Computing in Construction, Ixia, Rhodes, Greece, 25–27 July 2021. [Google Scholar] [CrossRef]
- Tondo, G.R.; Riley, C.; Morgenthal, G. Characterization of the iPhone LiDAR-Based Sensing System for Vibration Measurement and Modal Analysis. Sensors 2023, 23, 7832. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of ice and snow. Philos. Trans. R. Soc. A 2019, 377, 20180161. [Google Scholar] [CrossRef] [PubMed]
- Pluta, P.; Siemek, D. Possibilities and limitations of using iPhone 13 Pro with built-in LiDAR sensor in cave research-on the example of paleoflow analysis in Mylna Cave (WesternTatra Mts, Poland). Landf. Anal. 2024, 42, 51–62. [Google Scholar] [CrossRef]
- Polycam Help Center. Available online: https://learn.poly.cam/hc/en-us/articles/27425185907348-Creating-Photogrammetry-Captures (accessed on 6 August 2024).
Zeb Horizon | Leica C10 | Leica RTC360 | iPhone 14 Pro | |
---|---|---|---|---|
Laser λ | 903 nm (invisible) | 532 nm (green) | 1550 nm (invisible) | 8XX nm (invisible) |
Field of view | 360° × 270° | 360° × 270° | 360° × 300° | 61.1° × 47.8° |
Range | 100 m | 300 m | 130 m | 5 m |
Speed points/second | 300,000 | 50,000 | Up to 2,000,000 | ? |
Accuracy angular (Vertical/Horizontal) | 2°/0.2° | 12″/12″ | 18″ (3D) | ? |
Accuracy | Relative accuracy up to 6 mm | Position—6 mm Distance—4 mm | Range accuracy 1.0 mm + 10 ppm | ? |
Range noise | ±3 cm | 2 mm | 0.4 mm @ 10 m, 0.5 mm @ 20 m | ? |
IP | 54 | 54 | 54 | 68 |
Operating temperature/humidity | 0 °C to 40 °C | 0 °C to 40 °C | −5 °C to 40 °C | 0 °C to 35 °C/ 5 to 95% without condensation |
Weight | 2.85 (1.45 kg scanner, 1.4 kg ogger + battery) | 13 kg (without battery) | 5.35 kg (without battery) | 206 g |
Software | GeoSLAM Hub v6.2.1 + GeoSLAM Connect v2.3.0 + Cloud Compare v2.13 | Leica Cyclone v7.3 + Cloud Compare v2.13 | Cyclone FIELD 360 v5.0.0 and Cyclone REGISTER 360 v2022.0 | Polycam v3.4.0 + Cloud Compare v2.13 |
Small Hall (SH), Collapsed Dome (CD) | Zeb Horizon | Leica C10 | Leica RTC360 | |
---|---|---|---|---|
Duration of scanning | A part of the trajectory: cca 6 min | 3 positions × 1 min | 11 positions × 30 s | |
Registration RMS [m] | 0.121 | max 0.006 | max 0.006 | |
mean/max C2C distance [m] | 0.027/0.075 (CD) | x | 0.021/0.121 (CD) | |
0.027/0.255 (SH) | 0.032/0.294 (SH) | |||
Fine C2C registration RMS [m] | 0.043 (CD) | x | 0.039 (CD) | |
0.051 (SH) | 0.050 (SH) | |||
Number of points | A | w.f. 20,295 | 3744 | 7146 |
a.f. 15,003 | ||||
B | w.f. 16,076 | 83 | 4940 | |
a.f. 8648 | ||||
Max thickness of a cloud (noise) [m] | A | w.f. 0.17 | 0.05 | 0.07 |
a.f. 0.17 | ||||
B | w.f. 0.09 | a point | 0.01 | |
a.f. 0.06 | ||||
Max depth of penetration [m] | A | w.f. 0.11 | x/∞(water holes) | 0.07/∞(water holes) |
a.f. 0.09 | ||||
B | w.f. 0.18 | x/∞(water holes) | 0.018/∞(water holes) | |
a.f. 0.07 | ||||
Mean/max C2C distance [m] | A | a.f. 0.013/0.033 | x | 0.011/0.025 |
B | a.f. 0.020/0.031 | x | 0.011/0.013 |
Ruffínyi’s Corridor | Zeb Horizon | iPhone | Leica C10 | Leica RTC360 | |
---|---|---|---|---|---|
Duration of scanning | A part of a trajectory: cca 2 min | 2 trajectories: 6 + 7 min | 2 positions × 1 min | 6 positions × 30 s | |
Registration RMS [m] | 0.121 | 0.040 (1st traj.) | up to 0.006 | up to 0.006 | |
0.032 (2nd traj.) | |||||
Mean/max C2C distance [m] | 0.027/0.261 | 0.049/0.324 (1st traj.) | X | 0.010/0.080 | |
0.015/0.106 (2nd traj.) | |||||
Fine C2C registration RMS [m] | 0.052 | 0.056 (1st traj.) | X | 0.052 | |
0.051 (2nd traj.) | |||||
Number of points | A | w.f. 37,101 | 24,041 | 2715 | 91,047 |
a.f. 15,602 | |||||
B | w.f. 4117/2188 | 4468 | 240 | 11,470 | |
C | w.f. 2882/1481 | 2986 | 39 | 4284 | |
Max thickness of a cloud (noise [m]) | A | w.f. 0.06 | a point/? | 0.03 | 0.008 |
a.f. 0.04 | |||||
B | w.f. 0.1 | a point/? | 0.02 | 0.015 | |
a.f. 0.05 | |||||
C | w.f. 0.19 | a point/? | 0.13 | 0.04 | |
a.f. 0.06 | |||||
Max depth of penetration [m] | A | w.f. 0.15 | 0.005 | min. 0.2 | 0.015 |
a.f. 0.02 | |||||
B | w.f. 0.09 | 0.02 | X | 0.05 | |
a.f. 0.03 | |||||
C | w.f. 0.08 | 0.03 | X | 0.03 | |
a.f. 0.05 | |||||
Mean/max C2C distance [m] | A | a.f. 0.012/0.034 | 0.006/0.028 | X | 0.010/0.131 |
B | a.f. 0.013/0.047 | 0.010/0.043 | X | 0.022/0.046 | |
C | a.f. 0.009/0.049 | 0.012/0.056 | X | 0.006/0.043 |
Ice Tunnel | Zeb Horizon | Iphone | Leica C10 | Leica RTC360 | |
---|---|---|---|---|---|
Duration of scanning | A part of the 2 trajectories: cca 20 s | 1 trajectory: 12 min | 2 positions × 1 min | 4 positions × 30 s | |
Registration RMS [m] | 0.1119 (1st traj.) | 0.095 | up to 0.006 | up to 0.006 | |
0.1211 (2nd traj.) | |||||
Mean/max C2C distance [m] | 0.0856/0.428 | 0.039/0.345 | X | 0.035/0.384 | |
Fine C2C registration RMS [m] | 0.0390 | 0.0527 | X | 0.0362 | |
Number of points | A | w.f. 5388 | 2906 | 9274 | 31,647 |
a.f. 2427 | |||||
B | w.f. 8605 | 6547 | 192 | 120,958 | |
a.f. 4171 | |||||
Max thickness of a cloud (noise [m]) | A | w.f. 0.09 | a point/? | 0.15 | 0.025 |
a.f. 0.05 | |||||
B | w.f. 0.18 | a point/? | 0.13 | 0.03 | |
a.f. 0.08 | |||||
Max depth of penetration [m] | A | w.f. 0.10 | 0.09 | 0.60 | 0.03 |
a.f. 0.05 | |||||
B | w.f. 0.13 | 0.08 | 0.17 | 0.04 | |
a.f. 0.05 | |||||
Mean/max C2C distance [m] | A | a.f. 0.010/0.046 | 0.061/0.090 | X | 0.008/0.029 |
B | a.f. 0.014/0.075 | 0.032/0.078 | X | 0.008/0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dušeková, L.; Herich, P.; Pukanská, K.; Bartoš, K.; Kseňak, Ľ.; Šveda, J.; Fehér, J. Comparison of Non-Contact Measurement Technologies Applied on the Underground Glacier—The Choice for Long-Term Monitoring of Ice Changes in Dobšiná Ice Cave. Remote Sens. 2024, 16, 3870. https://doi.org/10.3390/rs16203870
Dušeková L, Herich P, Pukanská K, Bartoš K, Kseňak Ľ, Šveda J, Fehér J. Comparison of Non-Contact Measurement Technologies Applied on the Underground Glacier—The Choice for Long-Term Monitoring of Ice Changes in Dobšiná Ice Cave. Remote Sensing. 2024; 16(20):3870. https://doi.org/10.3390/rs16203870
Chicago/Turabian StyleDušeková, Laura, Pavel Herich, Katarína Pukanská, Karol Bartoš, Ľubomír Kseňak, Jakub Šveda, and Ján Fehér. 2024. "Comparison of Non-Contact Measurement Technologies Applied on the Underground Glacier—The Choice for Long-Term Monitoring of Ice Changes in Dobšiná Ice Cave" Remote Sensing 16, no. 20: 3870. https://doi.org/10.3390/rs16203870
APA StyleDušeková, L., Herich, P., Pukanská, K., Bartoš, K., Kseňak, Ľ., Šveda, J., & Fehér, J. (2024). Comparison of Non-Contact Measurement Technologies Applied on the Underground Glacier—The Choice for Long-Term Monitoring of Ice Changes in Dobšiná Ice Cave. Remote Sensing, 16(20), 3870. https://doi.org/10.3390/rs16203870