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Abstract: Rangelands represent about 25% of the Earth’s land surface but are under severe pressure.
Rangeland degradation is a gradually increasing global environmental problem, resulting in tempo-
rary or permanent loss of ecosystem functions. Ecological rangeland studies aim to determine the
productivity of rangelands as well as the severity of their degradation. Rigorous in situ assessments
comprising visual identification of plant species are required as such assessments are perceived
to be the most accurate way of monitoring rangeland degradation. However, in situ assessments
are expensive and time-consuming exercises, especially when carried out over large areas. In situ
assessments are also limited to areas that are accessible. This study aimed to evaluate the effectiveness
of multispectral (MS) and hyperspectral (HS) remotely sensed, unmanned aerial vehicle (UAV)-based
data and machine learning (random forest) methods to differentiate between 15 dominant Nama
Karoo plant species to aid ecological impact surveys. The results showed that MS imagery is unsuit-
able, as classification accuracies were generally low (37.5%). In contrast, much higher classification
accuracies (>70%) were achieved when the HS imagery was used. The narrow bands between 398
and 430 nanometres (nm) were found to be vital for discriminating between shrub and grass species.
Using in situ Analytical Spectral Device (ASD) spectroscopic data, additional important wavebands
between 350 and 400 nm were identified, which are not covered by either the MS or HS remotely
sensed data. Using feature selection methods, 12 key wavelengths were identified for discriminating
among the plant species with accuracies exceeding 90%. Reducing the dimensionality of the ASD data
set to the 12 key bands increased classification accuracies from 84.8% (all bands) to 91.7% (12 bands).
The methodology developed in this study can potentially be used to carry out UAV-based ecological
assessments over large and inaccessible areas typical of Karoo rangelands.

Keywords: UAV-based remote sensing; hyperspectral remote sensing; machine learning; plant species
discrimination; rangeland management

1. Introduction

Rangelands are natural lands on which the indigenous vegetation is predominantly
grasses, forbs, or woody shrubs that are used for livestock or game animal grazing [1,2].
Rangelands represent a prominent land resource covering about 25% of the Earth’s land
surface [2,3]. Land degradation is a major challenge for sustainable rangeland use and
management. Rangeland degradation is an increasing global environmental problem,
resulting in temporary or permanent loss of ecosystem functions [4,5]. It is estimated that
the net primary production of a quarter of the world’s total land area is decreasing, and this
may impact as many as 1.5 billion people [6]. Rural areas in developing countries are most
affected by this decreasing productivity [7–9]. In South Africa, nearly 60% of rangelands
are either degraded [10,11] or prone to degradation [12,13].

Since the Industrial Revolution the world has seen rapid increases in global carbon
dioxide (CO2) emissions due to ever larger population numbers. The CO2 concentrations in
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the atmosphere have reached levels that are 50% higher than when the large-scale burning
of fossil fuels began. Atmospheric CO2 levels are driving ongoing climate change. As
a result, more persistent and severe droughts are predicted for dryland systems around
the world. It is anticipated that arid regions will receive less precipitation and experience
higher temperatures in the future [14,15].

Climate change, poverty, and food insecurity all have significant impacts on how
land users manage and use their land [9]. The main aim of ecological rangeland studies
is to determine the condition and productivity of rangelands as well as the severity of
their degradation. Rigorous in situ assessments involving the visual identification of plant
species and soil cover are perceived to be the most accurate way of monitoring rangeland
degradation. Traditional methods for sampling terrestrial vegetation are expensive and
time-consuming exercises when carried out over large areas [16] and, moreover, they are
limited to areas that are easily accessible [17]. Plant ecologists maintain that small-scale or
discontinuous observations are inadequate for accurately determining the spatial distribu-
tion of vegetation species over large spatial scales [18]. Remote sensing (RS) technologies,
on the other hand, enable more precise monitoring of changes in the vegetation layer and
species composition across large and inaccessible areas [19–21].

It is advisable for rangeland sciences to exploit RS to assist farmers and rangeland
managers to adapt to changing and variable climates. Routine monitoring of vegetation
conditions using RS data allows rangeland management practises to be adapted and imple-
mented promptly, thereby increasing rangeland productivity and reducing degradation
risks [18]. A need exists to integrate the spatial approach of geographers and the ‘functional’
approach of plant ecologists [22]. Techniques need to be developed that bridge the gap
between ground-based assessments and the longitudinal observations offered by remotely
sensed data [23]. These techniques will facilitate the modelling of the distribution of plant
species now and in the future to assess the extent of rangeland degradation.

A number of studies have made use of satellite imagery and historical aerial photogra-
phy to quantify and monitor encroaching plant species [24–28]. These studies have also
demonstrated a high degree of accuracy. However, the value of satellite RS for rangeland
sciences is limited by the high spatial (0.3 m or better) and spectral (multiple narrow bands)
resolution needed for species identification. For instance, Landsat-8 images have a rela-
tively low spatial resolution of 30 m. Although Sentinel-2 images have a higher (10 m)
spatial resolution, it is not high enough to distinguish between individual shrubs and
grasses. Both imagery sources suffer from the mixed-pixel problem, where a pixel value
represents a combination of plant species present within the pixel area rather than just one
individual plant [29–31].

Machine learning has been successfully applied to multispectral and hyperspectral imagery
for classifying plant species. Adam et al. [19], Abdel-Rahman et al. [32], Kumar et al. [33], and
Mudereri et al. [34] used the random forest (RF) algorithm on high-dimensional HS data
for plant species classification, achieving good accuracy.

Feature selection identifies important features for tasks like plant species classification.
The GRRF algorithm distinguishes plant species by selecting the best spectral bands [19].
Feature selection reduces data set dimensionality, addressing the “curse of dimensionality”
and improving classification accuracy by removing redundant features. The Hughes effect,
where classification accuracy declines with more features, can be mitigated by feature
selection [35]. Mureriwa et al. [19] showed that GRRF enhances spectral feature selection
and classification accuracy. Other studies, like Li et al. [36], found that feature selection
increased classification accuracy by up to 30%, highlighting its value in plant species identi-
fication. The RF method identifies features corresponding to specific physical or chemical
properties of plant species. For instance, certain spectral bands indicate chlorophyll content,
affecting leaf reflectance, while others relate to water content, influencing absorption in
specific spectral regions. These key features enable the RF method to differentiate species
based on unique spectral signatures, providing insights into biological processes and
environmental factors, thus enhancing the model’s interpretability and application.
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Sensors mounted on unmanned aerial vehicles (UAVs) provide much higher spatial
resolution imagery compared to satellites and can consequently be used to overcome the
mixed-pixel problem. Most UAVs currently on the market are equipped with consumer-
grade visible RGB (red, green, and blue) and MS (typically RGB combined with a near-
infrared and/or red-edge band) cameras. Such low-cost sensors mounted on UAVs have
successfully been used to predict grain yield [37], detect plant diseases [38], and differen-
tiate between aquatic plants and water [39,40]. However, applications that assess plants
at the species level remain scant, mainly due to the inadequate spectral resolution of the
available sensors [41–44]. Hill et al. [45] investigated whether a commercially available,
consumer-grade UAV system is capable of producing accurate maps depicting the extent
of invasion by the yellow flag iris (Iris pseudacorus L.) and whether this could be accom-
plished more efficiently than with a traditional field survey. Their study methods included
pixel-based RF classification of an orthoimage created from the UAV imagery using a
random forest (RF) classifier. The results revealed that the manual interpretation of the
UAV-acquired imagery produced the most accurate infestation maps for the yellow flag
iris, with a false-positive and false-negative classification rate of less than one percent. De
Castro et al. [46] used a UAV equipped with an RGB camera combined with decision tree
classification and object-based image analysis (OBIA) to map a single grass species (i.e.,
Cynodon dactylon) within vineyards. The classification was complicated by the high spectral
similarity of grape vines, cover crops, grass species, and bare soil. Height information from
a digital surface model (DSM) overcame the spectral similarity limitation and allowed for
more precise maps of Cynodon dactylon distributions to be produced. Various methods were
developed and evaluated by Dash et al. [47] for the remote detection of exotic invasive trees,
namely Pinus sylvestris and P. ponderosa, in New Zealand’s South Island. Their study exam-
ined the effectiveness of machine learning for classifying multispectral and laser scanning
data collected from both a human-crewed aircraft and a UAV. The running logistic regres-
sion and RF models provided highly accurate (Kappa < 0.996) detection of the invasive
conifers. Marques et al. [48] investigated multitemporal analysis to automatically detect
and map individual trees. UAV imagery was used to calculate RGB-based and visible and
near-infrared (VNIR)-based VIs, which were then combined with a canopy height model.
Using RGB-based Vis, an overall segmentation accuracy greater than 95% was achieved.
Nevalainen et al. [21] investigated the performance of UAV-based photogrammetry and
HS imaging for individual tree detection and tree species classification in boreal forests.
They used a UAV equipped with a frame-format hyperspectral camera and an RGB camera.
RF and multilayer perceptron (MLP) models produced the best results in the study, with a
95% OA and an F-score of 0.93.

Most of the existing studies that evaluated UAV systems aimed to identify and map
invasive and exotic species, whereas others considered plantations with set distances
between individual plants which are quite easily distinguishable from natural vegetation.
However, the manual image interpretation used in some other studies is not suited to
large spatial domains, especially those with complex structures [45,49]. Manual image
interpretation can be particularly slow to carry out and is a less time-efficient method.

In situ spectroscopy studies carried out in South Africa [19] and Australia [50] showed
that hyperspectral (HS) data could be used to distinguish some invasive and co-existing
species [19,51]. This suggests that HS data can potentially be used to differentiate and map
indicator rangeland species and assist in rangeland ecological assessments. The Nama
Karoo covers a large part of the south-western part of South Africa and a small portion of
Namibia. It is the third largest biome in South Africa, covering a total of 277,000 km2 [50].
Mapping plant species over such a large area is unfeasible using in situ assessments only.
The vegetation layer in the Nama Karoo is dominated by shrub species less than 1 metre in
height. The low rainfall results in plants growing a fair distance away from each other to
reduce competition. Low plant density and a shrub layer create the ideal environment for
testing UAV data for the classification of plant species.
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The principle aim of this study was to evaluate to what extent machine learning, ap-
plied to HS data measured in situ using a full-spectrum spectroradiometer, can differentiate
between common Karoo shrubs and grass species. The secondary aim was to compare
the models produced from the in situ HS data to those produced using UAV HS and MS
data. An assessment of guided regularised random forests (GRRFs) for improving spectral
discrimination of common Karoo shrubs and grass species was also carried out.

Successful outcomes would allow ecological impact surveys to be carried out over
larger and more inaccessible areas across semi-arid rangelands in South Africa (and po-
tentially similar environments). They would also provide safer, less expensive, and more
time-efficient methods for the classification of vegetation species as these surveys are
required to assess the sustainability of existing rangeland management practises.

2. Materials and Methods
2.1. Study Area

The study site is located in the Carnarvon Agricultural Research Station, approximately
25 km west of the town of Carnarvon in the Northern Cape province of South Africa
(31.0086◦S, 21.8939◦E) at an altitude of about 1310 m above mean sea level. This area is
representative of the north-western Karoo rangelands which, over the last century, have
been exploited mainly for sheep farming [52]. The long-term (1927–2019) mean annual
rainfall is 201 mm, with most rainfall occurring during late summer and early autumn. The
average daily temperature is 23.3 ◦C in the summer and 8.5 ◦C in the winter.

The study area is covered by the Western Upper Karoo vegetation type within the
Nama Karoo Biome. This biome sustains mainly low shrublands with a fluctuating grass
component accredited by rainfall quantity and seasonality [53,54]. Grass dominates in the
aeolian sand patches. The vegetation consists primarily of dwarf shrubs such as Pentzia
spp., Eriocephalus spp., and Ruschia intricata, and grass species such as Stipagrostis spp.
The soils are very shallow, with the A-horizon between 10 and 500 mm deep and mainly
consisting of Glenrosa and Mispa soils. The A-horizon has an average clay content of
between 10 and 12% [55].

2.2. Data Collection and Preparation

In situ data collection was conducted across three sites at the end of the rainy season
from 1 to 15 May 2021 between 10:00 and 14:00 on sunny, cloudless days. Data collection
took place at a time when the plants were fully grown, had reached their peak productivity
level, and were experiencing little to no moisture stress. The 15 most dominant plant
species were selected for sampling (Table 1). These species represent 90% of the plant
species composition at the study sites and represent a wide range of palatable to less
palatable species used to indicate veld condition.

The palatability of each plant species selected for this study was determined using
literature sources, specifically the book by David Shearing on the Karoo: South African
Wild Flower Guide. This source provides comprehensive information on the palatability of
plant species based on their chemical composition, physical traits, and also the observed
grazing preferences by livestock. Thus, the classification of species palatability is grounded
on established botanical and ecological research, to ensure an accurate representation of
various veld conditions.

Other potentially problematic species such as Senecio, Galenia, Heliotropium, Chrysocoma,
Tylecodon, Dichapetalum, Vachellia, and Drosanthemum were not included in the analysis due
to their relatively lower abundance and coverage in the specific study sites during the
sampling period. While these species are present in the Nama Karoo, their representation
was insignificant in the study sites. Additionally, the lower abundance of the grass species
Enneapogon did not justify its inclusion in the list of the 15 dominant species.
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Table 1. Plant species selected for sampling.

Species Palatability
(1 to 4)

ASD
Training
Samples

(70%)

ASD Test
Samples

(30%)

Total ASD
Samples

UAV
Training
Samples

(70%)

UAV Test
Samples

(30%)

Total
UAV

Samples

Eragrostis lehmanniana (Era leh) 3 126 54 180 28 12 40

Eriocephalus ericiodes (Eri eri) 3 126 54 180 28 12 40

Geigeria filifolia (Gei fil) * 126 54 180 28 12 40

Helichrysum rosum var. arcuatum
(Hel ros) 3 126 54 180 28 12 40

Lycium cinerium (Lyc cin) 1 126 54 180 28 12 40

Pentzia spinecense (Pen spi) 3 126 54 180 28 12 40

Plinthus karooicus (Pli kar) 4 126 54 180 28 12 40

Prosopis glandulosa (Pro gla) * 126 54 180 28 12 40

Pteronia glomerata (Pte glo) 1 126 54 180 28 12 40

Rhigozum trichotomum (Rhi tri) * 126 54 180 28 12 40

Roepera lichtensteiniana (Roe lic) 2 126 54 180 28 12 40

Rosenia humilis (Ros hum) 1 126 54 180 28 12 40

Ruschia intricata (Rus int) 1 126 54 180 28 12 40

Salsola calluna (Sal cal) 4 126 54 180 28 12 40

Stipagrostis obtusa (Sti obt) 4 126 54 180 28 12 40

Total samples 1764 756 2520 438 188 626

Notes: Palatability classes range from 1 = less palatable to 4 = most palatable. ASD—analytical spectral device;
UAV—Unmanned Aerial Vehicle. * Poisonous or encroacher plant species.

2.3. Plant Survey

The dominant plant species at the study area were identified through visual identifi-
cation. A Trimble® R8 survey-grade real-time kinematic (RTK) global positioning system
(GPS) with a base station (Trimble Inc., Westminster, CO, USA) was used to record the exact
centre position of the plants. A base station is set up at a known location and continuously
broadcasts correction data to the GPS receiver. The GPS receiver, mounted on a survey
pole, receives the correction data and uses it to calculate its position in real time with
high accuracy. When the receiver is moved to the location of each plant, it records the
coordinates of the plant’s location. The base station and the receiver communicate through
radio frequencies, allowing the correction data to be transmitted in real time, resulting
in a higher accuracy level than traditional GPS systems [56]. Using post-processing, up
to 8 mm horizontal and 11 mm vertical positional accuracy can be achieved [56], but in
practise, horizontal error estimates of 32 mm were attained. This error is low compared to
the spacing of the plants (>200 mm).

2.4. In Situ Hyperspectral Data Acquisition (Spectroradiometer)

In situ HS data were collected using the FieldSpec4® Analytical Spectral Device (ASD)
spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA). This spectrora-
diometer collects reflectance in the 350 to 2500 nm spectral range and uses the respective
bandwidths of 1.1 nm and 1.4 nm in the spectral ranges of 350 to 1000 nm and 1001 to
2500 nm, respectively. Scans occurred between 10:00 and 14:00 local time under clear skies
and stable wind conditions, as recommended by Sibanda et al. [57]. The spectral response
of each plant was collected at canopy level by holding the detectors at a nadir-looking angle
approximately 25 cm above the plant or in relation to the height of the plant so that its
field of view (FOV) did not exceed the area of the plant. A bare fibre-optic cable was used,
and the FOV was approximately 10 cm. The spectroradiometer was held at arm’s length
from the observer to avoid scattered light from surrounding objects, such as the operator’s
clothing or instrument [33,34]. The spectroradiometer was set to automatically collect and
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average 20 spectral measurements for each sample spectrum. After every 10 measured
spectra, the instrument was optimised and calibrated, or whenever necessary; for example,
when the instrument became saturated due to changing atmospheric conditions or irra-
diance of the sun [34]. The instrument was calibrated and optimised using a Spectralon
white reference surface plate of 100% reflectance. Table 1 records the total averaged spectra
for each plant species used in this study.

2.5. Camera Used in the Multispectral Remote Sensing Surveys

The Parrot Sequoia camera used in this study has four separate MS sensors with
global shutters. The camera captures surface reflectance in the green (480–520 nm), red
(640–680 nm), red-edge (730–740 nm), and NIR (770–810 nm) wavelength bands [58].
The horizontal FOV was set to 61.9◦, and the vertical FOV to 48.5◦. The images are
1280 × 960 pixels in size and are saved in RAW format. This camera’s maximum frame rate
is one frame per second, and recordings were made on the internal memory. The camera
contains a separate sunshine sensor with a hemispherical FOV that measures solar irradi-
ance in the same spectral bands as the four image sensors. A RAW file is the uncompressed
and unedited image data collected by the sensors of a digital camera or scanner, capturing
a high level of visual detail while maintaining lossless quality. The camera was mounted to
a fixed-wing Sensefly eBee UAV. An altitude of 50 m above the ground with the MS was
maintained, resulting in <8 cm of resolution imagery.

The imagery was processed in Pix4Dmapper (v.4.6.4, Pix4D, Lausanne, Switzerland)
using a standard Agriculture (Ag) MS workflow. The images for each site were processed
to form a single orthomosaic. The ground control points (GCPs) were manually identified
in the images and georeferenced using RTK GPS coordinates collected for reference plates
at the site. A GPS receiver is included with the MS camera’s sunshine sensor and an
inertial measurement unit (IMU) to measure the position and orientation of the sensor
when capturing images [58]. Radiometric calibration was conducted in Pix4D using the
reflectance target images from the Parrot Sequoia camera and the metadata from the
sunshine sensor.

2.6. Camera Used in the Hyperspectral Remote Sensing Surveys

A Specim FX10 HS camera was used to collect remotely sensed hyperspectral images.
The camera collects reflectance in the visible and near-infrared (VNIR) (400 to 1000 nm)
wavelengths at 2.9 nm bandwidths. The camera offers wavelength selection from 224 bands,
built-in image correction, and unified spectral calibration. Regarding spatial resolution, the
sensor produces 1025 × 1025-pixel images at a maximum of 327 frames per second (FPS).
The FX10 was mounted to a multirotor DJI Wind 4 UAV. A flight altitude of 70 m above the
ground was maintained, resulting in <8 cm resolution imagery. The HS flights were carried
out 10 min after the MS flights to minimise the impact of changing atmospheric conditions
and solar irradiance.

The choice of UAVs was based on each sensor’s specific requirements. The fixed-
wing UAV provided stable and efficient coverage for the MS camera and was set up for
this specific sensor. The HS camera weighs more than the fixed-wing UAV, so it cannot
carry such a heavy camera. The multirotor UAV offered greater manoeuvrability, lifting
capability, and stability for the HS camera, reducing the risk of image blur.

2.7. Spectroscopy and UAV Data Analysis

The remotely sensed spectra were extracted from the HS and MS imagery at using the
centroids of each plant as surveyed by the GPS. The UAV spectra were extracted using a
buffer method that returns the average value from all pixels within a specified 3 × 3-pixel
buffer area around the centroid [59].

Variable importance is a useful by-product of random forest (RF), used for feature
ranking. Thus, RF variable importance reveals which wavebands (or waveband set) are
most relevant for classification [60]. In this study, Gini importance was used as a measure



Remote Sens. 2024, 16, 3869 7 of 20

of waveband importance. The Gini importance score quantifies the predictive ability of
each variable; hence, it gained importance measures over all the trees in the RF [60]. The
most essential features from a data set for classifying plant species were identified through
feature selection. The best spectral bands were chosen using the feature selection algorithm
known as guided regularised random forest (GRRF).

The accuracy of the species classifications based on the in situ spectroradiometer
(henceforth referred to as ASD) and remotely sensed (HS and MS) data were determined by
comparing their confusion matrices, overall accuracies (OAs), Kappa scores, and McNemar
tests produced from an independent test data set (30% of samples). OA is a ratio (%)
between the number of correctly classified samples and test samples [19]. The McNemar
test assessed the statistical significance of differences between the RF and GRRF classifi-
cation accuracies of each assessment method [61]. McNemar’s test first assesses a 2 × 2
contingency table and then considers only correct and incorrect points [20]. The RF OOB
accuracies, which provide an unbiased estimate of the internal RF error, were used to assess
misclassifications.

3. Results
3.1. Spectral Responses of Plant Species

Spectral signatures for all 15 identified species were extracted from the ASD data
(included in Supplementary Materials). Three species, Ruschia intricata, Pteronia glomerata,
and Geigeria filifolia, are shown in Figure 1 as examples to demonstrate the variation in
the spectral responses among some of the species. Multiple scattering occurred in the
NIR (750–1075 nm) region and significant differences in magnitude were noted among the
different species. High variation in reflectance magnitude among species was also noted in
the blue (446–500 nm) and red (620–680 nm) regions.
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3.2. Classification Accuracies and Variable Importance
3.2.1. Overall Accuracies

Table 2 shows that an overall species classification accuracy of 84.8% (0.83 Kappa)
was achieved when all 1522 wavelengths from the in situ ASD measurements were used
as predictor variables. Using all 224 wavelengths of the remotely sensed HS image as
predictor variables yielded an OA of 70.3% (Table 3) and Kappa of 0.70. The lowest OA
(37.5%) was achieved when the four bands from the remotely sensed MS data were used as
inputs for the RF classifier (Table 4).

Table 2. Confusion matrix of the overall classification and Kappa for discrimination between the
15 species using all 1522 wavelengths from the analytical spectral device data set. The error was
calculated using the out-of-bag method and a test data set.

Class Eraleh Erieri Geifil Heldre Lyccin Penspi Plikar Progla Pteglo Rhitri Roelic Roshum Rusint Salcal Stiobt Total UA

Eraleh 123 0 0 0 0 10 0 1 0 0 0 4 2 0 0 140 87.9

Erieri 0 106 0 0 0 0 15 0 0 2 0 0 3 0 0 126 84.1

Geifil 0 7 101 0 0 0 7 0 0 0 0 0 0 0 0 115 87.8

Heldre 0 0 0 110 0 0 0 0 2 0 0 0 0 10 0 122 90.2

Lyccin 0 0 0 9 110 7 0 0 0 0 20 0 0 6 0 152 72.4

Penspi 2 0 0 3 3 99 0 16 0 0 9 0 0 0 0 132 75.0

Plikar 0 1 8 0 0 0 102 0 0 0 0 0 0 0 20 131 77.9

Progla 0 0 0 0 2 3 0 109 0 0 0 13 0 0 0 127 85.8

Pteglo 0 0 0 0 0 0 0 0 103 0 0 0 0 9 0 112 92.0

Rhitri 0 0 0 0 0 0 0 0 1 124 0 0 0 0 0 125 99.2

Roelic 0 0 0 0 11 7 0 0 0 0 97 0 0 0 0 115 84.3

Roshum 1 0 0 0 0 0 0 0 0 0 0 99 4 0 0 104 95.2

Rusint 0 8 0 3 0 0 2 0 0 0 0 10 116 0 3 142 81.7

Salcal 0 0 0 1 0 0 0 0 20 0 0 0 0 101 0 122 82.8

Stiobt 0 4 17 0 0 0 0 0 0 0 0 0 1 0 103 125 82.4

Total 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 1890

PA 97.6 84.1 80.2 87.3 87.3 78.6 81.0 86.5 81.7 98.4 77.0 78.6 92.1 80.2 81.7

Overall accuracy = 84.82%
Kappa = 0.8308

Notes: PA, Producer Accuracy; UA, User Accuracy.

Table 3. Confusion matrix of the overall classification and Kappa for discrimination between the
15 species using all 224 wavelengths from the unmanned aerial vehicle hyperspectral data set. The
error was calculated using the out-of-bag method and a test data set.

Class Eraleh Erieri Geifil Heldre Lyccin Penspi Plikar Progla Pteglo Rhitri Roelic Roshum Rusint Salcal Stiobt Total UA

Eraleh 32 0 1 9 1 2 0 0 0 0 0 0 0 0 3 48 66.7

Erieri 0 27 0 0 0 0 0 0 5 2 0 1 5 0 0 40 67.5

Geifil 0 0 31 0 0 1 1 0 2 0 0 0 0 0 2 37 83.8

Heldre 1 0 0 27 2 0 0 0 0 0 0 0 2 0 0 32 84.4

Lyccin 0 0 0 0 10 0 0 1 0 3 0 0 0 0 0 14 71.4

Penspi 0 0 3 0 1 26 0 0 2 0 0 0 0 4 1 37 70.3

Plikar 0 1 1 0 0 1 36 0 0 0 0 0 0 4 0 43 83.7

Progla 0 0 0 0 8 0 0 35 0 2 0 0 0 0 0 45 77.8

Pteglo 0 5 0 0 9 1 1 0 21 0 0 2 1 7 0 47 44.7

Rhitri 0 1 0 0 6 1 0 4 1 33 0 0 0 0 0 46 71.7

Roelic 3 1 0 4 1 0 0 0 2 0 36 0 2 1 0 50 72.0

Roshum 0 4 0 0 2 0 0 0 1 0 2 32 2 1 0 44 72.7

Rusint 1 0 0 0 0 1 0 0 1 0 2 5 24 3 0 37 64.9

Salcal 0 1 3 0 0 7 1 0 5 0 0 0 3 18 0 38 47.4
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Table 3. Cont.

Class Eraleh Erieri Geifil Heldre Lyccin Penspi Plikar Progla Pteglo Rhitri Roelic Roshum Rusint Salcal Stiobt Total UA

Stiobt 3 0 1 0 0 0 1 0 0 0 0 0 1 2 34 42 81.0

Total 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 600

PA 80.0 67.5 77.5 67.5 25.0 65.0 90.0 87.5 52.5 82.5 90.0 80.0 60.0 45.0 85.0

Overall accuracy = 70.33%
Kappa = 0.7013

Notes: PA, Producer Accuracy; UA, User Accuracy.

Table 4. Confusion matrix of the overall classification and Kappa for discrimination between the
15 species using all four wavelengths from the unmanned aerial vehicle multispectral data set. The
error was calculated using the out-of-bag method and a test data set.

Class Eraleh Erieri Geifil Heldre Lyccin Penspi Plikar Progla Pteglo Rhitri Roelic Roshum Rusint Salcal Stiobt Total UA

Eraleh 14 1 3 3 4 1 3 7 0 2 0 1 0 6 4 49 28.6

Erieri 2 15 4 2 3 1 2 0 7 1 0 7 12 0 0 56 26.8

Geifil 2 4 16 4 3 5 4 0 6 7 0 4 1 5 0 61 26.2

Heldre 4 0 0 3 0 1 0 0 1 0 2 1 1 1 0 14 21.4

Lyccin 1 1 0 2 11 0 0 4 1 1 3 2 1 1 0 28 39.3

Penspi 0 1 0 2 0 13 0 0 0 0 0 3 3 0 0 22 59.1

Plikar 5 1 0 2 3 2 11 0 0 2 0 2 0 2 0 30 36.7

Progla 4 0 0 1 5 1 2 25 0 0 0 0 0 5 0 43 58.1

Pteglo 0 9 6 1 0 3 0 0 16 2 0 2 2 8 0 49 32.7

Rhitri 0 0 5 4 6 4 4 0 2 18 0 0 0 3 0 46 39.1

Roelic 1 2 1 9 19 2 0 1 1 3 34 0 1 5 0 79 43.0

Roshum 0 2 1 5 1 4 0 0 1 1 0 7 4 0 0 26 26.9

Rusint 0 4 1 1 1 8 0 0 5 3 0 8 15 2 0 48 31.3

Salcal 0 0 1 0 2 0 0 0 0 0 1 0 0 1 0 5 20.0

Stiobt 7 0 2 1 2 1 14 3 0 0 0 3 0 1 36 70 51.4

Total 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 626

PA 35.0 37.5 40.0 7.5 18.3 28.3 27.5 62.5 40.0 45.0 85.0 17.5 37.5 2.5 90.0

Overall accuracy = 37.54%
Kappa = 0.3709

Notes: PA, Producer Accuracy; UA, User Accuracy.

3.2.2. Species-Specific Accuracies

The highest overall classification accuracy was achieved for the species Rhigozum
trichotomum (Rhitr) (99.1%), followed by Rosenia humilis (95.2%) and Salsola calluna (82.9%),
when using the ASD data as input for the classifier. The species that obtained the lowest
accuracy scores are Lycium cinereum (72.4%) and Pentzia spinescence (75.0%) (Table 2).

In terms of the remotely sensed data, the HS data set achieved the highest overall
classification accuracy for Helichrysum rosum (84.4%) and the poisonous species Geigeria
filifolia (83.8%). The two species that achieved the lowest accuracies using these data are
Pteronia glomerata (41.8%) and Salsola calluna (44.0%). When the remotely sensed MS bands
were used as predictor variables, the highest overall classification accuracy was achieved
for the encroaching shrub species Prosopis glandulosa (58.1%) and Pentzia spinescence (59.1%).
The discrimination between Helichrysum rosum (21.4%) and Salsola calluna (20.0%) was very
low using MS data.

3.2.3. Most Important Bands

The RF importance scores were used to enable the GRRF selection of a subset of
wavelengths to reduce the dimensionality of the input data and potentially improve classi-
fication accuracies. Using GRRF, 16 optimal wavelengths (Figure 2) for the ASD data and
12 optimal wavelengths (Figure 3) for the remotely sensed HS data were identified. Due to
its low dimensionality (four bands), no feature selection was performed on the MS data.
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Figure 3. Optimal remotely sensed hyperspectral (HS) wavelengths identified using guided regu-
larised random forest.

The most important ASD wavebands are in the ultraviolet, visible (VIS), red-edge, and
SWIR regions of the electromagnetic spectrum, with the majority occurring in the 350 to
450 nm region. Most of the wavebands selected from the remotely sensed HS imagery are
in the VIS and red-edge regions, with the majority being in the 398 to 430 nm range.

3.2.4. Classification Results Using Selected Bands

A second set of classification experiments were carried out using only the selected
ASD and HS bands as predictor variables in the RF classifier. When the 16 selected ASD
bands were used as input, the classification model yielded an OA of 91.7% (Figure 4). This
is a 6.9% increase in OA compared to when all the ASD bands were used as predictor
variables. An OA of 76.2% was achieved when the selected 12 remotely sensed HS bands
were used as predictor variables (Figure 5), which constitutes a 5.9% increase compared
to when all the HS bands were used. Both increases (for the ASD and HS data) were
statistically significant (p < 0.05) based the McNemar test.
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Figure 5. Percentage accuracy for discriminating between the 15 species using all 224 wavelengths
from the unmanned aerial vehicle hyperspectral data set vs only the selected 12 wavelengths as
predictor variables in the random forest classifier.

Correlations among the selected predictor variables were calculated per data set to
determine collinearity (see supplementary data). Pairs of highly correlated (R2 > 0.7)
variables were identified, after which one was manually discarded. This resulted in a set of
seven ASD bands, namely 351 nm, 366 nm, 386 nm, 394 nm 407 nm, 1431 nm, and 2031 nm.
When these seven bands were used as the only RF predictor variables, an OA of 92.2% was
achieved. Similarly, the predictor variables for the remotely sensed HS data were reduced
to three bands, namely 397.66 nm, 720.87 nm, and 723.6 nm. However, using these bands
as the only predictor variables produced an OA of 57.8%, which is substantially (18.4%)
lower than when the 12-band subset was used.
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4. Discussion

The purpose of collecting in situ ASD spectral measurements was (a) to develop a
database of spectral signatures for the dominant plants found at the study site and (b) to
establish a baseline against which the value of the two remotely sensed data sets for species
identification and mapping can be compared.

4.1. Classification of ASD Measurements, HR Imagery and MS Imagery

As can be expected, the remotely sensed HS imagery was less effective (compared
to the in situ ASD data) for discriminating among the 15 species. However, the level of
accuracy achieved with the remotely sensed HS imagery (up to 91.7% OA) is satisfactory
given the potential for wide-scale implementations. This level of accuracy is similar to
that reported by Ishida et al. [62], in which remotely sensed (UAV) HS imaging was used
in several vegetated areas [62], including mango orchards, to classify 14 different ground
objects such as grass, soil, man-made objects, sugarcane, rice fields, mango, ash, and
mahogany trees, and a few more plant species. Ishida et al. [62] found that shade had a
large impact on OAs, but managed to increase accuracy by training the machine learning
algorithm with shaded and illuminated samples separately [62]. Given the low height
of the shrub layer and the sparseness of Karoo vegetation, shade was not an issue in our
study. Our OAs are also similar to those of Yan et al. [63] in which a UAV multi-angle
remote sensing method was used to classify contrasting vegetation species, including maise,
soybeans, and weeds, and ash, mulberry and peach trees.

The remotely sensed MS imagery in this study was found to be ineffective for the
classification of plant species in our study area. Our OAs were lower than those reported
in comparable studies [64–66]. This is likely due to several factors, including the limited
vegetation growth and low biomass at the study site caused by the low rainfall received
during the study period. The reduced plant growth led to increased soil reflectance
through the shrub foliage, making it harder to classify the species accurately. Additionally,
the larger number of plant species in our study may have contributed to the lower OA
compared to other studies, as the greater species diversity likely resulted in increased
spectral overlap and reduced separability. Louargant et al. [67] also reported higher MS
(also UAV) accuracies (OA = 55.5%) than in this study, but their focus was on crop–weed
discrimination and not to classify a large number (>10) of species. Other studies on the
mapping of forest species using MS UAV systems achieved OAs of between 84% and
92% [68,69]. However, these studies involved only five classes or fewer classes and the
grouping of similar species, which likely accounts for the high accuracies. It is difficult to
compare our results to those of other studies as the specific species types and number, the
study sites, and the scales of implementation are very different.

The relatively large number (15) of plant species considered in this study resulted in
much spectral confusion. This confusion will likely increase if the species are in similar
phenological stages during the assessment period [66,69]. Following the example of Grybas
and Congalton [66], this study considered the most common plant species found in Upper
Karoo vegetation rather than a selection of a few very distinct species that exhibit the best
separation [70].

4.2. Species-Specific Accuracies

By using remotely sensed (UAV) HS data, this investigation succeeded in distinguish-
ing among 15 common species of Karoo shrubs with 76% accuracy. This holds attractive
prospects with the continuous development and commercialisation of UAV-HS systems
for vegetation mapping at the species level. The species Helichrysum rosum (84.4%) and
Geigeria filifolia (83.8%) were very well differentiated using the remotely sensed HS data.
This is promising for the automatic detection of encroaching and poisonous species. Sheep
poisoned by ingesting Geigeria filifolia give rise to “vermeersiekte”, also known as vomiting
disease. The poisoning occurs mainly in sheep and, to a lesser extent, in goats and cattle.
Massive outbreaks of this disease in sheep were reported in the Karoo in the past. More
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than a million sheep died in 1929/30, and as many as 50,000 died in 1954. Another large
outbreak of the disease occurred in 1981 [71]. It is vital for farmers to have access to tools
that can assist in identifying and monitoring this deadly species across their rangelands.

The two species that achieved the lowest OAs are Pteronia glomerata and Salsola calluna,
both of which have very small, semi-cylindrical or strongly keeled leaves attached close
to the branch. The structure of the leaves seems to adversely affect classification accuracy
when using the (HS and MS) UAV imagery. In contrast, when using the in situ ASD
bands as predictor variables, relatively high classification accuracies for these two species
were attained (Salsola calluna 83.3% and Pteronia glomerata 88.1%). More work is needed
to investigate if lower UAV flying heights will improve classification accuracies of these
species when remotely sensed (in particular HS) data are used as inputs for the classifier.

Other species that suffered from relatively low classification accuracies when the HS
remotely sensed images were used are Lycium cinereum, Ruschia intricata and Roepera lichten-
steiniana. All of these species are plants with succulent leaves, similar to Salsola calluna.
Succulent plants have developed naturally elicited protective compounds to mitigate UV
tissue damage and to protect them against UV stress [72–74]. The potential impacts of UV
light on plants include increased leaf colouration and thickness [75]. This discolouration of
leaves is often seen in Karoo plants such as Plintus karooicus, Ruschia intricata and Salsola
species with a grey-purple colour and they do not have the typical bright green leaves of
other plants [76]. Karoo plants have adapted to searing arid summers with leaves coated
in a waxy reflective sunscreen [77,78]. It is noticeable from the classification results of the
ASD data that the UV region in the 350 nm to 400 nm range is essential for distinguishing
between these succulent species. This range is particularly significant because it encom-
passes the UV-A and part of the UV-B spectrum, where many protective compounds in
succulent plants are most active. These compounds absorb UV radiation, leading to distinct
spectral signatures that aid in species differentiation. The poor discrimination of these
species by the remotely sensed HS data is attributed to the fact that the HS camera does not
cover wavelengths shorter than 398 nm. Exploring an even broader UV range, including
wavelengths below 350 nm, could potentially enhance species discrimination by capturing
additional spectral features related to their UV protective mechanisms.

4.3. Most Important Bands

The GRRF method demonstrated its efficiency and effectiveness in improving the
spectral discrimination of common Karoo shrub and grass species. The results showed
that reducing the dimensionality of the in situ ASD or remotely sensed HS data to 12
and 16 bands, respectively, improved the spectral discrimination by up to 7%. This im-
provement in classification accuracy can be attributed to the reduction in dimensionality,
which mitigates the risk of overfitting. Overfitting occurs when the number of predictor
variables (bands) is large relative to the number of samples, a phenomenon known as the
Hughes effect.

By reducing the number of bands, the GRRF method ensured that the most crucial
spectral information was retained while reducing the risk of overfitting. The subset of
12 ASD bands was further reduced to seven bands, maintaining a high classification
accuracy of 92.2%. However, when the 12-band, remotely sensed HS subset was reduced,
the classification accuracy deteriorated, suggesting that the 12 bands identified by GRRF
are the optimal subset for the HS data. The GRRF method effectively addressed the issue of
high-dimensional data by reducing the number of bands while retaining important spectral
information, thereby improving the spectral discrimination of common Karoo shrub and
grass species. The results also highlight the importance of considering the Hughes effect
when working with high-dimensional data.

In comparison, Mureriwa et al. [19] found that the spectral separability of Prosopis
glandulosa from co-existing species improved when using a subset of 20 bands from a field
spectral measurement. While their study focused on different plant species, it is interesting
to note that a larger number of bands was found to be sufficient for separability compared
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to our study. This highlights the importance of considering the unique characteristics of
each study area when determining the optimal number of bands.

The GRRF method’s ability to reduce dimensionality and improve classification ac-
curacy demonstrates its potential for broad applicability across various ecological and
remote sensing studies. However, it is critical to recognise that the optimal number of
bands may vary depending on each study area’s specific characteristics, such as species
diversity, environmental conditions, seasonal changes in species, and the spectral properties
of the target vegetation. This adaptability is a strength of the GRRF method, as it allows
researchers to tailor the band selection process to the unique requirements of their study,
thereby maximising classification accuracy and minimising overfitting.

Although the Karoo shrub and grass species were the focus of our study, other ecosys-
tems and vegetation types can apply the principles underlying the GRRF method. Future
research should explore the application of the GRRF method to different vegetation types to
further validate its universal applicability and identify any necessary adaptations. By con-
sidering each study area’s unique features, researchers can ensure that the GRRF method
remains a useful tool for spectral discrimination and classification in high-dimensional
data situations.

4.4. Recommendations and Limitations

The methods used in this study can be applied to all Karoo rangelands, as the plant
species considered have a wide distribution. To the authors knowledge, this is the first
study to establish a database of spectral profiles for the dominant Karoo plant species. It is
also the first to evaluate the performance of remotely sensed (HS-MS UAV) imagery for
discriminating among these species. The classifications using the in situ ASD data provided
a suitable benchmark against which the classifications of the remotely sensed data could
be compared.

A limiting factor in the study is that vegetation growth was weak and biomass low
at the study site because of the low rainfall received during the study period. The low
rainfall curtailed plant growth, and so increased soil (background) reflectance through
the shrub foliage. It is important to note that the more plant species involved, the lower
the classification accuracy will typically decrease as the number of targeted plant species
increases. The more diverse the vegetation, the more challenging it is to distinguish
one species from another based on spectral data. This can result in overlapping spectral
signatures and confusion in the classification process.

Additionally, the presence of many species can increase the background noise and
reduce the spectral contrast, making it harder to distinguish one from another. The presence
of many species can also increase the complexity of the underlying structure of the data,
making it more challenging to find patterns that can be used to classify the different species
accurately. By grouping plant species with similar nutritional values for animals, the
OA can be improved. This approach is based on the idea that plant species with similar
nutritional profiles will have more similar spectral signatures, reducing the complexity
of the classification process. Instead of focussing on individual species, which can have
overlapping spectral signatures, we can categorise plant species into broader value classes
based on their nutritional content and grazing value. This can potentially reduce the
classification process’s complexity and accuracy by focussing on broader categories rather
than individual species.

To effectively implement this approach, one could categorise plant species into value
classes based on their nutritional content and grazing value. This would involve grouping
plant species that share similar nutritional profiles into the same value class. Spectral
signature analysis can then be used to scrutinises the spectral signatures of these value
classes to pinpoint distinct patterns suitable for classification. For instance, we can classify
palatable grass species or Karoo shrub species based on their comparable grazing value
and palatability values. This approach leverages the similarities within each value class to
improve classification accuracy by reducing the spectral overlap and enhancing the dis-
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tinctiveness of the spectral signatures within each class. As a safety precaution, most UAV
systems are not operated below 50 metres above the ground. However, it is recommended
that future studies evaluate whether lower than 50 metre flying heights will increase the
classification accuracy of shrubs with tiny leaves, such as Stipagrostis obtusa. However,
pilots ought to guard against varying flying heights. Such variations may occur due to
wind gusts, changing elevation and flight-path corrections. Such changes impact resolution
and result in orthorectification issues if the image overlap is insufficient [79,80]. At lower
flying heights such variations might have a larger impact. Experience gained from this
study suggests that a minimum frontal overlap of 80% and 70% side overlap at a flight
height of 50 metres above the ground is recommendable.

Although UAV systems can overcome most of the limitations of satellites (e.g., lower
resolution, timespans between images, and cloud cover), they are not without shortcomings.
Due to the forward motion of a UAV platform, the captured images can be blurred due
to strong winds or gusts [81–83]. Moreover, UAVs cannot operate on days with winds
exceeding 12 m/s. The short battery life of UAVs is also a significant restriction, with
only short 15 min flight times being achievable when carrying heavy payloads such as an
HS camera. The use of fixed-wing UAVs which can cover larger areas in a single flight
is advisable. There is, however, the prospect that new generations of HS cameras will be
much smaller and lighter.

An inherent limitation of this study is that, due to the low rainfall during the study
period, only one survey was carried out. The rainfall was insufficiently spread across the
four seasons of the study period to consider plant phenology, as plants only reacted and
showed growth after the summer rains. It is likely that the influence of plant phenology
would increase OAs for certain species at certain times of the year. Eriocephalus spp.
(completely white when in seed) and Ruschia spp. (bright pink flowers) are cases in point.
These phenological changes significantly alter the spectral signatures of the plants, which
can enhance or reduce the separability of species in remote sensing data.

Flowering and seeding stages can cause distinct spectral variations due to changes
in colour, reflectance, and other optical properties. For example, the bright pink flowers
of Ruschia spp. increase reflectance in the red and near-infrared regions, while the white
seeds of Eriocephalus spp. reflect more light across the visible spectrum. These changes
can be critical for improving discrimination accuracy among plant species during remote
sensing assessments.

Assessments of plant phenological changes over the four climatic seasons could help
to determine the ideal period for obtaining the highest discrimination accuracy among the
plant species during normal rainfall conditions. This notwithstanding, Pfitzner et al. [51]
used remotely sensed HS imagery to monitor non-native grasses and concluded that
maximum separability was not achievable under a specific phenological or seasonal stage.
They found that species responses to a significant rainfall event or to disturbances by
grazing animals resulted in maximum separability.

It is vital that future cost-effective MS sensors for UAVs target wavebands in the VIS,
red-edge, and SWIR regions. As determined in this study, wavebands between 350 and
450 nm are particularly useful for Karoo plant species differentiation. It is noteworthy that
the wavebands between 350 nm and 397 nm are currently not covered by most HS or MS
sensors that UAVs can carry.

In this study, we implemented a GRRF, filter feature selection method to reduce the
dimensionality of the ASD and HS data. It would be worthwhile for future studies to test
additional feature selection algorithms, such as the Boruta wrapper, which have been very
effective in previous studies [84,85].

5. Conclusions

By employing spectroscopic methods, this study aimed to evaluate the effectiveness
of remotely sensed, UAV-based data for differentiating among Karoo plant species. The
ability to map plants using remotely sensed imagery will aid ecological impact surveys
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required to assess the sustainability of existing rangeland management practises. Using
the ASD data, we identified important wavebands between 350 and 400 nm that are not
covered by either the HS or MS sensor. Current UAV HS sensors generally only detect
wavelengths of 400 nm or longer. This explains the lower (compared to the ASD data)
OA achieved when the remotely sensed HS imagery was used as input for the classifier.
Succulent plant species were especially poorly differentiated using the HS imagery. High
(>90%) OAs are vital for operational implementations, particularly if the methodology
developed in this study is replicated in the neighbouring succulent Karoo vegetation type,
which consists primarily of succulent shrub species and is one of the world’s most diverse
plant communities. The MS imagery was found to be unsuitable for species discrimination
in the Karoo because it does not adequately represent the critical 398 and 430 nm region of
the electromagnetic spectrum. New airborne MS sensors should preferably focus on these
specific wavebands to increase the value of MS sensors for plant species differentiation in
the Karoo environment.

The vegetation condition in the study site was not in optimal condition during the
study period due to the meagre rainfall. Yet, despite the poor conditions and high soil
background noise, the classifications performed remarkably well. Future assessments
may provide clarity on whether if higher accuracies can be obtained under better climatic
conditions. The high OAs achieved with only a few narrow bands underlines the potential
of HS remote sensing as a tool for mapping indicator grass and Karoo shrub species.

Plant ecologists have long argued that small-scale or discontinuous observations
are inadequate to determine the accurate spatial distribution of vegetation species over
large spatial scales [18]. Vegetation classification and monitoring can now be carried out
over larger and inaccessible areas by using UAVs. The remote monitoring of vegetation
composition can assist in managing extensive Karoo rangelands more sustainably. This
can help prevent livestock deaths by identifying outbreaks of poisonous plant species. It
can also provide a safer, less expensive and less time-consuming method for land users
and researchers to better understand the changes in vegetation composition due to land
degradation, high stocking densities (overgrazing), locust outbreaks, and climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16203869/s1, Supplementary data.

Author Contributions: Conceptualization, C.J.H. and A.v.N.; methodology, C.J.H.; formal analysis,
C.J.H.; investigation, C.J.H.; writing—original draft preparation, C.J.H.; writing—review and editing,
A.v.N. and C.J.H.; visualisation, C.J.H.; supervision, A.v.N.; project administration, C.J.H.; funding
acquisition, A.v.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work is based on the research supported in part by the National Research Foundation
of South Africa (Grant Numbers: 142438).

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: The authors thank the Department of Agriculture, Environmental Affairs,
Land Reform and Rural Development (Northern Cape province) for maintaining and continuously
monitoring this valuable long-term grazing trial. The care for and management of the trial by Tommie
Buys, the research station manager, is also recognised. We also thank Pieter de Necker for assisting
with language editing an early version of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An

International Terminology for Grazing Lands and Grazing Animals. Grass Forage Sci. 2011, 66, 2–28. [CrossRef]
2. Zerga, B. Rangeland Degradation and Restoration: A Global Perspective. Point J. Agric. Biotechnol. Res. 2015, 1, 37–54.

https://www.mdpi.com/article/10.3390/rs16203869/s1
https://www.mdpi.com/article/10.3390/rs16203869/s1
https://doi.org/10.1111/j.1365-2494.2010.00780.x


Remote Sens. 2024, 16, 3869 17 of 20

3. Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Hanson, J.D.; Frank, A.B.; Phillips, R.L. Soil Response to Long-Term Grazing in the
Northern Great Plains of North America. Agric. Ecosyst. Environ. 2006, 115, 270–276. [CrossRef]

4. Stocking, M.A.; Mumaghan, N. Handbook for the Field Assessment of Land Degradation. London: Earthscan In (O’Higgin, RC,
Eds), Savannah Woodland Degradation Assessments in Ghana: Integrating Ecological Indicators with Local Perceptions. Earth
Environ. 2001, 3, 246–281.

5. Schwilch, G.; Hessel, R.; Verzandvoort, S. (Eds.) Desire for Greener Land. In Options for Sustainable Land Management in Drylands;
University of Bern, Centre for Development and Environment CDE: Bern, Switzerland; Alterra: Wageningen, The Netherlands;
ISRIC—World Soil Information: Wageningen, The Netherlands; CTA—Technical Centre for Agricultural and Rural Cooperation:
Wageningen, The Netherlands, 2012.

6. Nachtergaele, F.; Petri, M.; Biancalani, R.; van Lynden, G.; van Velthuizen, H.; Bloise, M. Global Land Degradation Information System
(GLADIS). Beta Version. An Information Database for Land Degradation Assessment at Global Level; Land Degradation Assessment in
Drylands Technical Report; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; Volume 17.

7. Von Braun, J.; Gatzweiler, F.W. Marginality: Addressing the Nexus of Poverty, Exclusion and Ecology; Springer Nature: Berlin,
Germany, 2014.

8. Barbier, E.B.; Hochard, J.P. Does Land Degradation Increase Poverty in Developing Countries? PLoS ONE 2016, 11, e0152973.
[CrossRef]

9. Barbier, E.B.; Hochard, J.P. Land Degradation and Poverty. Nat. Sustain. 2018, 1, 623–631. [CrossRef]
10. Hoffmann, T.; Todd, S.; Ntshona, Z.; Turner, S. Land Degradation in South Africa; University of Cape Town: Cape Town, South

Africa, 2014.
11. Middleton, N.; Thomas, D. World Atlas of Desertification, 2nd ed.; Arnold, Hodder Headline, PLC: London, UK, 1997;

ISBN 0340691662.
12. Hoffman, T.; Ashwell, A. Nature Divided: Land Degradation in South Africa; University of Cape Town Press: Cape Town, South

Africa, 2001; ISBN 1919713549.
13. Mani, S.; Osborne, C.P.; Cleaver, F. Land Degradation in South Africa: Justice and Climate Change in Tension. People Nat. 2021, 3,

978–989. [CrossRef]
14. Lioubimtseva, E.; Henebry, G.M. Climate and Environmental Change in Arid Central Asia: Impacts, Vulnerability, and Adapta-

tions. J. Arid Environ. 2009, 73, 963–977. [CrossRef]
15. MacKellar, N.; New, M.; Jack, C. Observed and Modelled Trends in Rainfall and Temperature for South Africa: 1960–2010. S. Afr.

J. Sci. 2014, 110, 1–13. [CrossRef]
16. Barry, P.S.; Mendenhall, J.; Jarecke, P.; Folkman, M.; Pearlman, J.; Markham, B. EO-1 Hyperion Hyperspectral Aggregation and

Comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+. In Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1648–1651.

17. Johansen, K.; Phinn, S.; Dixon, I.; Douglas, M.; Lowry, J. Comparison of Image and Rapid Field Assessments of Riparian Zone
Condition in Australian Tropical Savannas. For. Ecol. Manag. 2007, 240, 42–60. [CrossRef]

18. Huylenbroeck, L.; Laslier, M.; Dufour, S.; Georges, B.; Lejeune, P.; Michez, A. Using Remote Sensing to Characterize Riparian
Vegetation: A Review of Available Tools and Perspectives for Managers. J. Environ. Manag. 2020, 267, 110652. [CrossRef]
[PubMed]

19. Mureriwa, N.; Adam, E.; Sahu, A.; Tesfamichael, S. Examining the Spectral Separability of Prosopis Glandulosa from Co-Existent
Species Using Field Spectral Measurement and Guided Regularized Random Forest. Remote Sens. 2016, 8, 144. [CrossRef]

20. Crisóstomo de Castro Filho, H.; Abílio de Carvalho Júnior, O.; Ferreira de Carvalho, O.L.; Pozzobon de Bem, P.; dos Santos de
Moura, R.; Olino de Albuquerque, A.; Silva, C.R.; Ferreira, P.H.G.; Guimarães, R.F.; Gomes, R.A.T. Rice Crop Detection Using
LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series. Remote Sens. 2020, 12, 2655. [CrossRef]

21. Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al.
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote
Sens. 2017, 9, 185. [CrossRef]

22. Cord, A.F.; Meentemeyer, R.K.; Leitão, P.J.; Václavík, T. Modelling Species Distributions with Remote Sensing Data: Bridging
Disciplinary Perspectives. J. Biogeogr. 2013, 40, 2226–2227. [CrossRef]

23. Yang, D.; Meng, R.; Morrison, B.D.; McMahon, A.; Hantson, W.; Hayes, D.J.; Breen, A.L.; Salmon, V.G.; Serbin, S.P. A Multi-Sensor
Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra.
Remote Sens. 2020, 12, 2638. [CrossRef]

24. van den Berg, E.C.; Kotze, I.; Beukes, H. Detection, Quantification and Monitoring of Prosopis in the Northern Cape Province of
South Africa Using Remote Sensing and GIS. S. Afr. J. Geomat. 2013, 2, 68–81.

25. Hudak, A.T.; Wessman, C.A. Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in
South African Savanna. Remote Sens. Environ. 1998, 66, 317–330. [CrossRef]

26. Symeonakis, E.; Higginbottom, T. Bush encroachment monitoring using multi-temporal landsat data and random forests. Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 10, 29–35. [CrossRef]

https://doi.org/10.1016/j.agee.2005.12.015
https://doi.org/10.1371/journal.pone.0152973
https://doi.org/10.1038/s41893-018-0155-4
https://doi.org/10.1002/pan3.10260
https://doi.org/10.1016/j.jaridenv.2009.04.022
https://doi.org/10.1590/sajs.2014/20130353
https://doi.org/10.1016/j.foreco.2006.12.015
https://doi.org/10.1016/j.jenvman.2020.110652
https://www.ncbi.nlm.nih.gov/pubmed/32349959
https://doi.org/10.3390/rs8020144
https://doi.org/10.3390/rs12162655
https://doi.org/10.3390/rs9030185
https://doi.org/10.1111/jbi.12199
https://doi.org/10.3390/rs12162638
https://doi.org/10.1016/S0034-4257(98)00078-9
https://doi.org/10.5194/isprsarchives-XL-2-29-2014


Remote Sens. 2024, 16, 3869 18 of 20

27. Ludwig, A.; Meyer, H.; Nauss, T. Automatic Classification of Google Earth Images for a Larger Scale Monitoring of Bush
Encroachment in South Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 89–94. [CrossRef]

28. Shekede, M.D.; Murwira, A.; Masocha, M. Wavelet-Based Detection of Bush Encroachment in a Savanna Using Multi-Temporal
Aerial Photographs and Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 209–216. [CrossRef]

29. Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping Cropping Intensity in China Using Time Series Landsat and
Sentinel-2 Images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [CrossRef]

30. Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967.
[CrossRef]

31. Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J.
Remote Sens. 2007, 28, 823–870. [CrossRef]

32. AbdelRahman, M.A.E.; Afifi, A.A.; Scopa, A. A Time Series Investigation to Assess Climate Change and Anthropogenic Impacts
on Quantitative Land Degradation in the North Delta, Egypt. ISPRS Int. J. Geoinf. 2021, 11, 30. [CrossRef]

33. Kumar, A.; Manjunath, K.R.; Bala, R.; Sud, R.K.; Singh, R.D.; Panigrahy, S. Field Hyperspectral Data Analysis for Discriminating
Spectral Behavior of Tea Plantations under Various Management Practices. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 352–359.
[CrossRef]

34. Mudereri, B.T.; Dube, T.; Niassy, S.; Kimathi, E.; Landmann, T.; Khan, Z.; Abdel-Rahman, E.M. Is It Possible to Discern Striga
Weed (Striga Hermonthica) Infestation Levels in Maize Agro-Ecological Systems Using in-Situ Spectroscopy? Int. J. Appl. Earth
Obs. Geoinf. 2020, 85, 102008. [CrossRef]

35. Hughes, G. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [CrossRef]
36. Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-Based Crop Classification with Landsat-MODIS Enhanced Time-Series Data. Remote

Sens. 2015, 7, 16091–16107. [CrossRef]
37. Walsh, O.S.; Marshall, J.M.; Nambi, E.; Jackson, C.A.; Ansah, E.O.; Lamichhane, R.; McClintick-Chess, J.; Bautista, F. Wheat Yield

and Protein Estimation with Handheld and Unmanned Aerial Vehicle-Mounted Sensors. Agronomy 2023, 13, 207. [CrossRef]
38. Neupane, K.; Baysal-Gurel, F. Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A

Review. Remote Sens. 2021, 13, 3841. [CrossRef]
39. Nebiker, S.; Lack, N.; Abächerli, M.; Läderach, S. Light-Weight Multispectral UAV Sensors and Their Capabilities for Predicting

Grain Yield and Detecting Plant Diseases. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 963–970. [CrossRef]
40. Song, B.; Park, K. Detection of Aquatic Plants Using Multispectral UAV Imagery and Vegetation Index. Remote Sens. 2020, 12, 387.

[CrossRef]
41. Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An Automatic Object-Based Method for Optimal Thresholding in UAV Images:

Application for Vegetation Detection in Herbaceous Crops. Comput. Electron. Agric. 2015, 114, 43–52. [CrossRef]
42. Carvajal-Ramírez, F.; da Silva, J.R.M.; Agüera-Vega, F.; Martínez-Carricondo, P.; Serrano, J.; Moral, F.J. Evaluation of Fire Severity

Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV. Remote Sens. 2019, 11, 993. [CrossRef]
43. Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K.

Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops Using
Small UAVs. Remote Sens. 2019, 11, 112. [CrossRef]

44. González-Jaramillo, V.; Fries, A.; Bendix, J. AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and
Multispectral Images Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2019, 11, 1413. [CrossRef]

45. Hill, D.J.; Tarasoff, C.; Whitworth, G.E.; Baron, J.; Bradshaw, J.L.; Church, J.S. Utility of Unmanned Aerial Vehicles for Mapping
Invasive Plant Species: A Case Study on Yellow Flag Iris (Iris pseudacorus L.). Int. J. Remote Sens. 2017, 38, 2083–2105. [CrossRef]

46. de Castro, A.I.; Peña, J.M.; Torres-Sánchez, J.; Jiménez-Brenes, F.M.; Valencia-Gredilla, F.; Recasens, J.; López-Granados, F.
Mapping Cynodon Dactylon Infesting Cover Crops with an Automatic Decision Tree-OBIA Procedure and UAV Imagery for
Precision Viticulture. Remote Sens. 2020, 12, 56. [CrossRef]

47. Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Pearse, G.D. Early Detection of Invasive Exotic Trees Using UAV and Manned
Aircraft Multispectral and LiDAR Data. Remote Sens. 2019, 11, 1812. [CrossRef]

48. Marques, P.; Pádua, L.; Adão, T.; Hruška, J.; Peres, E.; Sousa, A.; Sousa, J.J. UAV-Based Automatic Detection and Monitoring of
Chestnut Trees. Remote Sens. 2019, 11, 855. [CrossRef]

49. Müllerová, J.; Pergl, J.; Pyšek, P. Remote Sensing as a Tool for Monitoring Plant Invasions: Testing the Effects of Data Resolution
and Image Classification Approach on the Detection of a Model Plant Species Heracleum Mantegazzianum (Giant Hogweed). Int.
J. Appl. Earth Obs. Geoinf. 2013, 25, 55–65. [CrossRef]

50. Mucina, L.; Rutherford, M.C.; Palmer, A.R.; Milton, S.J.; Scott, L.; Lloyd, J.W.; Van der Merwe, B.; Hoare, D.B.; Bezuidenhout, H.;
Vlok, J.H.J. Nama-Karoo Biome. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 2006, 19, 324–347.

51. Pfitzner, K.; Bartolo, R.; Whiteside, T.; Loewensteiner, D.; Esparon, A. Hyperspectral Monitoring of Non-Native Tropical Grasses
over Phenological Seasons. Remote Sens. 2021, 13, 738. [CrossRef]

52. Meyer, T.C. Weikapasiteitstudies Op Veld in Die Ariede Karoo. Master’s Thesis, University of the Orange Free State, Bloemfontein,
South Africa, 1992, unpublished.

53. O’connor, T.G.; Roux, P.W. Vegetation Changes (1949–71) in a Semi-Arid, Grassy Dwarf Shrubland in the Karoo, South Africa:
Influence of Rainfall Variability and Grazing by Sheep. J. Appl. Ecol. 1995, 32, 612–626. [CrossRef]

https://doi.org/10.1016/j.jag.2016.03.003
https://doi.org/10.1016/j.jag.2014.08.019
https://doi.org/10.1016/j.rse.2019.111624
https://doi.org/10.3390/rs9090967
https://doi.org/10.1080/01431160600746456
https://doi.org/10.3390/ijgi11010030
https://doi.org/10.1016/j.jag.2012.10.006
https://doi.org/10.1016/j.jag.2019.102008
https://doi.org/10.1109/TIT.1968.1054102
https://doi.org/10.3390/rs71215820
https://doi.org/10.3390/agronomy13010207
https://doi.org/10.3390/rs13193841
https://doi.org/10.5194/isprs-archives-XLI-B1-963-2016
https://doi.org/10.3390/rs12030387
https://doi.org/10.1016/j.compag.2015.03.019
https://doi.org/10.3390/rs11090993
https://doi.org/10.3390/rs11020112
https://doi.org/10.3390/rs11121413
https://doi.org/10.1080/01431161.2016.1264030
https://doi.org/10.3390/rs12010056
https://doi.org/10.3390/rs11151812
https://doi.org/10.3390/rs11070855
https://doi.org/10.1016/j.jag.2013.03.004
https://doi.org/10.3390/rs13040738
https://doi.org/10.2307/2404657


Remote Sens. 2024, 16, 3869 19 of 20

54. Milton, S.J.; Dean, W.R.J. Anthropogenic Impacts and Implications for Ecological Restoration in the Karoo, South Africa.
Anthropocene 2021, 36, 100307. [CrossRef]

55. Van der Merwe, H.; Du Toit, J.C.O.; Van den Berg, L.; O’Connor, T.G. Impact of Sheep Grazing Intensity on Vegetation at the Arid
Karoo Stocking Rate Trial after 27 Years, Carnarvon, South Africa. J. Arid Environ. 2018, 155, 36–45. [CrossRef]

56. Trimble Trimble R8 GNSS System. In Trimble Datasheet; Trimble Navigation Limited: Westminster, CO, USA, 2012.
57. Sibanda, M.; Mutanga, O.; Rouget, M.; Odindi, J. Exploring the Potential of in Situ Hyperspectral Data and Multivariate

Techniques in Discriminating Different Fertilizer Treatments in Grasslands. J. Appl. Remote Sens. 2015, 9, 096033. [CrossRef]
58. Olsson, P.-O.; Vivekar, A.; Adler, K.; Garcia Millan, V.E.; Koc, A.; Alamrani, M.; Eklundh, L. Radiometric Correction of

Multispectral Uas Images: Evaluating the Accuracy of the Parrot Sequoia Camera and Sunshine Sensor. Remote Sens. 2021, 13, 577.
[CrossRef]

59. Thomson, E.R.; Spiegel, M.P.; Althuizen, I.H.J.; Bass, P.; Chen, S.; Chmurzynski, A.; Halbritter, A.H.; Henn, J.J.; Jónsdóttir, I.S.;
Klanderud, K.; et al. Multiscale Mapping of Plant Functional Groups and Plant Traits in the High Arctic Using Field Spectroscopy,
UAV Imagery and Sentinel-2A Data. Environ. Res. Lett. 2021, 16, 055006. [CrossRef]

60. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
61. McNemar, Q. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika 1947,

12, 153–157. [CrossRef] [PubMed]
62. Ishida, T.; Kurihara, J.; Viray, F.A.; Namuco, S.B.; Paringit, E.C.; Perez, G.J.; Takahashi, Y.; Marciano, J.J., Jr. A Novel Approach for

Vegetation Classification Using UAV-Based Hyperspectral Imaging. Comput. Electron. Agric. 2018, 144, 80–85. [CrossRef]
63. Yan, Y.; Deng, L.; Liu, X.; Zhu, L. Application of UAV-Based Multi-Angle Hyperspectral Remote Sensing in Fine Vegetation

Classification. Remote Sens. 2019, 11, 2753. [CrossRef]
64. Franklin, S.E.; Ahmed, O.S. Deciduous Tree Species Classification Using Object-Based Analysis and Machine Learning with

Unmanned Aerial Vehicle Multispectral Data. Int. J. Remote Sens. 2018, 39, 5236–5245. [CrossRef]
65. Gini, R.; Sona, G.; Ronchetti, G.; Passoni, D.; Pinto, L. Improving Tree Species Classification Using UAS Multispectral Images and

Texture Measures. ISPRS Int. J. Geoinf. 2018, 7, 315. [CrossRef]
66. Grybas, H.; Congalton, R.G. A Comparison of Multi-Temporal RGB and Multispectral UAS Imagery for Tree Species Classification

in Heterogeneous New Hampshire Forests. Remote Sens. 2021, 13, 2631. [CrossRef]
67. Louargant, M.; Villette, S.; Jones, G.; Vigneau, N.; Paoli, J.-N.; Gée, C. Weed Detection by UAV: Simulation of the Impact of

Spectral Mixing in Multispectral Images. Precis. Agric. 2017, 18, 932–951. [CrossRef]
68. Lisein, J.; Michez, A.; Claessens, H.; Lejeune, P. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial

System Imagery. PLoS ONE 2015, 10, e0141006. [CrossRef]
69. Michez, A.; Piégay, H.; Jonathan, L.; Claessens, H.; Lejeune, P. Mapping of Riparian Invasive Species with Supervised Classification

of Unmanned Aerial System (UAS) Imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 88–94. [CrossRef]
70. Weil, G.; Lensky, I.M.; Resheff, Y.S.; Levin, N. Optimizing the Timing of Unmanned Aerial Vehicle Image Acquisition for Applied

Mapping of Woody Vegetation Species Using Feature Selection. Remote Sens. 2017, 9, 1130. [CrossRef]
71. Joubert, J.P.J. Section of Toxicology on Geigeria ornativa. J. S. Afr. Vet. Assoc. 1983, 54, 255. [PubMed]
72. Stapleton, A.E. Ultraviolet Radiation and Plants: Burning Questions. Plant Cell 1992, 4, 1353. [CrossRef]
73. Brosché, M.; Strid, Å. Molecular Events Following Perception of Ultraviolet-B Radiation by Plants. Physiol. Plant. 2003, 117, 1–10.

[CrossRef]
74. Fedina, I.; Velitchkova, M.; Georgieva, K.; Demirevska, K.; Simova, L. UV-B Response of Green and Etiolated Barley Seedlings.

Biol. Plant. 2007, 51, 699–706. [CrossRef]
75. Valenta, K.; Dimac-Stohl, K.; Baines, F.; Smith, T.; Piotrowski, G.; Hill, N.; Kuppler, J.; Nevo, O. Ultraviolet Radiation Changes

Plant Color. BMC Plant Biol. 2020, 20, 253. [CrossRef]
76. Court, D. Succulent Flora of Southern Africa (Revised Edition), 3rd ed.; Struik Nature: Cape Town, South Africa, 2010.
77. Gibson, A.C. Succulent Photosynthetic Organs. In Structure-Function Relations of Warm Desert Plants; Springer: Berlin/Heidelberg,

Germany, 1996; pp. 117–142.
78. Jacobs, J.F.; Koper, G.J.M.; Ursem, W.N.J. UV Protective Coatings: A Botanical Approach. Prog. Org. Coat. 2007, 58, 166–171.

[CrossRef]
79. Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm.

Remote Sens. 2014, 92, 79–97. [CrossRef]
80. Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of

Forest Structure. Remote Sens. 2015, 7, 13895–13920. [CrossRef]
81. Feroz, S.; Abu Dabous, S. Uav-Based Remote Sensing Applications for Bridge Condition Assessment. Remote Sens. 2021, 13, 1809.

[CrossRef]
82. Oktay, T.; Celik, H.; Turkmen, I. Maximizing Autonomous Performance of Fixed-Wing Unmanned Aerial Vehicle to Reduce

Motion Blur in Taken Images. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2018, 232, 857–868. [CrossRef]
83. Sieberth, T.; Wackrow, R.; Chandler, J.H. UAV Image Blur–Its Influence and Ways to Correct It. Int. Arch. Photogramm. Remote

Sens. Spat. Inf. Sci. 2015, 40, 33–39. [CrossRef]

https://doi.org/10.1016/j.ancene.2021.100307
https://doi.org/10.1016/j.jaridenv.2018.02.005
https://doi.org/10.1117/1.JRS.9.096033
https://doi.org/10.3390/rs13040577
https://doi.org/10.1088/1748-9326/abf464
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF02295996
https://www.ncbi.nlm.nih.gov/pubmed/20254758
https://doi.org/10.1016/j.compag.2017.11.027
https://doi.org/10.3390/rs11232753
https://doi.org/10.1080/01431161.2017.1363442
https://doi.org/10.3390/ijgi7080315
https://doi.org/10.3390/rs13132631
https://doi.org/10.1007/s11119-017-9528-3
https://doi.org/10.1371/journal.pone.0141006
https://doi.org/10.1016/j.jag.2015.06.014
https://doi.org/10.3390/rs9111130
https://www.ncbi.nlm.nih.gov/pubmed/6668576
https://doi.org/10.2307/3869507
https://doi.org/10.1034/j.1399-3054.2003.1170101.x
https://doi.org/10.1007/s10535-007-0145-2
https://doi.org/10.1186/s12870-020-02471-8
https://doi.org/10.1016/j.porgcoat.2006.08.023
https://doi.org/10.1016/j.isprsjprs.2014.02.013
https://doi.org/10.3390/rs71013895
https://doi.org/10.3390/rs13091809
https://doi.org/10.1177/0959651818765027
https://doi.org/10.5194/isprsarchives-XL-1-W4-33-2015


Remote Sens. 2024, 16, 3869 20 of 20

84. Poona, N.K.; Ismail, R. Developing Optimized Spectral Indices Using Machine Learning to Model Fusarium Circinatum Stress in
Pinus Radiata Seedlings. J. Appl. Remote Sens. 2019, 13, 34515. [CrossRef]

85. Poona, N.K.; Ismail, R. Using Boruta-Selected Spectroscopic Wavebands for the Asymptomatic Detection of Fusarium Circinatum
Stress. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3764–3772. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1117/1.JRS.13.034515
https://doi.org/10.1109/JSTARS.2014.2329763

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection and Preparation 
	Plant Survey 
	In Situ Hyperspectral Data Acquisition (Spectroradiometer) 
	Camera Used in the Multispectral Remote Sensing Surveys 
	Camera Used in the Hyperspectral Remote Sensing Surveys 
	Spectroscopy and UAV Data Analysis 

	Results 
	Spectral Responses of Plant Species 
	Classification Accuracies and Variable Importance 
	Overall Accuracies 
	Species-Specific Accuracies 
	Most Important Bands 
	Classification Results Using Selected Bands 


	Discussion 
	Classification of ASD Measurements, HR Imagery and MS Imagery 
	Species-Specific Accuracies 
	Most Important Bands 
	Recommendations and Limitations 

	Conclusions 
	References

