Kernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023)
Abstract
:1. Introduction
2. Geological Setting
3. Methodology
3.1. Seismic Data and Catalog
3.2. Use of Kernel Density Estimation for the Analysis of Seismicity
- Geostatistical estimation approach. The most frequently used method is kriging, which predicts unknown values at unmeasured locations by utilizing the spatial correlation of known data points, based on a variogram model (e.g., [39,40,41]). Cokriging, which is an extension of kriging, simultaneously estimates multiple correlated variables (covariates) at unmeasured locations by incorporating information from secondary variables to improve the accuracy of estimates (e.g., [42]). And, based on the interpolation, inverse distance weighting (IDW) estimates unknown values at unmeasured locations by giving greater weight to nearby points based on the inverse of their distances (e.g., [43,44]).
- Machine learning methods are integrated with geostatistical methods to analyze and model spatial data, enhancing the prediction of spatial phenomena and improving resource estimation by using historical data and complex spatial relationships. A series of application examples in seismology are reviewed in [45]. The most known methods are the neural networking (e.g., [46,47]), logic or decision trees and random forest (e.g., [48,49,50]), and the support vector machine (SVM) (e.g., [51,52]).
- Density-based methods (e.g., [53,54]). These include point density analysis, which is a clustering algorithm that identifies groups (clusters) of closely packed points (events) based on their local density, enabling the detection of significant areas of activity while effectively handling noise and outliers. Kernel density estimation (KDE) methods estimate the probability density function of seismic events by placing a smooth kernel over each data point and adding them to create a continuous surface, allowing for the visualization of event concentrations and patterns without making strict assumptions about the data distribution.
3.3. Profiles Along the EAFZ
4. Results and Interpretations
4.1. Seismic Distribution by Depth and Delimited Layers
4.2. Point Clouds by Layer
4.3. Kernel Density Maps by Layer
4.4. Seismicity Profiles
5. Discussion
5.1. Seismicity and Geology of the EAFZ
5.2. Evaluation of the Method and Comparison of AFAD and Lomax Datasets Maps
- Fundamentals and limitations of the kernel technique: One of the primary limitations of all KDE methods is that they produce an image-based representation of seismic data, which requires expert interpretation. Another limitation of this new technique is the determination of the depth range of the layers based on the seismicity distribution, which should ideally be performed by an expert.
- Regarding scale, data volume, type of kernel method, and bandwidth, a large amount of seismic data is required, and the bandwidth must be selected based on this data volume and the scale of the study area. Larger areas or lower data volumes necessitate greater bandwidths. Additionally, the kernel method should be chosen according to the study’s objectives, but, generally, kernel methods that emphasize values closer together are preferable.
- Theoretical frameworks: This method could be applied in numerous contexts, such as fracture theory, which models the distribution of seismic events concerning geological faults and fracture structures. It can also be utilized in fault instability theory to evaluate patterns that may predict future fault behavior and in seismic risk assessment models to identify areas with high densities of seismic occurrences. Additionally, it aids in spatial analysis in geology by examining the distribution of geological features and their relationship with seismic activity. This technique is beneficial in fluid dynamics within faults, as it helps visualize how fluid pressure correlates with seismic events. Moreover, it can be applied in plate tectonics theory to analyze the interaction between tectonic processes and seismic activity, as well as in wave propagation models and studies of seismic precursors. Of course, this innovative technique can be utilized across various depth layers recognized in any planetary area.
- Geological contexts: This method was applied in complex environments, such as this major transform boundary (Anatolian-Arabian plate boundary), but it can also be utilized in various other settings, including subduction zones, mid-ocean ridges, or volcanic areas.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Allen, C.R. Active Faulting in Northern Turkey; Rep. 1577; Division of Geological Sciences, California Institute of Technology: Pasadena, CA, USA, 1969; 32p. [Google Scholar]
- Arpat, E.; Şaroğlu, F. The East Anatolian Fault system; thoughts on its development. Bull. Miner. Res. Explor. Inst. Turk. 1972, 78, 33–39. [Google Scholar]
- Şaroğlu, F.; Emre, Ö.; Kusçu, I. Active Fault Map of Turkey; General Directorate of Mineral Research and Exploration: Ankara, Turkey, 1992. [Google Scholar]
- Westaway, R.; Arger, J. Kinematics of the Malatya–Ovacık Fault Zone. Geodin. Acta 2001, 14, 103–131. [Google Scholar] [CrossRef]
- Türkoğlu, E.; Unsworth, M.; Bulut, F.; Çağlar, İ. Crustal structure of the North Anatolian and East Anatolian Fault Systems from magnetotelluric data. Phys. Earth Planet. Inter. 2015, 241, 1–14. [Google Scholar] [CrossRef]
- Güvercin, S.E.; Karabulut, H.; Konca, A.Ö.; Doğan, U.; Ergintav, S. Active seismotectonics of the East Anatolian Fault. Geophys. J. Int. 2022, 230, 50–69. [Google Scholar] [CrossRef]
- Barka, A.A.; Kadinsky-Cade, K. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics 1988, 7, 663–684. [Google Scholar] [CrossRef]
- Duman, T.Y.; Emre, Ö. The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics. Geol. Soc. Lond. Spec. Publ. 2013, 372, 495–529. [Google Scholar] [CrossRef]
- Bletery, Q.; Cavalié, O.; Nocquet, J.M.; Ragon, T. Distribution of interseismic coupling along the north and east Anatolian faults inferred from InSAR and GPS data. Geophys. Res. Lett. 2020, 47, e2020GL087775. [Google Scholar] [CrossRef]
- Över, S.; Özden, S.; Yilmaz, H. Late Cenozoic stress evolution along the Karasu Valley, SE Turkey. Tectonophysics 2004, 380, 43–68. [Google Scholar] [CrossRef]
- Över, S.; Özden, S.; Unlugenc, U.C.; Yilmaz, H. A synthesis: Late Cenozoic stress field distribution at northeastern corner of the Eastern Mediterranean, SE Turkey. Comptes Rendus Geosci. 2004, 336, 93–103. [Google Scholar] [CrossRef]
- Yilmaz, H.; Över, S.; Özden, S. Kinematics of the East Anatolian Fault Zone between Turkoglu (Kahramanmaras) and Celikhan (Adiyaman), eastern Turkey. Earth Planets Space 2006, 58, 1463–1473. [Google Scholar] [CrossRef]
- Aksoy, E.; İnceöz, M.; Koçyığıt, A. Lake Hazar Basin: A negative flower structure on the East Anatolian Fault System (EAFS), SE Turkey. Turk. J. Earth Sci. 2007, 16, 319–338. [Google Scholar]
- Köküm, M.; İnceöz, M. Structural analysis of the northern part of the East Anatolian Fault System. J. Struct. Geol. 2018, 114, 55–63. [Google Scholar] [CrossRef]
- Yönlü, O.; Altunel, E.; Karabacak, V. Geological and geomorphological evidence for the southwestern extension of the East Anatolian Fault Zone, Turkey. Earth Planet. Sci. Lett. 2017, 469, 1–14. [Google Scholar] [CrossRef]
- Aktug, B.; Ozener, H.; Dogru, A.; Sabuncu, A.; Turgut, B.; Halicioglu, K.; Yilmaz, O.; Havazli, E. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J. Geodyn. 2016, 94–95, 1–12. [Google Scholar] [CrossRef]
- Özkan, A.; Yavaşoğlu, H.H.; Masson, F. Present-day strain accumulations and fault kinematics at the Hatay Triple Junction using new geodetic constraints. Tectonophysics 2023, 854, 229819. [Google Scholar] [CrossRef]
- Akin, U. Investigation of the seismic velocity distribution and crustal structure of Turkey by means of gravity data. Bull. Miner. Res. Explor. 2016, 153, 185–202. [Google Scholar]
- Abgarmi, B.; Delph, J.R.; Ozacar, A.; Beck, S.L.; Zandt, G.; Sandvol, E.; Turkelli, N.; Biryol, C.B. Structure of the crust and African slab beneath the central Anatolia plateau from receiver functions: New insights on isostatic compensation and slab dynamics. Geosphere 2017, 13, 1774–1787. [Google Scholar] [CrossRef]
- Ozer, C.; Ozyazicioglu, M.; Gok, E.; Polat, O. Imaging the crustal structure throughout the East Anatolian Fault Zone, Turkey, by local earthquake tomography. Pure Appl. Geophys. 2019, 176, 2235–2261. [Google Scholar] [CrossRef]
- Artemieva, I.; Shulgin, A. Geodynamics of Anatolia: Lithosphere thermal structure and thickness. Tectonics 2019, 38, 4465–4487. [Google Scholar] [CrossRef]
- Delouis, B.; van den Ende, M.; Ampuero, J.P. Kinematic rupture model of the February 6th 2023 Mw7.8 Turkey earthquake from a large set of near-source strong-motion records combined with GNSS offsets reveals intermittent supershear rupture. Bull. Geol. Soc. Am. 2024, 114, 726–740. [Google Scholar] [CrossRef]
- Okuwaki, R.; Yagi, Y.; Taymaz, T.; Hicks, S.P. Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet. Geophys. Res. Lett. 2023, 50, e2023GL103480. [Google Scholar] [CrossRef]
- McKenzie, D. Active tectonics of the Mediterranean region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef]
- Dewey, J.F.; Pitman, W.C.; Ryan, W.B.F.; Bonnin, J. Plate tectonics and the evolution of the Alpine system. Geol. Soc. Am. Bull. 1973, 84, 3137–3180. [Google Scholar] [CrossRef]
- Stampfli, G.M. Tethyan oceans. Geol. Soc. Lond. Spec. Publ. 2000, 173, 1–23. [Google Scholar] [CrossRef]
- Tatar, O.; Poyraz, F.; Gürsoy, H.; Cakir, Z.; Ergintav, S.; Akpınar, Z.; Koçbulut, F.; Sezen, F.; Türk, T.; Hastaoğlu, K.Ö.; et al. Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements. Tectonophysics 2012, 518–521, 55–62. [Google Scholar] [CrossRef]
- Koç, A.; Kaymakcı, N. Kinematics of Sürgü Fault Zone (Malatya, Turkey): A remote sensing study. J. Geodyn. 2013, 65, 292–307. [Google Scholar] [CrossRef]
- Mahmoud, Y.; Masson, F.; Meghraoui, M.; Cakir, Z.; Alchalbi, A.; Yavasoglu, H.; Yönlü, O.; Daoud, M.; Ergintav, S.; Inan, S. Kinematic study at the junction of the East Anatolian Fault and the Dead Sea fault from GPS measurements. J. Geodyn. 2013, 67, 30–39. [Google Scholar] [CrossRef]
- Bayrak, E.; Yilmaz, Ş.; Softa, M.; Türker, T.; Bayrak, Y. Earthquake hazard analysis for East Anatolian Fault Zone, Turkey. Nat. Hazards 2015, 76, 1063–1077. [Google Scholar] [CrossRef]
- Allen, T.I. The influence of attenuation in earthquake ground-motion and magnitude estimation: Implications for Australian earthquake hazard. In Proceedings of the Australian Earthquake Engineering Society 2010 Conference, Perth, WA, Australia, 26–28 November 2010. [Google Scholar]
- Reilinger, R.; McClusky, S. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys. J. Int. 2011, 186, 971–979. [Google Scholar] [CrossRef]
- Čejka, F.; Zahradník, J.; Turhan, F.; Sokos, E.; Gallovič, F. Long-period directivity pulses of strong ground motion during the 2023 Mw7.8 Kahramanmaraş earthquake. Commun. Earth Environ. 2023, 4, 413. [Google Scholar] [CrossRef]
- AFAD (Disaster and Emergency Management Authority of Turkey). National Seismic Network of Türkiye (DDA). International Federation of Digital Seismograph Networks 2024. Available online: https://tdvm.afad.gov.tr/ (accessed on 27 May 2024).
- Lomax, A. Precise, NLL-SSST-Coherence Hypocenter Catalog for the 2023 Mw 7.8 and Mw 7.6 SE Turkey Earthquake Sequence. 2023. Available online: https://zenodo.org/records/7699882 (accessed on 27 May 2024).
- KOERI. Kandilli Observatory and Earthquake Research Institute (KOERI)—Istanbul, Turkey 2024. Available online: http://www.koeri.boun.edu.tr/ (accessed on 27 May 2024).
- Hohn, M.E. Overview of geostatistics. In Geostatistics and Petroleum Geology; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Zhang, Y. Introduction to Geostatistics. Course Notes. Department of Geology and Geophysics, University of Wyoming, Laramie, WY, USA, Draft, 12 January 2011. Available online: https://www.uwyo.edu/geolgeophys/people/faculty/yzhang/_files/geosta1.pdf (accessed on 10 August 2024).
- Kyprioti, A.P.; Taflanidis, A.A. Kriging metamodeling for seismic response distribution estimation. Earthq. Eng. Struct. Dyn. 2021, 50, 3550–3576. [Google Scholar] [CrossRef]
- Schenková, Z.; Schenk, V.; Kalogeras, I.; Pichl, R.; Kottnauer, P.; Papatsimba, C.; Panopoulou, G. Isoseismal maps drawing by the kriging method. J Seismol. 2007, 11, 345–353. [Google Scholar] [CrossRef]
- de Rubeis, V.; Tosi, P.; Gasparini, G.; Solipaca, A. Application of Kriging technique to seismic intensitydata. Bull. Seism. Soc. Am. 2005, 95, 540–548. [Google Scholar] [CrossRef]
- Han, F.; Zhang, H.; Guo, Q.; Wei, K.; Shang, Z. An integrated method for seismic velocity modeling based on collocated cokriging. J. Geophys. Eng. 2018, 15, 1389–1398. [Google Scholar] [CrossRef]
- Kim, J.; Han, J.; Park, K.; Seok, S. Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping. Appl. Sci. 2022, 12, 11652. [Google Scholar] [CrossRef]
- Scudero, S.; Marcocci, C.; D’Alessandro, A. Insights on the Italian seismic network from location uncertainties. J. Seismol. 2021, 25, 1061–1076. [Google Scholar] [CrossRef]
- Jia, K.; Zhou, S. Machine Learning Applications in Seismology. Appl. Sci. 2024, 14, 7857. [Google Scholar] [CrossRef]
- Petrescu, L.; Moldovan, I.-A. Prospective Neural Network Model for Seismic Precursory Signal Detection in Geomagnetic Field Records. Mach. Learn. Knowl. Extr. 2022, 4, 912–923. [Google Scholar] [CrossRef]
- Bilal, M.A.; Wang, Y.; Ji, Y.; Akhter, M.P.; Liu, H. Earthquake Detection Using Stacked Normalized Recurrent Neural Network (SNRNN). Appl. Sci. 2023, 13, 8121. [Google Scholar] [CrossRef]
- Kaviris, G.; Zymvragakis, A.; Bonatis, P.; Kapetanidis, V.; Spingos, I.; Mavroulis, S.; Kotsi, E.; Lekkas, E.; Voulgaris, N. A Logic-Tree Approach for Probabilistic Seismic Hazard Assessment in the Administrative Region of Attica (Greece). Appl. Sci. 2023, 13, 7553. [Google Scholar] [CrossRef]
- Jang, J.; So, B.D.; Yuen, D.A. A machine learning algorithm with random forest for recognizing hidden control factors from seismic fault distribution. Geosci. J. 2023, 27, 113–126. [Google Scholar] [CrossRef]
- Llácer, D.; Otero, B.; Tous, R.; Monterrubio-Velasco, M.; Carrasco-Jiménez, J.C.; Rojas, O. Random forest parameterization for earthquake catalog generation. In Machine Learning, Optimization, and Data Science, Proceedings of the 6th International Conference, LOD 2020: Siena, Italy, July 19–23, 2020: Revised Selected Papers, Part I; Springer: Berlin, Germany, 2020; pp. 233–243. ISBN 978-3-030-64583-0. [Google Scholar] [CrossRef]
- Asaly, S.; Gottlieb, L.A.; Inbar, N.; Reuveni, Y. Using Support Vector Machine (SVM) with GPS Ionospheric TEC Estimations to Potentially Predict Earthquake Events. Remote Sens. 2022, 14, 2822. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, M.; Wen, L. Support Vector Machine Classification of Seismic Events in the Tianshan Orogenic Belt. J. Geophys. Res. Solid Earth. 2019, 125, e2019JB018132. [Google Scholar] [CrossRef]
- Al-Ahmadi, K.; Al-Amri, A.; See, L. A spatial statistical analysis of the occurrence of earthquakes along the Red Sea floor spreading: Clusters of seismicity. Arab. J. Geosci. 2014, 7, 2893–2904. [Google Scholar] [CrossRef]
- Moustafa, S.S.R.; Yassien, M.H.; Metwaly, M.; Faried, A.M.; Elsaka, B. Applying Geostatistics to Understand Seismic Activity Patterns in the Northern Red Sea Boundary Zone. Appl. Sci. 2024, 14, 1455. [Google Scholar] [CrossRef]
- Alavi, S.H.; Bahrami, A.; Mashayekhi, M.; Zolfaghari, M. Optimizing Interpolation Methods and Point Distances for Accurate Earthquake Hazard Mapping. Buildings 2024, 14, 1823. [Google Scholar] [CrossRef]
- Torcal, F.; Posadas, A.M.; Chica, M.; Serrano, I. Application of conditional geostatistical simulation to calculate the probability of occurrence of earthquakes belonging to a seismic series. Geophys. J. Int. 1999, 139, 703–725. [Google Scholar] [CrossRef]
- Węglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 2018, 23, 00037. [Google Scholar] [CrossRef]
- Wasserman, L. All Nonparametric Statistics; Springer: New York, NY, USA, 2006; 268p. [Google Scholar]
- Lasocki, S. Kernel density estimation in seismology. In Statistical Methods and Modelling of Seismogenesis; Limnios, N., Papadimitriou, E., Tsaklidis, G., Eds.; ISTE Ltd.: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; Chapter 1; pp. 1–26. [Google Scholar] [CrossRef]
- Woo, G. Kernel estimation methods for seismic hazard area source modeling. Bull. Seismol. Soc. Am. 1996, 86, 353–362. [Google Scholar] [CrossRef]
- Ramanna, C.K.; Dodagoudar, G.R. Seismic Hazard Analysis Using the Adaptive Kernel Density Estimation Technique for Chennai City. Pure Appl. Geophys. 2012, 169, 55–69. [Google Scholar] [CrossRef]
- Catita, C.; Teves-Costa, M.P.; Matias, L.; Batlló, J. Spatial distribution of feltintensities for Portugal earthquakes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W8, 87–92. [Google Scholar] [CrossRef]
- Dilig, I.J.A.; San Juan, W.I.M. Geostatistical and Cluster Analysis of Earthquakes in the Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 185–192. [Google Scholar] [CrossRef]
- Karaburun, A.; Demirci, A. Spatio-temporal cluster analysis of the earthquake epicenters in Turkey and its surrounding area between 1900 and 2014. Int. J. Res. Earth Environ. Sci. 2016, 4, 14–29. [Google Scholar]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Earthquake magnitude. Intensity, energy, and acceleration. Bull. Seismol. Soc. Am. 1956, 46, 105–145. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Bulut, F.; Bohnhoff, M.; Eken, T.; Janssen, C.; Kılıç, T.; Dresen, G. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. J. Geophys. Res. 2012, 117, B07304. [Google Scholar] [CrossRef]
- Dolmaz, M.N.; Elitok, Ö.; Kalyoncuoglu, U.Y. Interpretation of low seismicity in the Eastern Anatolian Collisional Zone using geophysical (seismicity and aeromagnetic) and geological data. Pure Appl. Geophys. 2008, 165, 311–330. [Google Scholar] [CrossRef]
- Balkan, E.; Erkan, K. Temperature-depth curves and heat flow in central part of Anatolia, Turkey. Tectonophysics 2019, 757, 24–34. [Google Scholar] [CrossRef]
- Harding, T.P.; Lowell, J.D. Structural styles, their plate tectonic habitats and hydrocarbon traps in petroleum provinces. Bull. Am. Assoc. Pet. Geol. 1979, 83, 1–24. [Google Scholar]
- Sylvester, A.G. Strike-slip faults. Geol. Soc. Am. Bull. 1988, 100, 1666–1703. [Google Scholar] [CrossRef]
- Smith-Konter, B.; Sandwell, D.; Shearer, P. Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. J. Geophys. Res. 2011, 116, B06401. [Google Scholar] [CrossRef]
- Zeng, Y.; Petersen, M.; Boyd, O. Lower Seismogenic Depth Model for Western U.S. Earthquakes. Seismol. Res. Lett. 2022, 93, 3186–3204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador Luna, D.; Alonso-Chaves, F.M.; Fernández, C. Kernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023). Remote Sens. 2024, 16, 3849. https://doi.org/10.3390/rs16203849
Amador Luna D, Alonso-Chaves FM, Fernández C. Kernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023). Remote Sensing. 2024; 16(20):3849. https://doi.org/10.3390/rs16203849
Chicago/Turabian StyleAmador Luna, David, Francisco M. Alonso-Chaves, and Carlos Fernández. 2024. "Kernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023)" Remote Sensing 16, no. 20: 3849. https://doi.org/10.3390/rs16203849
APA StyleAmador Luna, D., Alonso-Chaves, F. M., & Fernández, C. (2024). Kernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023). Remote Sensing, 16(20), 3849. https://doi.org/10.3390/rs16203849