Deep Learning-Based Approximated Observation Sparse SAR Imaging via Complex-Valued Convolutional Neural Network
Abstract
:1. Introduction
2. Sparse SAR Imaging
2.1. Sparse SAR Imaging-Based 1-D Observation Matrix
2.2. Sparse SAR Imaging-Based 2-D Observation Matrix
3. Complex-Valued Network-Based Approximated Observation Sparse SAR Imaging
3.1. Complex-Valued Network Structure
3.2. Loss Function Design
3.3. Complex-Valued Network Analysis
4. Experiments Based on Surface Target
4.1. Anti-Noise Simulations
4.2. Simulations Based on Down-Sampled Data
4.3. Comparative Experiments
5. Experiments Based on SSDD Dataset
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
ISAR | Inverse SAR |
PolSAR | Polarimetric SAR |
TomoSAR | SAR tomography |
DL | Deep Learning |
IST | Iterative Soft Thresholding |
CNN | Convolutional Neural Network |
PSRI-Net | Parametric Super-Resolution Imaging Network |
CSA | Chirp-scaling algorithm |
MF | Matched Filtering |
CS | Compressive Sensing |
FMCW | Frequency Modulation Continuous Wave |
WDA | Wavenumber Domain Algorithm |
SLC | Single-Look Complex |
SR-IST-Net | Sparse Representation-based ISTA-Net |
RDA | Range Doppler Algorithm |
ADMM | Alternating Direction Method of Multipliers |
BN | Batch Normalization |
MC-ADMM | Multicomponent ADMM |
SCR | Signal-to-Clutter Ratio |
1-D | One-dimensional |
RIP | Restricted Isometry Property |
2-D | Two-dimensional |
CAMP | Complex Approximated Message Passing |
ReLU | Rectified Linear Unit |
3-D | Three-dimensional |
SNR | Signal-to-Noise Ratio |
C-R | Cauchy–Riemann |
DSR | Down-Sampling Ratio |
NMSE | Normalized Mean Square Error |
PSNR | Peak SNR |
SSDD | Open SAR Ship Detection Dataset |
References
- Zhang, B.; Hong, W.; Wu, Y. Sparse microwave imaging: Principles and applications. Sci. China Inf. Sci. 2012, 55, 1722–1754. [Google Scholar] [CrossRef]
- Donoho, D. Compressed sensing. IEEE Trans. Inform. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Wu, Y.; Hong, W.; Zhang, B.; Jiang, C.; Zhang, Z.; Zhao, Y. Current developments of sparse microwave imaging. J. Radars 2014, 3, 383–395. [Google Scholar] [CrossRef]
- Baraniuk, R.; Steeghs, P. Compressive radar imaging. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 128–133. [Google Scholar]
- Patel, V.; Easley, G.; Healy, D.; Chellappa, R. Compressed synthetic aperture radar. IEEE J. Sel. Topics Signal Process. 2010, 4, 244–254. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, B.; Zhang, Z.; Hong, W.; Wu, Y. Experimental results and analysis of sparse microwave imaging from spaceborne radar raw data. Sci. China Inf. Sci. 2012, 55, 1801–1815. [Google Scholar] [CrossRef]
- Fang, J.; Xu, Z.; Zhang, B.; Hong, W.; Wu, Y. Fast compressed sensing SAR imaging based on approximated observation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 352–363. [Google Scholar] [CrossRef]
- Bi, H.; Wang, J.; Bi, G. Wavenumber domain algorithm-based FMCW SAR sparse imaging. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7466–7475. [Google Scholar] [CrossRef]
- Bi, H.; Bi, G.; Zhang, B.; Hong, W.; Wu, Y. From theory to application: Real-time sparse SAR imaging. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2928–2936. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, K.; Zhu, X. Efficient SAR tomographic inversion via sparse bayesian learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Brussels, Belgium, 12–16 July 2021; pp. 4830–4832. [Google Scholar]
- Zhang, S.; Dong, G.; Kuang, G. Matrix completion for downward-looking 3-D SAR imaging with a random sparse linear array. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1994–2006. [Google Scholar] [CrossRef]
- Rao, W.; Li, G.; Wang, X. ISAR imaging via adaptive sparse recovery. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Melbourne, VIC, Australia, 21–26 July 2013; pp. 121–124. [Google Scholar]
- Chierchia, G.; Cozzolino, D.; Poggi, G.; Verdoliva, L. SAR image despeckling through convolutional neural networks. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5438–5441. [Google Scholar]
- Mousavi, A.; Baraniuk, R. Learning to invert: Signal recovery via deep convolutional networks. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2272–2276. [Google Scholar]
- Gao, J.; Deng, B.; Qin, Y.; Wang, H.; Li, X. Enhanced radar imaging using a complex-valued convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 35–39. [Google Scholar] [CrossRef]
- Rittenbach, A.; Walters, J.P. RDAnet: A deep learning based approach for synthetic aperture radar image formation. arXiv 2021, arXiv:2001.08202. [Google Scholar]
- Pu, W. Deep SAR imaging and motion compensation. IEEE Trans. Image Process. 2021, 30, 2232–2247. [Google Scholar] [CrossRef] [PubMed]
- Meraoumia, I.; Dalsasso, E.; Denis, L.; Abergel, R.; Tupin, F. Multitemporal speckle reduction with self-supervised deep neural networks. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5201914. [Google Scholar] [CrossRef]
- Lin, H.; Jin, K.; Yin, J.; Yang, J.; Zhang, T.; Xu, F.; Jin, Y. Residual in residual scaling networks for polarimetric SAR image despeckling. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5207717. [Google Scholar] [CrossRef]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1828–1837. [Google Scholar]
- Yonel, B.; Mason, E.; Yazıcı, B. Deep learning for passive synthetic aperture radar. IEEE J. Sel. Topics Signal Process. 2018, 12, 90–103. [Google Scholar] [CrossRef]
- Zhang, H.; Ni, J.; Xiong, S.; Luo, Y.; Zhang, Q. SR-ISTA-Net: Sparse representation-based deep learning approach for SAR imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4513205. [Google Scholar] [CrossRef]
- Kang, L.; Sun, T.; Luo, Y.; Ni, J.; Zhang, Q. SAR imaging based on deep unfolded network with approximated observation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5228514. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Ding, Z.; Wang, Y.; Zeng, T.; Long, T. SAR parametric super-resolution image reconstruction methods based on ADMM and deep neural network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10197–10212. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Huo, W.; Jiang, R.; Li, Z.; Yang, J.; Li, H. Target-oriented SAR imaging for SCR improvement via deep MF-ADMM-Net. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5223314. [Google Scholar] [CrossRef]
- Zhang, H.; Ni, J.; Li, K.; Luo, Y.; Zhang, Q. Nonsparse SAR scene imaging network based on sparse representation and approximate observations. IEEE Trans. Geosci. Remote Sens. 2023, 15, 4126. [Google Scholar] [CrossRef]
- Budillon, A.; Johnsy, A.C.; Schirinzi, G.; Vitale, S. SAR tomography based on deep learning. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Yokohama, Japan, 28 July–2 August 2019; pp. 3625–3628. [Google Scholar]
- Wang, Y.; Liu, C.; Zhu, R.; Liu, M.; Ding, Z.; Zeng, T. MAda-Net: Model-adaptive deep learning imaging for SAR tomography. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5202413. [Google Scholar] [CrossRef]
- Li, H.; Xu, J.; Song, H.; Wang, Y. PIN: Sparse aperture ISAR imaging via self-supervised learning. IEEE Geosci. Remote Sens. Lett. 2024, 21, 3502905. [Google Scholar] [CrossRef]
- Raney, R.; Runge, H.; Bamler, R.; Cumming, I.; Wong, F. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Shi, W.; Ling, Q.; Yuan, K.; Wu, G.; Yin, W. On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Trans. Signal Process. 2014, 62, 1750–1761. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, B.; Zhu, X.; Hong, W.; Sun, J.; Wu, Y. L1 regularization-based SAR imaging and CFAR detection via complex approximated message passing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3426–3440. [Google Scholar] [CrossRef]
- Bi, H.; Li, Y.; Zhu, D.; Bi, G.; Zhang, B.; Hong, W.; Wu, Y. An improved iterative thresholding algorithm for L1-norm regularization based sparse SAR imaging. Sci. China Inf. Sci. 2020, 63, 219301. [Google Scholar] [CrossRef]
- Trabelsi, C.; Bilaniuk, O.; Zhang, Y.; Serdyuk, D.; Subramanian, S.; Santos, J.; Mehri, S.; Rostamzadeh, N.; Bengio, Y.; Pal, C. Deep complex networks. arXiv 2018, arXiv:1705.09792. [Google Scholar]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 1–6 November 2017. [Google Scholar]
Parameter | Value |
---|---|
Carrier frequency | 9.4 GHz |
Pulse repetition frequency (PRF) | 120 Hz |
Effective radar velocity | 150 m/s |
Pulse duration | 2.5 |
Bandwidth | 100 MHz |
Platform height | m |
Number of phases (K) | 7 |
Number of filters () | 16 |
Learning rate | |
Batch size | 32 |
CSA | -De | CSA-Net | SR-CSA-Net | Complex-Valued Network | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NMSE | PSNR (dB) | NMSE | PSNR (dB) | NMSE | PSNR (dB) | NMSE | PSNR (dB) | NMSE | PSNR (dB) | |
SNR = 10 dB | 0.2031 | 18.42 | 0.1500 | 19.73 | 0.1445 | 19.90 | 0.0042 | 35.28 | 0.0028 | 37.08 |
SNR = 5 dB | 0.3193 | 16.45 | 0.2106 | 18.26 | 0.1861 | 18.79 | 0.0043 | 35.13 | 0.0036 | 35.93 |
SNR = 0 dB | 0.5559 | 14.04 | 0.4078 | 15.39 | 0.3830 | 15.66 | 0.0064 | 33.43 | 0.0048 | 34.70 |
SNR = −5 dB | 0.8776 | 11.44 | 0.7103 | 12.98 | 0.6730 | 13.21 | 0.0165 | 29.31 | 0.0128 | 30.43 |
Method | DSR = 72% | DSR = 49% | DSR = 36% | Time (ms) | |||
---|---|---|---|---|---|---|---|
NMSE | PSNR (dB) | NMSE | PSNR (dB) | NMSE | PSNR (dB) | ||
CSA | 0.4585 | 14.95 | 0.4926 | 14.57 | 0.6209 | 13.56 | 3.5 |
-De | 0.4126 | 15.34 | 0.4763 | 14.71 | 0.5741 | 13.90 | 154 |
CSA-Net | 0.3660 | 15.86 | 0.4699 | 14.77 | 0.5582 | 14.02 | 7.2 |
SR-CSA-Net | 0.0130 | 30.35 | 0.0423 | 25.23 | 0.1278 | 20.43 | 13.6 |
The proposed method | 0.0052 | 34.34 | 0.0076 | 32.69 | 0.0199 | 28.51 | 19.4 |
Method | DSR = 100% | DSR = 72% | DSR = 49% | Time (ms) | |||
---|---|---|---|---|---|---|---|
NMSE | PSNR (dB) | NMSE | PSNR (dB) | NMSE | PSNR (dB) | ||
CSA | 0.5002 | 12.53 | 0.5367 | 12.22 | 0.6570 | 11.34 | 3.2 |
-De | 0.3228 | 14.43 | 0.5007 | 12.52 | 0.6435 | 11.43 | 149 |
CSA-Net | 0.3091 | 14.62 | 0.4852 | 12.66 | 0.6179 | 11.61 | 9.8 |
SR-CSA-Net | 0.1253 | 18.54 | 0.2177 | 16.14 | 0.2537 | 15.47 | 14.1 |
The proposed method | 0.0792 | 20.53 | 0.1311 | 18.34 | 0.1663 | 17.31 | 21.4 |
Method | DSR = 100% | DSR = 72% | DSR = 49% | Time (ms) | |||
---|---|---|---|---|---|---|---|
NMSE | PSNR (dB) | NMSE | PSNR (dB) | NMSE | PSNR (dB) | ||
CSA | 0.6860 | 13.72 | 0.7111 | 13.56 | 0.7234 | 13.48 | 3.3 |
-De | 0.3819 | 16.26 | 0.5120 | 14.99 | 0.6625 | 13.87 | 150 |
CSA-Net | 0.3673 | 16.43 | 0.5002 | 15.09 | 0.6543 | 13.92 | 9.8 |
SR-CSA-Net | 0.1128 | 21.56 | 0.1638 | 19.94 | 0.2600 | 17.93 | 14.3 |
The proposed method | 0.0829 | 22.89 | 0.1216 | 21.23 | 0.1728 | 19.71 | 21.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Li, L.; Bi, H. Deep Learning-Based Approximated Observation Sparse SAR Imaging via Complex-Valued Convolutional Neural Network. Remote Sens. 2024, 16, 3850. https://doi.org/10.3390/rs16203850
Ji Z, Li L, Bi H. Deep Learning-Based Approximated Observation Sparse SAR Imaging via Complex-Valued Convolutional Neural Network. Remote Sensing. 2024; 16(20):3850. https://doi.org/10.3390/rs16203850
Chicago/Turabian StyleJi, Zhongyuan, Lingyu Li, and Hui Bi. 2024. "Deep Learning-Based Approximated Observation Sparse SAR Imaging via Complex-Valued Convolutional Neural Network" Remote Sensing 16, no. 20: 3850. https://doi.org/10.3390/rs16203850
APA StyleJi, Z., Li, L., & Bi, H. (2024). Deep Learning-Based Approximated Observation Sparse SAR Imaging via Complex-Valued Convolutional Neural Network. Remote Sensing, 16(20), 3850. https://doi.org/10.3390/rs16203850