Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pre-Processing
2.2.1. UAV Image Collection and Pre-Processing
2.2.2. Field Data Collection
Field Surveys
2.2.3. Processing Data
Setting Plots and Individual Tree Detection
2.3. Diversity Measurement
2.3.1. Simpson’s Diversity Index (D)
2.3.2. Shannon–Wiener Diversity Index (H or H’)
2.3.3. Species Richness (S) Index
2.3.4. Tree and Shrub Species
3. Results
3.1. Individual Tree and Shrub Detection
3.2. Tree Height and Elevation
3.2.1. Simpson Diversity Index
3.2.2. Shannon Diversity Index
3.2.3. Species Richness
4. Discussion
4.1. Vegetation Distribution
4.2. Alpha Diversity Indices
4.3. Challenges during the Field Surveys
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHM | Canopy Height Model |
DBH | Diameter at breast height |
DEM | Digital Elevation Model |
RGB | Red Green Blue |
UAV | Unmanned Aerial Vehicle |
References
- Chirici, G.; McRoberts, R.E.; Winter, S.; Bertini, R.; Brändli, U.B.; Asensio, I.A.; Bastrup-Birk, A.; Rondeux, J.; Barsoum, N.; Marchetti, M. National forest inventory contributions to forest biodiversity monitoring. For. Sci. 2012, 58, 257–268. [Google Scholar] [CrossRef]
- Gyamfi-Ampadu, E.; Gebreslasie, M.; Mendoza-Ponce, A. Evaluating multi-sensors spectral and spatial resolutions for tree species diversity prediction. Remote Sens. 2021, 13, 1033. [Google Scholar] [CrossRef]
- Arekhi, M.; Yılmaz, O.Y.; Yılmaz, H.; Akyüz, Y.F. Can tree species diversity be assessed with Landsat data in a temperate forest? Environ. Monit. Assess. 2017, 189, 586. [Google Scholar] [CrossRef]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Koricheva, J.; Meurisse, N.; Brockerhoff, E.G. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Trogisch, S.; Liu, X.; Rutten, G.; Xue, K.; Bauhus, J.; Brose, U.; Bu, W.; Cesarz, S.; Chesters, D.; Connolly, J.; et al. The significance of tree-tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 2021, 55, 33–52. [Google Scholar] [CrossRef]
- Bauhus, J.; Forrester, D.I.; Gardiner, B.; Jactel, H.; Vallejo, R.; Pretzsch, H. Ecological stability of mixed-species forests. In Mixed-Species Forests: Ecology and Management; Springer: Berlin/Heidelberg, Germany, 2017; pp. 337–382. [Google Scholar]
- Ouyang, S.; Xiang, W.; Gou, M.; Chen, L.; Lei, P.; Xiao, W.; Deng, X.; Zeng, L.; Li, J.; Zhang, T.; et al. Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio-economic conditions. Glob. Ecol. Biogeogr. 2021, 30, 500–513. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Wang, J.; Gu, Y.; Han, S. A linear positive relationship between tree species diversity and forest productivity across forest-dominated natural reserves on a large spatial scale. For. Ecol. Manag. 2023, 548, 121409. [Google Scholar] [CrossRef]
- Tariku, G.; Ghiglieno, I.; Gilioli, G.; Gentilin, F.; Armiraglio, S.; Serina, I. Automated identification and classification of plant species in heterogeneous plant areas using unmanned aerial vehicle-collected RGB images and transfer learning. Drones 2023, 7, 599. [Google Scholar] [CrossRef]
- Buhk, C.; Retzer, V.; Beierkuhnlein, C.; Jentsch, A. Predicting plant species richness and vegetation patterns in cultural landscapes using disturbance parameters. Agric. Ecosyst. Environ. 2007, 122, 446–452. [Google Scholar] [CrossRef]
- Chai, M.M.F.; Bayat, S.; Hashemi, S.A. Probability measurement to estimate forest tree diversity using IRS-p6 satellite images in Caspian broad leaved forests. J. Agric. Biol. Sci. 2012, 7, 238–243. [Google Scholar]
- Dalmayne, J.; Möckel, T.; Prentice, H.C.; Schmid, B.C.; Hall, K. Assessment of fine-scale plant species beta diversity using WorldView-2 satellite spectral dissimilarity. Ecol. Inform. 2013, 18, 1–9. [Google Scholar] [CrossRef]
- Liu, K.; Wang, A.; Zhang, S.; Zhu, Z.; Bi, Y.; Wang, Y.; Du, X. Tree species diversity mapping using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in a subtropical forest invaded by moso bamboo (Phyllostachys edulis). Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102587. [Google Scholar] [CrossRef]
- Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M.A.; Luoma, V.; Tommaselli, A.M.; Imai, N.N.; et al. Assessing biodiversity in boreal forests with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 2018, 10, 338. [Google Scholar] [CrossRef]
- Gimaret-Carpentier, C.; Pélissier, R.; Pascal, J.P.; Houllier, F. Sampling strategies for the assessment of tree species diversity. J. Veg. Sci. 1998, 9, 161–172. [Google Scholar] [CrossRef]
- Kanagaraj, S.; Selvaraj, M.; Das Kangabam, R.; Munisamy, G. Assessment of tree species diversity and its distribution pattern in Pachamalai Reserve Forest, Tamil Nadu. J. Sustain. For. 2017, 36, 32–46. [Google Scholar] [CrossRef]
- Motz, K.; Sterba, H.; Pommerening, A. Sampling measures of tree diversity. For. Ecol. Manag. 2010, 260, 1985–1996. [Google Scholar] [CrossRef]
- Baraloto, C.; Molto, Q.; Rabaud, S.; Hérault, B.; Valencia, R.; Blanc, L.; Fine, P.V.; Thompson, J. Rapid simultaneous estimation of aboveground biomass and tree diversity across Neotropical forests: A comparison of field inventory methods. Biotropica 2013, 45, 288–298. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Z.; Xu, C.; Zhao, P.; Chen, J.; Wu, J.; Zhao, X.; Mu, X.; Zhao, D.; Zeng, Y. Individual tree-based forest species diversity estimation by classification and clustering methods using UAV data. Front. Ecol. Evol. 2023, 11, 1139458. [Google Scholar] [CrossRef]
- Michałowska, M.; Rapiński, J. A review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sens. 2021, 13, 353. [Google Scholar] [CrossRef]
- Lu, T.; Brandt, M.; Tong, X.; Hiernaux, P.; Leroux, L.; Ndao, B.; Fensholt, R. Mapping the abundance of multipurpose agroforestry Faidherbia albida trees in Senegal. Remote Sens. 2022, 14, 662. [Google Scholar] [CrossRef]
- Shang, X.; Chisholm, L.A. Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 2481–2489. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Asner, G.P.; Law, B.E.; Van Tuyl, S. Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data. J. Geophys. Res. Atmos. 2002, 107, ACL-7. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Lopez Caceres, M.L.; Moritake, K.; Kentsch, S.; Shu, H.; Diez, Y. Individual sick fir tree (Abies mariesii) identification in insect infested forests by means of UAV images and deep learning. Remote Sens. 2021, 13, 260. [Google Scholar] [CrossRef]
- Whittaker, R.H. Communities and Ecosystems; Macmillan Company: London, UK; Collier-Macmillan Limited: London, UK, 1970. [Google Scholar]
- Li, Y.; Ye, S.; Luo, Y.; Yu, S.; Zhang, G. Relationship between species diversity and tree size in natural forests around the Tropic of Cancer. J. For. Res. 2023, 34, 1735–1745. [Google Scholar] [CrossRef]
- Körner, C. The cold range limit of trees. Trends Ecol. Evol. 2021, 36, 979–989. [Google Scholar] [CrossRef]
- Groffman, P.M.; Baron, J.S.; Blett, T.; Gold, A.J.; Goodman, I.; Gunderson, L.H.; Levinson, B.M.; Palmer, M.A.; Paerl, H.W.; Peterson, G.D.; et al. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 2006, 9, 1–13. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Gong, H.; Yu, T.; Zhang, X.; Zhang, P.; Han, J.; Gao, J. Effects of boundary constraints and climatic factors on plant diversity along an altitudinal gradient. Glob. Ecol. Conserv. 2019, 19, e00671. [Google Scholar] [CrossRef]
- LI, W.H.; Ganjurjav, H.; Cao, X.-J.; Yan, Y.; Li, Y.; Luo, W.-R.; Hu, G.; Danjiu, L.; He, S.-C.; Gao, Q. Effects of altitude on plant productivity and species diversity in alpine meadows of northern Tibet. Acta Prataculturae Sin. 2017, 26, 200. [Google Scholar]
- Tai, X.; Epstein, H.E.; Li, B. Elevation and climate effects on vegetation greenness in an arid mountain-basin system of Central Asia. Remote Sens. 2020, 12, 1665. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174. [Google Scholar] [CrossRef]
- Clow, D.W. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Ceppi, P.; Scherrer, S.C.; Fischer, A.M.; Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 2012, 32, 203–213. [Google Scholar] [CrossRef]
- Dullinger, S.; Dirnböck, T.; Grabherr, G. Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invasibility. J. Ecol. 2004, 92, 241–252. [Google Scholar] [CrossRef]
- Ryan, K.C. Vegetation and wildland fire: Implications of global climate change. Environ. Int. 1991, 17, 169–178. [Google Scholar] [CrossRef]
- Parolo, G.; Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 2008, 9, 100–107. [Google Scholar] [CrossRef]
- Felde, V.A.; Kapfer, J.; Grytnes, J.A. Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography 2012, 35, 922–932. [Google Scholar] [CrossRef]
- Walther, G.R.; Beißner, S.; Burga, C.A. Trends in the upward shift of alpine plants. J. Veg. Sci. 2005, 16, 541–548. [Google Scholar] [CrossRef]
- Song, X.; Cao, M.; Li, J.; Kitching, R.L.; Nakamura, A.; Laidlaw, M.J.; Tang, Y.; Sun, Z.; Zhang, W.; Yang, J. Different environmental factors drive tree species diversity along elevation gradients in three climatic zones in Yunnan, southern China. Plant Divers. 2021, 43, 433–443. [Google Scholar] [CrossRef]
- McCain, C.M.; Grytnes, J.A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (eLS); John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, S.; Hu, G.; Mwachala, G.; Yan, X.; Wang, Q. Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount Kenya, East Africa. Ecol. Evol. 2018, 8, 8930–8939. [Google Scholar] [CrossRef]
- Rawat, B.; Gaira, K.S.; Gairola, S.; Tewari, L.M.; Rawal, R.S. Spatial prediction of plant species richness and density in high-altitude forests of Indian west Himalaya. Trees For. People 2021, 6, 100132. [Google Scholar] [CrossRef]
- Kluge, J.; Kessler, M.; Dunn, R.R. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob. Ecol. Biogeogr. 2006, 15, 358–371. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Climate stability is more important than water–energy variables in shaping the elevational variation in species richness. Ecol. Evol. 2018, 8, 6872–6879. [Google Scholar] [CrossRef]
- Moritake, K.; Cabezas, M.; Nhung, T.T.C.; Caceres, M.L.L.; Diez, Y. Sub-alpine shrub classification using UAV images: Performance of human observers vs DL classifiers. Ecol. Inform. 2024, 80, 102462. [Google Scholar] [CrossRef]
- Bork, E.W.; Su, J.G. Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sens. Environ. 2007, 111, 11–24. [Google Scholar] [CrossRef]
- Kukkonen, M.; Maltamo, M.; Korhonen, L.; Packalen, P. Multispectral airborne LiDAR data in the prediction of boreal tree species composition. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3462–3471. [Google Scholar] [CrossRef]
- Budei, B.C.; St-Onge, B.; Hopkinson, C.; Audet, F.A. Identifying the genus or species of individual trees using a three-wavelength airborne lidar system. Remote Sens. Environ. 2018, 204, 632–647. [Google Scholar] [CrossRef]
- Shi, Y.; Skidmore, A.K.; Wang, T.; Holzwarth, S.; Heiden, U.; Pinnel, N.; Zhu, X.; Heurich, M. Tree species classification using plant functional traits from LiDAR and hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 207–219. [Google Scholar] [CrossRef]
Scientific Name | Japanese Name | Common Name | Type of Vegetation |
---|---|---|---|
Abies mariesii | Ōshirabiso or Aomoritodomatsu | Maries’ fir | Evergreen tree |
Pinus spp. | Matsu | Pine | Evergreen tree |
Chengiopanax sciadophylloides | Koshiabura | Koshiabura | Broad leaved deciduous tree |
Fagus crenata | Buna | Beech | Broad leaved deciduous tree |
Sorbus commixta | Nanakamado | Japanese Rowan | Broad leaved deciduous tree |
Cornus controversa | Mizuki | Wedding cake tree | Broad leaved deciduous tree |
Acer japonicum | Hauchiwakaede | Japanese Maple | Broad leaved deciduous shrub |
Acer tschonoskii | Minekaede | Butterfly Maple | Broad leaved deciduous shrub |
Quercus crispula | Mizunara | Oak | Broad leaved deciduous shrub |
Ilex crenata | Inutsuge | Japanese Holly | Evergreen shrub |
Taxus cuspidata | Kyaraboku | Japanese Yew | Evergreen shrub |
Salix spp. | Yanagi | Broad leaved deciduous shrub |
Plot | Plot 1 | Plot 2 | Plot 3 | Plot 4 | Plot 5 | Plot 6 | Plot 7 | Plot 8 | Plot 9 | Plot 10 | Plot 11 | Plot 12 | Plot 13 | Plot 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | n | n | n | n | n | n | n | n | n | n | n | n | n | |
Fagus crenata | 33 | 32 | 32 | 12 | 1 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sorbus commixta | 21 | 17 | 18 | 20 | 40 | 19 | 10 | 23 | 19 | 7 | 16 | 31 | 19 | 15 |
Acer japonicum | 4 | 3 | 2 | 7 | 8 | 12 | 6 | 7 | 14 | 3 | 5 | 0 | 22 | 6 |
Acer tschonoskii | 0 | 0 | 0 | 47 | 89 | 146 | 170 | 56 | 70 | 122 | 110 | 115 | 15 | 7 |
Quercus crispula | 0 | 0 | 0 | 73 | 17 | 9 | 140 | 73 | 50 | 99 | 50 | 5 | 155 | 30 |
Cornus controversa | 34 | 1 | 2 | 37 | 33 | 25 | 14 | 1 | 8 | 1 | 10 | 3 | 0 | 0 |
Chengiopanax sciadophylloides | 12 | 20 | 3 | 5 | 8 | 7 | 5 | 7 | 11 | 2 | 4 | 3 | 0 | 0 |
Taxus cuspidata | 10 | 17 | 2 | 7 | 7 | 0 | 3 | 10 | 19 | 6 | 6 | 18 | 88 | 64 |
Ilex crenata | 1 | 8 | 2 | 6 | 14 | 9 | 3 | 29 | 19 | 8 | 4 | 8 | 10 | 2 |
Pinus spp. | 0 | 0 | 0 | 1 | 1 | 4 | 0 | 3 | 5 | 8 | 0 | 0 | 14 | 20 |
Salix spp. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 13 |
Abies mariesii | 43 | 31 | 39 | 66 | 51 | 53 | 47 | 102 | 96 | 90 | 89 | 42 | 1 | 4 |
Total (N) | 158 | 129 | 100 | 281 | 269 | 295 | 398 | 311 | 311 | 346 | 294 | 225 | 354 | 161 |
Scientific Name | Japanese Name | Plot 1 | Plot 2 | Plot 3 | Plot 4 | Plot 5 | Plot 6 | Plot 7 | Plot 8 | Plot 9 | Plot 10 | Plot 11 | Plot 12 | Plot 13 | Plot 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abies mariesii | Ōshirabiso or Aomoritodomatsu | 12.90 | 11.67 | 12.01 | 9.36 | 10 | 8.86 | 9.2 | 7.01 | 5.86 | 6.3 | 7.1 | 7.32 | 2.01 | 1.11 |
Fagus crenata | Buna | 10.85 | 12.5 | 12.37 | 9.91 | 3.23 | 9.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Chengiopanax sciadophylloides | Koshiabura | 10.84 | 9.88 | 9.12 | 2.48 | 3.35 | 2.63 | 4.12 | 2.93 | 2.41 | 1.46 | 2.47 | 3.49 | 0 | 0 |
Sorbus commixta | Nanakamado | 8.95 | 9.21 | 9.12 | 4.02 | 4.14 | 5.96 | 4.52 | 3.76 | 2.51 | 3.95 | 4.08 | 2.66 | 1.58 | 1.32 |
Acer japonicum | Hauchiwakaede | 7.71 | 5.35 | 8.88 | 3 | 3.99 | 3.6 | 2.07 | 2.74 | 1.09 | 2.1 | 2.58 | 0 | 0 | 0 |
Cornus controversa | Mizuki | 5.81 | 11.14 | 4.05 | 2.88 | 2.55 | 3.3 | 2.91 | 2.98 | 2.28 | 2.49 | 1.54 | 1.98 | 0 | 0 |
Acer tschonoskii | Minekaede | 0 | 0 | 0 | 3.41 | 2.91 | 3.25 | 2.62 | 2.47 | 1.42 | 1.64 | 1.62 | 2.41 | 1.26 | 0.88 |
Quercus crispula | Mizunara | 0 | 0 | 0 | 2.42 | 3.8 | 3.72 | 1.63 | 1.78 | 1.45 | 1.09 | 1.32 | 0 | 0 | 0 |
Taxus cuspidata | Kyaraboku | 8.41 | 6.42 | 6.09 | 3.76 | 3.92 | 0 | 3.26 | 2.67 | 2.36 | 3.15 | 3.15 | 2.12 | 1.75 | 1.62 |
Ilex crenata | Inutsuge | 5.95 | 5.72 | 6.69 | 1.83 | 2.31 | 3.43 | 1.57 | 2.39 | 1.6 | 1.63 | 1.31 | 2.21 | 1.34 | 1.01 |
Pinus spp. | Matsu | 0 | 0 | 0 | 4.88 | 3.83 | 3.45 | 0 | 2.53 | 4.41 | 1.58 | 0 | 0 | 1.24 | 1.17 |
Salix spp. | Yanagi | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.07 | 0.88 |
Scientific Name | Japanese Name | Plot 1 | Plot 2 | Plot 3 | Plot 4 | Plot 5 | Plot 6 | Plot 7 |
---|---|---|---|---|---|---|---|---|
Average Height | Average Height | Average Height | Average Height | Average Height | Average Height | Average Height | ||
Abies mariesii | Fir | 12.9 ± 2.33 | 11.67 ± 2.02 | 12.01 ± 1.94 | 9.36 ± 2.06 | 10 ± 3.6 | 8.86 ± 2.12 | 9.20 ± 2.21 |
Fagus crenata | Buna | 10.85 ± 2.37 | 12.5 ± 2.21 | 12.37 ± 2.14 | 9.91 ± 2.44 | 0 | 9.21 ± 2.87 | 0 |
Chengiopanax sciadophylloides | Koshiabura | 10.84 ± 1.84 | 9.88 ± 2.09 | 9.12 ± 1.15 | 2.48 ± 1.92 | 3.35 ± 1.94 | 2.63 ± 1.12 | 4.12 ± 2.42 |
Sorbus commixta | Nanakamado | 8.95 ± 1.77 | 9.21 ± 2.42 | 9.12 ± 1.99 | 4.02 ± 1.29 | 4.14 ± 1.85 | 5.96 ± 1.87 | 4.52 ± 0.73 |
Acer japonicum | Hauchiwakaede | 7.71 ± 1.12 | 5.35 ± 1.15 | 8.88 ± 7.54 | 3.00 ± 1.06 | 3.99 ± 0.96 | 3.60 ± 0.99 | 2.07 ± 0.33 |
Cornus controversa | Mizuki | 5.81 ± 2.08 | 11.14 ± 0 | 4.05 ± 1.29 | 2.88 ± 1.49 | 2.55 ± 0.86 | 3.30 ± 1.63 | 2.91 ± 1.28 |
Acer tschonoskii | Minekaede | 0 | 0 | 0 | 3.41 ± 1.2 | 2.91 ± 0.75 | 3.25 ± 1.49 | 2.62 ± 0.95 |
Quercus crispula | Mizunara | 0 | 0 | 0 | 2.42 ± 0.7 | 3.80 ± 1.24 | 3.72 ± 0.95 | 1.63 ± 0.74 |
Taxus cuspidata | Kyaraboku | 8.41 ± 1.62 | 6.42 ± 3.15 | 6.09 ± 2.67 | 3.76 ± 1.41 | 3.92 ± 1.31 | 0 | 3.26 ± 1.18 |
Ilex crenata | Inutsuge | 5.95 ± 0 | 5.72 ± 2.22 | 6.69 ± 2.87 | 1.83 ± 1.03 | 2.31 ± 1.11 | 3.43 ± 1.8 | 1.57 ± 0.66 |
Pinus spp. | Matsu | 0 | 0 | 0 | 4.88 ± 0 | 3.83 ± 0 | 3.45 ± 0.38 | 0 |
Salix spp. | Yanagi | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Scientific Name | Japanese Name | Plot 8 | Plot 9 | Plot 10 | Plot 11 | Plot 12 | Plot 13 | Plot 14 |
---|---|---|---|---|---|---|---|---|
Average Height | Average Height | Average Height | Average Height | Average Height | Average Height | Average Height | ||
Abies mariesii | Fir | 7.01 ± 1.86 | 5.86 ± 2.26 | 6.30 ± 2.80 | 7.10 ± 1.46 | 7.32 ± 2.54 | 2.01 ± 0 | 1.11 ± 0 |
Fagus crenata | Buna | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Chengiopanax sciadophylloides | Koshiabura | 2.93 ± 1.42 | 2.41 ± 2.40 | 1.46 ± 0.42 | 2.47 ± 1.1 | 3.49 ± 1.20 | 0 | 0 |
Sorbus commixta | Nanakamado | 3.76 ± 1.05 | 2.51 ± 1.12 | 3.95 ± 1.39 | 4.08 ± 1.88 | 2.66 ± 0.96 | 1.88 ± 0.57 | 1.70 ± 0 |
Acer japonicum | Hauchiwakaede | 2.74 ± 1.46 | 1.09 ± 0.54 | 2.10 ± 1.16 | 2.58 ± 1.05 | 0 | 1.85 ± 0.73 | 1.06 ± 0.71 |
Cornus controversa | Mizuki | 2.98 ± 0 | 2.28 ± 0.24 | 2.49 ± 0 | 1.54 ± 0.67 | 1.98 ± 0.43 | 0 | 0 |
Acer tschonoskii | Minekaede | 2.47 ± 0.73 | 1.42 ± 0.62 | 1.64 ± 0.81 | 1.62 ± 0.81 | 2.41 ± 1.33 | 1.93 ± 0.20 | 1.29 ± 0.89 |
Quercus crispula | Mizunara | 1.78 ± 0 | 1.45 ± 0.81 | 1.09 ± 0.51 | 1.32 ± 0.55 | 1.13 ± 0.20 | 1.33 ± 0.64 | 1.07 ± 0.89 |
Taxus cuspidata | Kyaraboku | 2.67 ± 1.09 | 2.36 ± 1.08 | 3.15 ± 1.21 | 3.15 ± 1.21 | 2.12 ± 1.82 | 1.75 ± 0.86 | 1.62 ± 0.78 |
Ilex crenata | Inutsuge | 2.39 ± 0.85 | 1.60 ± 1.08 | 1.63 ± 0.60 | 1.31 ± 0.93 | 2.21 ± 0.69 | 1.54 ± 0.15 | 1.01 ± 0.85 |
Pinus spp. | Matsu | 2.53 ± 0 | 4.41 ± 2.66 | 1.58 ± 0.51 | 0 | 0 | 1.24 ± 0.40 | 1.17 ± 0.50 |
Salix spp. | Yanagi | 0 | 0 | 0 | 0 | 0 | 1.07 ± 0.64 | 0.88 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.C.N.; Lopez Caceres, M.L.; Riera, S.G.i.; Conciatori, M.; Kuwabara, Y.; Tsou, C.-Y.; Diez, Y. Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains. Remote Sens. 2024, 16, 3831. https://doi.org/10.3390/rs16203831
Tran TCN, Lopez Caceres ML, Riera SGi, Conciatori M, Kuwabara Y, Tsou C-Y, Diez Y. Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains. Remote Sensing. 2024; 16(20):3831. https://doi.org/10.3390/rs16203831
Chicago/Turabian StyleTran, Thi Cam Nhung, Maximo Larry Lopez Caceres, Sergi Garcia i Riera, Marco Conciatori, Yoshiki Kuwabara, Ching-Ying Tsou, and Yago Diez. 2024. "Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains" Remote Sensing 16, no. 20: 3831. https://doi.org/10.3390/rs16203831
APA StyleTran, T. C. N., Lopez Caceres, M. L., Riera, S. G. i., Conciatori, M., Kuwabara, Y., Tsou, C. -Y., & Diez, Y. (2024). Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains. Remote Sensing, 16(20), 3831. https://doi.org/10.3390/rs16203831