Numerical Weather Prediction of Sea Surface Temperature in South China Sea Using Attention-Based Context Fusion Network
Abstract
:1. Introduction
- Quantifying the performance of the ACFN model in short-term SST forecasting in the SCS.
- Conducting intercomparisons among multiple deep learning models to assess the advantages of the ACFN model.
- Using third-party in situ buoy SST data to evaluate model performance and present the errors.
2. Data and Methods
2.1. Bathymetry Data
2.2. Satellite SST Data
2.3. In Situ SST Data
2.4. Forecast Models
2.5. Evaluation Metrics
2.6. Numerical Experiment
3. Results
3.1. Characteristics of Regional SST
3.2. Example of NWP of SST
3.3. Ground Truth Evaluation
3.4. In Situ Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACFN | Attention-based Context Fusion Network |
ConvLSTM | Convolutional Long Short-Term Memory |
DL | deep learning |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
NWP | Numerical Weather Prediction |
PredRNN | Predictive Recurrent Neural Network |
RMSE | Root Mean Squared Error |
SCS | South China Sea |
SST | Sea Surface Temperature |
Coefficient of Determination |
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
References
- Han, T.; Zhang, M.; Zhou, B.; Hao, X.; Li, S. Strengthened relationship between Tropical West Pacific and midsummer precipitation over Northeast China after the mid-1990s. J. Clim. 2020, 33, 6833–6848. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Merchant, C.J.; Ferreira, D. Tendencies, variability and persistence of sea surface temperature anomalies. Sci. Rep. 2020, 10, 7986. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jing, Z.; Wu, L.; Cai, W.; Chang, P.; Wang, H.; Geng, T.; Danabasoglu, G.; Chen, Z.; Ma, X.; et al. El Niño/Southern Oscillation inhibited by submesoscale ocean eddies. Nat. Geosci. 2022, 15, 112–117. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- He, H.; Wu, Q.; Chen, D.; Sun, J.; Liang, C.; Jin, W.; Xu, Y. Effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. Acta Oceanol. Sin. 2018, 37, 1–7. [Google Scholar] [CrossRef]
- He, H.; Tian, R.; Lyu, X.; Ling, Z.; Sun, J.; Cao, A. Annual review of in situ observations of tropical cyclone-ocean interaction in the western North Pacific during 2023. Remote Sens. 2024, 16, 1990. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Burrows, M.T.; Donat, M.G.; Sen Gupta, A.; Alexander, L.V.; Perkins-Kirkpatrick, S.E.; Benthuysen, J.A.; Hobday, A.J.; Holbrook, N.J.; Moore, P.J.; et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 2019, 6, 734. [Google Scholar] [CrossRef]
- Stockdale, T.N.; Anderson, D.L.T.; Balmaseda, M.A.; Doblas-Reyes, F.; Ferranti, L.; Mogensen, K.; Palmer, T.N.; Molteni, F.; Vitart, F. ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim. Dyn. 2011, 37, 455–471. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, S.; Yang, J.; Gao, X.; Ji, J.; Dong, C. Artificial Intelligence forecasting of marine heatwaves in the South China Sea using a combined U-Net and ConvLSTM system. Remote Sens. 2023, 15, 4068. [Google Scholar] [CrossRef]
- Momin, I.M.; Mitra, A.K.; Waters, J.; Martin, M.J.; Lea, D.; Bhatla, R. Evaluation of global ocean analysis and forecast system in the Tropical Indian Ocean. J. Earth Syst. Sci. 2023, 132, 104. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bladé, I.; Newman, M.; Lanzante, J.R.; Lau, N.C.; Scott, J.D. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 2002, 15, 2205–2231. [Google Scholar] [CrossRef]
- Qu, T.; Du, Y.; Meyers, G.; Ishida, A.; Wang, D. Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys. Res. Lett. 2005, 32, L24609. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, B.; Zhu, C. Subseasonal predictability of South China Sea summer monsoon onset with the ECMWF S2S forecasting system. Geophys. Res. Lett. 2021, 48, e2021GL095943. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Jin, S.; Ju, X.; Xiong, X. Quantifying tropical cyclone intensity change induced by sea surface temperature. Int. J. Climatol. 2022, 42, 4716–4727. [Google Scholar] [CrossRef]
- Sarkar, P.P.; Janardhan, P.; Roy, P. Prediction of sea surface temperatures using deep learning neural networks. SN Appl. Sci. 2020, 2, 1458. [Google Scholar] [CrossRef]
- Kochkov, D.; Yuval, J.; Langmore, I.; Norgaard, P.; Smith, J.; Mooers, G.; Klöwer, M.; Lottes, J.; Rasp, S.; Düben, P.; et al. Neural general circulation models for weather and climate. Nature 2024, 632, 1060–1066. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Q.; Li, Z. Deep learning for spatiotemporal forecasting in earth system science: A review. Int. J. Digit. Earth 2024, 17, 2391952. [Google Scholar] [CrossRef]
- Xu, A.; Tian, M.W.; Firouzi, B.; Alattas, K.A.; Mohammadzadeh, A.; Ghaderpour, E. A new deep learning restricted Boltzmann machine for energy consumption forecasting. Sustainability 2022, 14, 10081. [Google Scholar] [CrossRef]
- López Santos, M.; Díaz García, S.; García-Santiago, X.; Ogando-Martínez, A.; Echevarría Camarero, F.; Blázquez Gil, G.; Carrasco Ortega, P. Deep learning and transfer learning techniques applied to short-term load forecasting of data-poor buildings in local energy communities. Energy Build. 2023, 292, 113164. [Google Scholar] [CrossRef]
- Zhu, X.; Zu, Z.; Ren, S.; Zhang, M.; Zhang, Y.; Wang, H.; Li, A. Improvements in the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2). Geosci. Model Dev. 2022, 15, 995–1015. [Google Scholar] [CrossRef]
- Zheng, W.; Lin, P.; Liu, H.; Luan, Y.; Ma, J.; Mo, H.; Liu, J. An assessment of the LICOM Forecast System under the IVTT class 4 framework. Front. Mar. Sci. 2023, 10, 1112025. [Google Scholar] [CrossRef]
- Arbic, B.K. Incorporating tides and internal gravity waves within global ocean general circulation models: A review. Prog. Oceanogr. 2022, 206, 102824. [Google Scholar] [CrossRef]
- Liu, H.; Lin, P.; Zheng, W.; Luan, Y.; Ma, J.; Ding, M.; Mo, H.; Wan, L.; Ling, T. A global eddy-resolving ocean forecast system in China – LICOM Forecast System (LFS). J. Oper. Oceanogr. 2023, 16, 15–27. [Google Scholar] [CrossRef]
- Ali, M.M.; Swain, D.; Weller, R.A. Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophys. Res. Lett. 2004, 31, L20308. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Wei, L.; Guan, L.; Qu, L.; Guo, D. Prediction of sea surface temperature in the China Seas based on Long Short-Term Memory neural networks. Remote Sens. 2020, 12, 2697. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9. [Google Scholar]
- Hao, P.; Li, S.; Song, J.; Gao, Y. Prediction of sea surface temperature in the South China Sea based on deep learning. Remote Sens. 2023, 15, 1656. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Yu, P.S.; Long, M. PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2208–2225. [Google Scholar] [CrossRef]
- Wang, L.; Ammons, S.; Hur, V.M.; Sriver, R.L.; Zhao, Z. Convolutional GRU network for seasonal prediction of the El Niño-Southern Oscillation. arXiv 2023, arXiv:2306.10443. [Google Scholar]
- Shi, B.; Hao, Y.; Feng, L.; Ge, C.; Peng, Y.; He, H. An Attention-Based Context Fusion Network for spatiotemporal prediction of sea surface temperature. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1504405. [Google Scholar] [CrossRef]
- He, H.; Shi, B.; Hao, Y.; Feng, L.; Lyu, X.; Ling, Z. Forecasting sea surface temperature during typhoon events in the Bohai Sea using spatiotemporal neural networks. Atmos. Res. 2024, 309, 107578. [Google Scholar] [CrossRef]
- Xie, B.; Qi, J.; Yang, S.; Sun, G.; Feng, Z.; Yin, B.; Wang, W. Sea surface temperature and marine heat wave predictions in the South China Sea: A 3D U-Net deep learning model integrating multi-source data. Atmosphere 2024, 15, 86. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, C.; Zhang, X.; Zhang, L. A multivariable Convolutional Neural Network for forecasting synoptic-scale sea surface temperature anomalies in the South China Sea. Weather Forecast. 2023, 38, 849–863. [Google Scholar] [CrossRef]
- Zhang, M.; Han, G.; Wu, X.; Li, C.; Shao, Q.; Li, W.; Cao, L.; Wang, X.; Dong, W.; Ji, Z. SST Forecast Skills Based on Hybrid Deep Learning Models: With Applications to the South China Sea. Remote Sens. 2024, 16, 1034. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Liu, T.; Tian, D.; He, M.; Li, Q.; Liu, J. A moored array observation dataset for air-sea surface, upper and bottom Ocean in the northern South China Sea during 2014–2015 (MASCS 1.0). Earth Syst. Sci. Data Discuss. 2024, 2024, 224. [Google Scholar] [CrossRef]
- Tu, Q.; Hao, Z. Validation of sea surface temperature derived from Himawari-8 by JAXA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 448–459. [Google Scholar] [CrossRef]
Lead Time | ACFN | PredRNN | ConvLSTM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | CC | MAE | RMSE | CC | MAE | RMSE | CC | ||||
1 | 0.215 | 0.972 | 0.288 | 0.987 | 0.601 | 0.776 | 0.724 | 0.949 | 0.940 | 0.614 | 1.176 | 0.905 |
2 | 0.309 | 0.945 | 0.404 | 0.974 | 0.643 | 0.753 | 0.779 | 0.937 | 0.864 | 0.661 | 1.087 | 0.906 |
3 | 0.372 | 0.924 | 0.479 | 0.964 | 0.675 | 0.735 | 0.821 | 0.928 | 0.726 | 0.714 | 0.902 | 0.906 |
4 | 0.427 | 0.903 | 0.543 | 0.956 | 0.699 | 0.721 | 0.851 | 0.920 | 0.822 | 0.595 | 0.993 | 0.905 |
5 | 0.469 | 0.884 | 0.594 | 0.948 | 0.719 | 0.708 | 0.876 | 0.914 | 0.943 | 0.470 | 1.112 | 0.904 |
6 | 0.503 | 0.868 | 0.635 | 0.940 | 0.736 | 0.697 | 0.898 | 0.908 | 0.922 | 0.510 | 1.100 | 0.893 |
7 | 0.532 | 0.853 | 0.670 | 0.933 | 0.751 | 0.687 | 0.917 | 0.903 | 0.808 | 0.634 | 0.986 | 0.880 |
8 | 0.557 | 0.838 | 0.702 | 0.926 | 0.764 | 0.678 | 0.934 | 0.899 | 0.706 | 0.725 | 0.877 | 0.880 |
9 | 0.581 | 0.824 | 0.731 | 0.920 | 0.776 | 0.669 | 0.950 | 0.895 | 0.656 | 0.762 | 0.826 | 0.884 |
10 | 0.604 | 0.810 | 0.759 | 0.915 | 0.789 | 0.660 | 0.967 | 0.891 | 0.643 | 0.770 | 0.813 | 0.887 |
Lead Time | ACFN | PredRNN | ConvLSTM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | CC | MAE | RMSE | CC | MAE | RMSE | CC | ||||
0 * | 0.431 | 0.693 | 0.506 | 0.921 | 0.431 | 0.693 | 0.506 | 0.921 | 0.431 | 0.693 | 0.506 | 0.921 |
1 | 0.500 | 0.590 | 0.584 | 0.907 | 0.700 | 0.208 | 0.812 | 0.843 | 0.706 | 0.178 | 0.827 | 0.575 |
2 | 0.497 | 0.581 | 0.591 | 0.890 | 0.708 | 0.164 | 0.834 | 0.809 | 0.749 | 0.134 | 0.849 | 0.390 |
3 | 0.527 | 0.524 | 0.629 | 0.859 | 0.723 | 0.120 | 0.856 | 0.777 | 0.863 | −0.267 | 1.027 | 0.431 |
4 | 0.570 | 0.450 | 0.677 | 0.829 | 0.734 | 0.094 | 0.868 | 0.754 | 1.021 | −0.703 | 1.191 | 0.566 |
5 | 0.595 | 0.402 | 0.706 | 0.807 | 0.741 | 0.078 | 0.876 | 0.735 | 1.149 | −1.064 | 1.311 | 0.661 |
6 | 0.616 | 0.372 | 0.723 | 0.790 | 0.748 | 0.065 | 0.882 | 0.717 | 1.089 | −0.897 | 1.257 | 0.692 |
7 | 0.631 | 0.341 | 0.741 | 0.770 | 0.753 | 0.056 | 0.887 | 0.700 | 0.891 | −0.336 | 1.055 | 0.671 |
8 | 0.652 | 0.301 | 0.763 | 0.742 | 0.756 | 0.050 | 0.890 | 0.681 | 0.737 | 0.053 | 0.888 | 0.660 |
9 | 0.667 | 0.259 | 0.785 | 0.715 | 0.753 | 0.055 | 0.887 | 0.666 | 0.692 | 0.097 | 0.867 | 0.630 |
10 | 0.685 | 0.219 | 0.806 | 0.692 | 0.749 | 0.065 | 0.882 | 0.655 | 0.698 | 0.025 | 0.901 | 0.610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Shi, B.; Zhu, Y.; Feng, L.; Ge, C.; Tan, Q.; Peng, Y.; Liu, Y.; Ling, Z.; Li, S. Numerical Weather Prediction of Sea Surface Temperature in South China Sea Using Attention-Based Context Fusion Network. Remote Sens. 2024, 16, 3793. https://doi.org/10.3390/rs16203793
He H, Shi B, Zhu Y, Feng L, Ge C, Tan Q, Peng Y, Liu Y, Ling Z, Li S. Numerical Weather Prediction of Sea Surface Temperature in South China Sea Using Attention-Based Context Fusion Network. Remote Sensing. 2024; 16(20):3793. https://doi.org/10.3390/rs16203793
Chicago/Turabian StyleHe, Hailun, Benyun Shi, Yuting Zhu, Liu Feng, Conghui Ge, Qi Tan, Yue Peng, Yang Liu, Zheng Ling, and Shuang Li. 2024. "Numerical Weather Prediction of Sea Surface Temperature in South China Sea Using Attention-Based Context Fusion Network" Remote Sensing 16, no. 20: 3793. https://doi.org/10.3390/rs16203793
APA StyleHe, H., Shi, B., Zhu, Y., Feng, L., Ge, C., Tan, Q., Peng, Y., Liu, Y., Ling, Z., & Li, S. (2024). Numerical Weather Prediction of Sea Surface Temperature in South China Sea Using Attention-Based Context Fusion Network. Remote Sensing, 16(20), 3793. https://doi.org/10.3390/rs16203793