Coupled Effects of High Temperatures and Droughts on Forest Fires in Northeast China
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Sources
3.2. Methods
3.2.1. Pair-Copula Model
3.2.2. AIC Test
3.2.3. Kendall’s Rank Correlation Coefficient
3.2.4. Vine Copula Model
3.2.5. Compound Event and the Forest Fire Correlation Index
3.2.6. Constructing Extremely High Temperature and Drought Indicator
3.2.7. Constructing Compound Extreme Event Indicator
4. Results
4.1. Spatial and Temporal Distribution Characteristics of Forest Fires in Northeast China
4.1.1. Temporal and Spatial Analyses of Droughts
4.1.2. Temporal and Spatial Analyses of High Temperatures
4.1.3. Temporal and Spatial Analyses of Forest Fires
4.2. Copula Correlation between High Temperatures, Drought Intensity, and Forest Fires in Northeast China
4.3. Vine Copula Correlation between High Temperatures, Intense Droughts, and Forest Fires in Northeast China
4.4. Copula Correlation between Extremely High Temperatures, Intense Droughts, and Forest Fires in Northeast China
5. Discussion
5.1. The Forest Fire Hazard under High-Temperature and Drought Conditions
5.2. Probability of Forest Fires under Compound High Temperatures and Droughts
5.3. Seasonal and Spatial Distribution of the Forest Fire Hazard
5.4. Probability of Forest Fires under Compound Extremely High Temperatures and Droughts
5.5. Perspectives and Limitations
6. Conclusions
- In Northeast China, the proportion of forest fires in spring is 71.56%; in fall, it is 17.45%; in winter, it is 5.81%; and in summer, it is 5.18%. Meanwhile, forest fires burned in cropland, forest, grassland, and junction zones and showed different compositions in the different seasons, with most of them being dominated by Zones II (40.48%) and VI (36.59%).
- In spring, summer, and fall, forest fires are more strongly correlated with droughts than high temperatures in all the zones. The maximum correlation values are 0.86 with droughts and 0.5 with high temperatures. The Copula correlations between high temperatures, droughts, and forest fires are stronger in fall than in spring in Zones III, V, and VI.
- Between 2007 and 2020, forest fires occurred mainly during non-extreme climate events in Northeast China. They were subject to the combined effects of human activities and climate change. The fire events in Zone II were influenced by climate change throughout the spring, summer, and fall.
- The forest fire probabilities during compound extreme events were low in spring and high in summer and fall. In the extreme scenario, the probability is higher in fall than it is in summer. However, compound extreme events were frequent and intense in summer. This is consistent with the trend of changing forest fire patterns and longer fire seasons in Northeast China under climate change.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Sommers, W.T.; Loehman, R.A.; Hardy, C.C. Wildland fire emissions, carbon, and climate: Science overview and knowledge needs. Forest Ecol. Manag. 2014, 317, 1–8. [Google Scholar] [CrossRef]
- Luo, R.S.; Hui, D.F.; Miao, N.; Liang, C.; Wells, N. Global relationship of fire occurrence and fire intensity: A test of intermediate fire occurrence-intensity hypothesis. J. Geophys. Res.-Biogeosci. 2017, 122, 1123–1136. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree Mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Xu, X.Y.; Jia, G.S.; Zhang, X.Y.; Riley, W.J.; Xue, Y. Climate regime shift and forest loss amplify fire in Amazonian forests. Global Chang. Biol. 2020, 26, 10. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Chapman, S.; Syktus, J.; Trancoso, R.; Salazar, A.; Thatcher, M.; Watson, J.E.M.; Meijaard, E.; Sheil, D.; Dargusch, P.; McAlpine, C.A. Compounding impact of deforestation on Borneo’ s climate during El Niño events. Environ. Res. Lett. 2020, 15, 8. [Google Scholar] [CrossRef]
- Fan, J.; Liu, B.Y.; Ming, X.D.; Sun, Y.; Qin, L.J. The amplification effect of unreasonable human behaviours on natural disasters. Humanit. Soc. Sci. Commun. 2022, 9, 322. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Hu, H.Q.; Wei, S.J.; Wei, S.W. Effect of Fire Disturbance on Forest Ecosystem Carbon Cycle under the Background of Climate Warming. J. Catastrophol. 2012, 27, 37–41. [Google Scholar]
- Galizia, L.F.; Barbero, R.; Rodrigues, M.; Ruffault, J.; Pimont, F.; Curt, T. Global Warming Reshapes European Pyroregions. Earth’s Future 2023, 11, 5. [Google Scholar] [CrossRef]
- Yin, J.P.; He, B.B.; Fan, C.Q.; Chen, R.; Zhang, H.G.; Zhang, Y.R. Drought-related wildfire accounts for one-third of the forest wildfires in subtropical China. Agric. For. Meteorol. 2024, 346, 109893. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Holmes, T.R.; Kumar, S.V.; Lahmers, T.M.; Liu, P.W.; Nie, W.S.; Getirana, A.; Orland, E.; Bindlish, R.; Guzman, A.; et al. Droughts impede water balance recovery from fires in the Western United States. Nat. Ecol. Evol. 2024, 8, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Walden, L.; Fontaine, J.B.; Ruthrof, K.X.; Matusick, G.; Harper, R.J. Drought then wildfire reveals a compound disturbance in a resprouting forest. Ecol. Appl. 2023, 33, 2. [Google Scholar] [CrossRef]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 2021, 11, 689. [Google Scholar] [CrossRef]
- Ermitao, T.; Gouveia, C.M.; Bastos, A.; Russo, A.C. Interactions between hot and dry fuel conditions and vegetation dynamics in the 2017 fire season in Portugal. Environ. Res. Lett. 2022, 17, 9. [Google Scholar] [CrossRef]
- Whitman, E.; Parks, S.A.; Holsinger, L.M.; Parisien, M.A. Climate-induced fire regime amplification in Alberta, Canada. Environ. Res. Lett. 2022, 17, 5. [Google Scholar] [CrossRef]
- Slavskiy, V.; Litovchenko, D.; Matveev, S.; Sheshnitsan, S.; Larionov, M.V. Assessment of Biological and Environmental Factors Influence on Fire Hazard in Pine Forests: A Case Study in Central Forest-Steppe of the East European Plain. Land 2023, 12, 103. [Google Scholar] [CrossRef]
- Mansoor, S.; Farooq, I.; Kachroo, M.M.; Mahmoud, A.E.; Fawzy, M.; Popescu SMAlyemeni, M.N.; Sonne, C.; Rinklebe, J.; Ahmad, P. Elevation in wildfire frequencies with respect to the climate change. J. Environ. Manag. 2021, 301, 113769. [Google Scholar] [CrossRef]
- Wang, Y.N.; Wang, H.Q.; He, Y.M. Analysis on Temporal and Spatial Distribution and Influencing Factors of Forest Fire in China from 2010 to 2020. J. Shandong For. Sci. Technol. 2022, 5, 26–38. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XTqC0hXDTx9xa5GB3tQbB3i9a1Myw_mlEynbBDOKHzjL&uniplatform=NZKPT (accessed on 22 March 2023).
- Ridder, N.N.; Pitman, A.J.; Westra, S.; Ukkola, A.; Hong, X.D.; Bador, M.; Hirsch, A.L.; Evans, J.P.; Di Luca, A.; Zscheischler, J. Global hotspots for the occurrence of compound events. Nat. Commun. 2021, 11, 5956. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, J.; Niu, K.L.; Zou, B.S.; Lu, M.J.; Wang, C.Y.; Wei JYLiu, W.; Yang, C.X.; Huang, H.L. Assessment of the Forest Fire Risk and Its Indicating Significances in Zhaoqing City Based on Landsat Time-Series Images. Forest 2023, 14, 327. [Google Scholar] [CrossRef]
- Salomón, R.L.; Peters, R.L.; Zweifel, R.; Sass-Klaassen, U.G.W.; Stegehuis, A.I.; Smiljanic, M.; Poyatos, R.; Babst, F.; Cienciala, E.; Fonti, P. The 2018 European heat wave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Furniss, T.J.; Das, A.J.; Mantgem, P.J.; Stephenson, N.L.; Lutz, J.A. Crowding, climate, and the case for social distancing among trees. Ecol. Appl. 2022, 32, 2. [Google Scholar] [CrossRef]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, W.B.; Sun, F.B.; Wang, H. Changes of compound hot and dry extremes on different land surface conditions in China during 1957–2018. Int. J. Climatol. 2020, 41, 1085–1099. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L.R.; Butler, D.R.; Chow, T.E. A study of the relationship between fire hazard and burn severity in Grand Teton National Park, USA. Int. J. Appl. Earth Obs. 2021, 98, 102305. [Google Scholar] [CrossRef]
- Xu, K.; Huang, S.M.; He, F.L. Modeling fire hazards for the maintenance of long-term forest inventory plots in Alberta, Canada. Forest Ecol. Manag. 2021, 513, 120206. [Google Scholar] [CrossRef]
- Farrokhi, A.; Farzin, S.; Mousavi, S.F. Meteorological drought analysis in response to climate change conditions, based on combined four-dimensional vine copulas and data mining (VC-DM). J. Hydrol. 2021, 603, 127135. [Google Scholar] [CrossRef]
- Li, H.W.; Li, Y.P.; Huang, G.H.; Sun, J. Quantifying effects of compound dry-hot extremes on vegetation in Xinjiang (China) using a vine-copula conditional probability model. Agric. For. Meteorol. 2021, 311, 108658. [Google Scholar] [CrossRef]
- Wu, H.J.; Su, X.L.; Singh, V.P.; Feng, K.; Niu, J.P. Agricultural Drought Prediction Based on Conditional Distributions of Vine Copulas. Water Resour. Res. 2021, 57, 8. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.F.; Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 2023, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198. [Google Scholar] [CrossRef]
- Dissmann, J.; Brechmann, E.C.; Czado, C.; Kurowicka, D. Selecting and estimating regular vine copulae and application to financial returns. Comput. Stat. Data Anal. 2013, 59, 52–69. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de répartition à n dimensions et leurs marges. Publ. L’Institut Stat. L’Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman and Hall: London, UK, 1997. [Google Scholar]
- Kendall, M. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Zhang, X.; Vincent, L.A.; Hogg, W.D. Characteristics of daily and extreme temperatures over Canada. J. Clim. 2001, 14, 1959–1976. [Google Scholar] [CrossRef]
- Keetch, J.J.; Byram, G.M. A Drought Index for Forest Fire Control; USDA Forest Services Research: Washington, DC, USA, 1968; Volume 38, p. SE-38. Available online: https://www.srs.fs.usda.gov/pubs/rp/rp_se038.pdf (accessed on 22 March 2023).
- Wang, W.J.; Zhang, Y.Q.; Guo, B.; Ji, M.; Xu, Y. Compound Droughts and Heat Waves over the Huai River Basin of China: From a Perspective of the Magnitude Index. J. Hydrometeorol. 2022, 22, 3107–3119. [Google Scholar] [CrossRef]
- Mojtaba, S.; Elisa, R.; Amir, A. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 2017, 53, 6. [Google Scholar] [CrossRef]
- Shi, Z.T.; Jiang, D.B.; Wang, Y.L. Spatiotemporal dependence of compound drought-heatwave and fire activity in China. Weather Clim. Extrem. 2024, 45, 100695. [Google Scholar] [CrossRef]
- Griebel, A.; Boer, M.M.; Blackman, C.; Choat, B.; Ellsworth, D.S.; Madden, P. Specific leaf area and vapour pressure deficit control live fuel moisture content. Funct. Ecol. 2023, 37, 719–731. [Google Scholar] [CrossRef]
- Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef] [PubMed]
- Arizpe, A.H.; Falk, D.A.; Woodhouse, C.A.; Swetnam, T.W. Widespread fire years in the US-Mexico Sky Islands are contingent on both winter and monsoon precipitation. Int. J. Wildland Fire 2020, 29, 1072–1087. [Google Scholar] [CrossRef]
- Li, W.K.; Shu, L.F.; Wang, M.Y.; Li, W.; Si, L.Q.; Zhao, F.J.; Li, X.X.; Zhou, N.Y. Occurrence Pattern and Changing Trend of Lightning Induced Fires and Human-caused Fires in Daxing’anling Forest Region of Heilongjiang Province. Sci. Silvae Sin. 2024, 4, 136–146. [Google Scholar]
- Libonati, R.; Geirinhas, J.L.; Silva, P.S.; Russo, A.; Rodrigues, J.A.; Belém, L.B.C.; Nogueira, J.; Roque, F.O.; DaCamara, C.C.; Nunes, A.M.B.; et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ. Res. Lett. 2022, 17, 015005. [Google Scholar] [CrossRef]
- Zhao, F.J.; Liu, Y.Q.; Shu, L.F. Change in the fire season pattern from bimodal to unimodal under climate change: The case of Daxing’anling in Northeast China. Agric. For. Meteorol. 2020, 291, 108075. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, R.; Yao, Q.C.; Zong, X.Z.; Tian, X.R.; Zheng, B.; Trouet, V. Strong winds drive grassland fires in China. Environ. Res. Lett. 2023, 18, 015005. [Google Scholar] [CrossRef]
- Yan, Y.C.; Piao, S.L.; Hammond, W.M.; Chen, A.P.; Hong, S.B.; Xu, H.; Munson, S.M.; Myneni, R.B.; Allen, C.D. Climate-induced tree-mortality pulses are obscured by broad-scale and long-term greening. Nat. Ecol. Evol. 2024, 8, 912–923. [Google Scholar] [CrossRef]
Data Type | Period | Data Sources |
---|---|---|
2007–2020 | Global spatiotemporally continuous MODIS land surface temperature dataset, http://www.tpdc.ac.cn/, accessed on 26 November 2023 | |
Fire | 2007–2020 | Google Earth Engine (GEE) GlobFire Daily Fire Dataset Based on MCD64A1, https://land.copernicus.eu/, accessed on 26 November 2023 |
2007–2020 | Google Earth Engine (GEE) Keetch–Byram Drought Index, http://wtlab.iis.u-tokyo.ac.jp/DMEWS/, accessed on 26 November 2023 | |
Land use | 2020 | GlobeLand30, https://shop.geospatial.com/product/AEN4SKCGYEGK446KDDB3BW5TM4/04-WDAY-AEN4-GlobeLand30-30-meter-Global-Land-Cover, accessed on 26 November 2023 |
Zones | Description |
---|---|
Zone I | Farmland is susceptible to being impacted by forest fires or triggering forest fires. |
Zone II | Forest. |
Zone III | Grassland is susceptible to being impacted by forest fires or triggering forest fires. |
Zone IV | The transition zone between farmland and forest. |
Zone V | The transition zone between grassland and forest. |
Zone VI | The transition between farmland, grassland, and forest. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.; Liu, X.; Tong, Z.; Zhang, J.; Wang, X. Coupled Effects of High Temperatures and Droughts on Forest Fires in Northeast China. Remote Sens. 2024, 16, 3784. https://doi.org/10.3390/rs16203784
Ma B, Liu X, Tong Z, Zhang J, Wang X. Coupled Effects of High Temperatures and Droughts on Forest Fires in Northeast China. Remote Sensing. 2024; 16(20):3784. https://doi.org/10.3390/rs16203784
Chicago/Turabian StyleMa, Bing, Xingpeng Liu, Zhijun Tong, Jiquan Zhang, and Xiao Wang. 2024. "Coupled Effects of High Temperatures and Droughts on Forest Fires in Northeast China" Remote Sensing 16, no. 20: 3784. https://doi.org/10.3390/rs16203784
APA StyleMa, B., Liu, X., Tong, Z., Zhang, J., & Wang, X. (2024). Coupled Effects of High Temperatures and Droughts on Forest Fires in Northeast China. Remote Sensing, 16(20), 3784. https://doi.org/10.3390/rs16203784