Sky-GVIO: Enhanced GNSS/INS/Vision Navigation with FCN-Based Sky Segmentation in Urban Canyon
Abstract
:1. Introduction
- Adaptive Sky-view Image Segmentation: We introduce adaptive sky-view image segmentation based on fully convolutional networks (FCNs) that can adjust to varying lighting conditions, addressing a key limitation of traditional methods;
- Integration of Sky-GNSS/INS/Vision: We propose an integrated model that combines GNSS, INS, and Vision. Meantime, we extend the S−NDM method to this model (named Sky−GVIO), enabling a comprehensive approach to vehicle positioning in challenging urban canyon environments;
- Performance Evaluation: A comprehensive evaluation of S−NDM’s performance is conducted, with a focus on its effectiveness within GNSS pseudorange and carrier-phase positioning frameworks, thereby shedding light on its applicability across different GNSS-related integration positioning techniques;
- Open-Source Sky-view Image Dataset: An open-source repository of sky-view images, including the training and testing data, is provided at https://github.com/whuwangjr/sky-view-images, accessed on 27 July 2024, contributing a valuable dataset to the research community and mitigating the lack of available resources in this field.
2. System Overview
2.1. Sky-View Image Segmentation
2.2. Tightly Coupled GNSS/INS/Vision Integration Model
- (1)
- GNSS Observation Model: The original pseudorange and carrier-phase observation equations in GNSS positioning are expressed as follows:
- (2)
- INS Dynamic Model: Considering the noisy measurement of the low-cost IMU, the Coriolis and centrifugal forces due to Earth’s rotation are ignored in the IMU formulation. The inertial measurement can be modeled [21] in the (body) frame as follows:
- (3)
- Visual Measurement Model: The core idea of the well-known MSCKF is to establish geometric constraints between multi-camera states by utilizing the same visual feature points observed by multi-cameras. Following this concept, we establish a visual model. For a visual feature point observed by a stereo camera at time , its visual observation model [33] on the normalized projection planes of the left and right cameras can be represented as follows:
- (4)
- State and Measurement Model of the Tightly Coupled GNSS/INS/Vision: This paper employs MSCKF for tightly coupled GNSS/INS/Vision integration. Based on the above introductions of different sensor models, the complete state model for the integration of tightly coupled GNSS/INS/Vision is as follows:
2.3. The Sky-View Image-Aided GNSS NLOS Detection and Mitigation Method (S−NDM)
3. Experiments
3.1. Experiment Description
3.2. The Results of Sky-View Image Segmentation and GNSS NLOS Detection
3.3. The Quantitative Analysis of Sky-View Image Segmentation
3.4. The Experimental Results of Positioning
4. Conclusions
- (1)
- Enhance the utilization of fish-eye camera data beyond GNSS NLOS detection, potentially integrating fish-eye camera observations into the proposed model;
- (2)
- Reach centimeter-level accuracy. By adding prior information (such as high-precision maps), the whole system can be made more robust and the positioning accuracy can increase.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godha, S.; Cannon, M.E. GPS/MEMS INS integrated system for navigation in urban areas. GPS Solut. 2007, 11, 193–203. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Gao, Z.; Chen, Q.; Niu, X. High-accuracy positioning in urban environments using single-frequency multi-GNSS RTK/MEMS-IMU integration. Remote Sens. 2018, 10, 205. [Google Scholar] [CrossRef]
- Niu, X.; Dai, Y.; Liu, T.; Chen, Q.; Zhang, Q. Feature-based GNSS positioning error consistency optimization for GNSS/INS integrated system. GPS Solut. 2023, 27, 89. [Google Scholar] [CrossRef]
- Chen, K.; Chang, G.; Chen, C. GINav: A MATLAB-based software for the data processing and analysis of a GNSS/INS integrated navigation system. GPS Solut. 2021, 25, 108. [Google Scholar] [CrossRef]
- Xu, B.; Wang, P.; He, Y.; Chen, Y.; Chen, Y.; Zhou, M. Leveraging structural information to improve point line visual-inertial odometry. IEEE Robot. Autom. Lett. 2022, 7, 3483–3490. [Google Scholar] [CrossRef]
- He, Y.; Xu, B.; Ouyang, Z.; Li, H. A rotation-translation-decoupled solution for robust and efficient visual-inertial initialization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 739–748. [Google Scholar]
- Chen, Y.; Xu, B.; Wang, B.; Na, J.; Yang, P. GNSS Reconstrainted Visual–Inertial Odometry System Using Factor Graphs. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Liao, J.; Li, X.; Wang, X.; Li, S.; Wang, H. Enhancing navigation performance through visual-inertial odometry in GNSS-degraded environment. GPS Solut. 2021, 25, 50. [Google Scholar] [CrossRef]
- Cao, S.; Lu, X.; Shen, S. GVINS: Tightly coupled GNSS–visual–inertial fusion for smooth and consistent state estimation. IEEE Trans. Robot. 2022, 38, 2004–2021. [Google Scholar] [CrossRef]
- Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Gao, Z.; Niu, X.; El-sheimy, N. Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-challenged environments. Remote Sens. 2019, 11, 610. [Google Scholar] [CrossRef]
- Groves, P.D.; Jiang, Z.; Skelton, B.; Cross, P.A.; Lau, L.; Adane, Y.; Kale, I. Novel multipath mitigation methods using a dual-polarization antenna. In Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, USA, 21–24 September 2010. [Google Scholar]
- Liu, S.; Li, D.; Li, B.; Wang, F. A compact high-precision GNSS antenna with a miniaturized choke ring. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2465–2468. [Google Scholar] [CrossRef]
- Gupta, I.J.; Weiss, I.M.; Morrison, A.W. Desired features of adaptive antenna arrays for GNSS receivers. Proc. IEEE 2016, 104, 1195–1206. [Google Scholar] [CrossRef]
- Won, D.H.; Ahn, J.; Lee, S.-W.; Lee, J.; Sung, S.; Park, H.-W.; Park, J.-P.; Lee, Y.J. Weighted DOP with consideration on elevation-dependent range errors of GNSS satellites. IEEE Trans. Instrum. Meas. 2012, 61, 3241–3250. [Google Scholar] [CrossRef]
- Groves, P.D.; Jiang, Z. Height aiding, C/N0 weighting and consistency checking for GNSS NLOS and multipath mitigation in urban areas. J. Navig. 2013, 66, 653–669. [Google Scholar] [CrossRef]
- Wen, W.; Zhang, G.; Hsu, L.-T. Exclusion of GNSS NLOS receptions caused by dynamic objects in heavy traffic urban scenarios using real-time 3D point cloud: An approach without 3D maps. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018. [Google Scholar] [CrossRef]
- Wen, W.W.; Zhang, G.; Hsu, L.-T. GNSS NLOS exclusion based on dynamic object detection using LiDAR point cloud. IEEE Trans. Intell. Transp. Syst. 2019, 22, 853–862. [Google Scholar] [CrossRef]
- Wang, L.; Groves, P.D.; Ziebart, M.K. GNSS shadow matching: Improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme. NAVIGATION J. Inst. Navig. 2013, 60, 195–207. [Google Scholar] [CrossRef]
- Hsu, L.-T.; Gu, Y.; Kamijo, S. 3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS Solut. 2016, 20, 413–428. [Google Scholar] [CrossRef]
- Suzuki, T.; Kubo, N. N-LOS GNSS signal detection using fish-eye camera for vehicle navigation in urban environments. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, USA, 8–12 September 2014. [Google Scholar]
- Wen, W.; Bai, X.; Kan, Y.C.; Hsu, L.T. Tightly coupled GNSS/INS integration via factor graph and aided by fish-eye camera. IEEE Trans. Veh. Technol. 2019, 68, 10651–10662. [Google Scholar] [CrossRef]
- Meguro, J.-i.; Murata, T.; Takiguchi, J.I.; Amano, Y.; Hashizume, T. GPS multipath mitigation for urban area using omnidirectional infrared camera. IEEE Trans. Intell. Transp. Syst. 2009, 10, 22–30. [Google Scholar] [CrossRef]
- Cohen, A.; Meurie, C.; Ruichek, Y.; Marais, J.; Flancquart, A. Quantification of gnss signals accuracy: An image segmentation method for estimating the percentage of sky. In Proceedings of the 2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Pune, India, 11–12 November 2009. [Google Scholar] [CrossRef]
- Attia, D.; Meurie, C.; Ruichek, Y.; Marais, J. Counting of satellites with direct GNSS signals using Fisheye camera: A comparison of clustering algorithms. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Zhang, S.; Xu, B.; Luo, Y.; Jin, R. Sky-view images aided NLOS detection and suppression for tightly coupled GNSS/INS system in urban canyon areas. Meas. Sci. Technol. 2023, 35, 025112. [Google Scholar] [CrossRef]
- Vijay, P.; Patil, N.C. Gray scale image segmentation using OTSU Thresholding optimal approach. J. Res. 2016, 2, 20–24. [Google Scholar]
- Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [Google Scholar] [CrossRef]
- Soltani-Nabipour, J.; Khorshidi, A.; Noorian, B. Lung tumor segmentation using improved region growing algorithm. Nucl. Eng. Technol. 2020, 52, 2313–2319. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xu, B.; Zhang, S.; Kuang, K.; Li, X. A unified cycle-slip, multipath estimation, detection and mitigation method for VIO-aided PPP in urban environments. GPS Solut. 2023, 27, 59. [Google Scholar] [CrossRef]
- Furgale, P.; Rehder, J.; Siegwart, R. Unified temporal and spatial calibration for multi-sensor systems. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1280–1286. [Google Scholar] [CrossRef]
- Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust stereo visual inertial odometry for fast autonomous flight. IEEE Robot. Autom. Lett. 2018, 3, 965–972. [Google Scholar] [CrossRef]
- Rehder, J.; Nikolic, J.; Schneider, T.; Hinzmann, T.; Siegwart, R. Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016. [Google Scholar] [CrossRef]
- Sola, J. Quaternion kinematics for the error-state Kalman filter. arXiv 2017, arXiv:1711.02508. [Google Scholar] [CrossRef]
- Herrera, A.M.; Suhandri, H.F.; Realini, E.; Reguzzoni, M.; de Lacy, M.C. goGPS: Open-source MATLAB software. GPS Solut. 2016, 20, 595–603. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125. Available online: https://opencv.org (accessed on 4 April 2023).
IMU Sensor | Grade | Sampling Rate (Hz) | Bias Stability | Random Walk | ||
---|---|---|---|---|---|---|
Gyro. 1 (°/h) | Acc. 1 (mGal) | Angular (°/) | Velocity (m/s/) | |||
SPAN-ISA-100C | Tactical | 200 | 0.05 | 100 | 0.005 | 0.018 |
ADIS-16470 | MEMS | 100 | 8 | 1300 | 0.34 | 0.18 |
Methods | Kmeans | Otsu | Region Growth | Ours |
---|---|---|---|---|
FPS | 0.34 | 5.47 | 3.69 | 10.85 |
Accuracy | 49.50% | 36.45% | 44.96% | 98.54% |
Method | Position RMSE (m) | |||
---|---|---|---|---|
East | North | Up | ||
Ours | SPP/INS/Vision | 3.24 | 2.14 | 3.39 |
Sky−SPP/INS/Vision | 2.07 | 1.51 | 2.47 | |
RTK/INS/Vision | 0.21 | 0.13 | 0.36 | |
Sky−RTK/INS/Vision | 0.16 | 0.11 | 0.27 | |
Others | VINS−mono | - | - | - |
GVINS | 2.50 | 1.75 | 2.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, B.; Liu, J.; Gao, K.; Zhang, S. Sky-GVIO: Enhanced GNSS/INS/Vision Navigation with FCN-Based Sky Segmentation in Urban Canyon. Remote Sens. 2024, 16, 3785. https://doi.org/10.3390/rs16203785
Wang J, Xu B, Liu J, Gao K, Zhang S. Sky-GVIO: Enhanced GNSS/INS/Vision Navigation with FCN-Based Sky Segmentation in Urban Canyon. Remote Sensing. 2024; 16(20):3785. https://doi.org/10.3390/rs16203785
Chicago/Turabian StyleWang, Jingrong, Bo Xu, Jingnan Liu, Kefu Gao, and Shoujian Zhang. 2024. "Sky-GVIO: Enhanced GNSS/INS/Vision Navigation with FCN-Based Sky Segmentation in Urban Canyon" Remote Sensing 16, no. 20: 3785. https://doi.org/10.3390/rs16203785
APA StyleWang, J., Xu, B., Liu, J., Gao, K., & Zhang, S. (2024). Sky-GVIO: Enhanced GNSS/INS/Vision Navigation with FCN-Based Sky Segmentation in Urban Canyon. Remote Sensing, 16(20), 3785. https://doi.org/10.3390/rs16203785