Dual-Interference Channels Static Fourier Transform Imaging Spectrometer Based on Stepped Micro-Mirror: Data Processing and Experiment Research
Abstract
:1. Introduction
2. The Working Principle and Parameters of D-SIFTS
2.1. Instrument Structure and Data Acquisition Mechanism
2.2. Dual-Interference Channels Data Sampling Principle
2.3. Instrument Parameters
3. Data Processing Algorithm
3.1. Scene Image Reconstruction
3.1.1. Scene Image Stitching
3.1.2. Image Enhancement and Denoising
3.2. Spectrum Reconstruction
3.2.1. Interferometric Intensity Sequence Resampling
3.2.2. Interferometric Intensity Baseline Correction
3.2.3. Apodization
3.2.4. Phase Correction
3.2.5. Spectral and Radiometric Calibration
3.2.6. Modeling of Passive Telemetry Radiative Transfer and Baseline Correction of the Transmittance Spectrum
3.3. Spectrum Reconstruction
4. Experiments and Results Discussion
4.1. Panoramic Scanning Imaging
4.2. Spectral and Radiometric Calibration
4.3. Passive Telemetry Simulation of the Gas Target
4.4. Remote Sensing of Gas Plumes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Griffiths, P.R. Fourier transform infrared spectrometry. Science 1983, 222, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhou, Z.-Y.; Li, Y.; Liu, S.-K.; Ge, Z.; Guo, G.-C.; Shi, B.-S. Angular-spectrum-dependent interference. Light Sci. Appl. 2021, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Israelsen, N.M.; Petersen, C.R.; Barh, A.; Jain, D.; Jensen, M.; Hannesschläger, G.; Tidemand-Lichtenberg, P.; Pedersen, C.; Podoleanu, A.; Bang, O. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl. 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Saptari, V. Fourier Transform Spectroscopy Instrumentation Engineering; SPIE Optical Engineering Press: Bellingham, WA, USA, 2003. [Google Scholar]
- Talghader, J.J.; Gawarikar, A.S.; Shea, R.P. Spectral selectivity in infrared thermal detection. Light Sci. Appl. 2012, 1, e24. [Google Scholar] [CrossRef]
- Li, A.; Yao, C.; Xia, J.; Wang, H.; Cheng, Q.; Penty, R.; Fainman, Y.; Pan, S. Advances in cost-effective integrated spectrometers. Light Sci. Appl. 2022, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, B.; Xiangli, B.; Li, Y. Interference image spectroscopy for upper atmospheric wind field measurement. Optik 2006, 117, 265–270. [Google Scholar] [CrossRef]
- Girshovitz, P.; Shaked, N.T. Doubling the field of view in off-axis low-coherence interferometric imaging. Light Sci. Appl. 2014, 3, e151. [Google Scholar] [CrossRef]
- Pope, A.; Rees, W.G. Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sens. Environ. 2014, 141, 1–13. [Google Scholar] [CrossRef]
- Shang, S.; Lee, Z.; Lin, G.; Hu, C.; Shi, L.; Zhang, Y.; Li, X.; Wu, J.; Yan, J. Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV. Remote Sens. Environ. 2017, 198, 85–94. [Google Scholar] [CrossRef]
- Kaiser, F.; Vergyris, P.; Aktas, D.; Babin, C.; Labonté, L.; Tanzilli, S. Quantum enhancement of accuracy and precision in optical interferometry. Light Sci. Appl. 2018, 7, 17163. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Chan, K.L.; Hu, Q.; Liu, H.; Li, B.; Xing, C.; Tan, W.; Zhou, H.; Si, F. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light Sci. Appl. 2020, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Garoi, F.; Nicolae, I.; Prepelita, P. Monochromatic light measurement via geometric phase and Fourier-transform spectroscopy method. Sci. Rep. 2022, 12, 12922. [Google Scholar] [CrossRef] [PubMed]
- Hase, F.; Frey, M.; Blumenstock, T.; Groß, J.; Kiel, M.; Kohlhepp, R.; Mengistu Tsidu, G.; Schäfer, K.; Sha, M.; Orphal, J. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin. Atmos. Meas. Tech. 2015, 8, 3059–3068. [Google Scholar] [CrossRef]
- Wiacek, A.; Hellmich, M.; Flesch, T. Application of Open-Path Fourier Transform Infrared (OP-FTIR) Spectroscopy to Air-Sea Greenhouse Gas Exchange. In Fourier Transform Spectroscopy; Optica Publishing Group: Washington, DC, USA, 2021; p. JW4D.1. [Google Scholar]
- Soncco, D.-C.; Barbanson, C.; Nikolova, M.; Almansa, A.; Ferrec, Y. Fast and accurate multiplicative decomposition for fringe removal in interferometric images. IEEE Trans. Comput. Imaging 2017, 3, 187–201. [Google Scholar] [CrossRef]
- Kattnig, A. Theoretical and practical analysis of spatial and spectral calibration of static Fourier transform infrared spectrometers. Opt. Express 2019, 27, 14819–14834. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, J.; Bai, C.; Wei, M.; Liu, J.; Wang, Y.; Ji, Y. Iterative local Fourier transform-based high-accuracy wavelength calibration for Fourier transform imaging spectrometer. Opt. Express 2020, 28, 5768–5786. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, L.; Shen, X.; Jin, L.; Xu, H.; Deng, Y.; Liu, J.; Liu, W. Reconstruction of a leaking gas cloud from a passive FTIR scanning remote-sensing imaging system. Appl. Opt. 2021, 60, 9396–9403. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Su, X.; Li, H.; Li, S.; Liu, J.; Zhang, G.; Feng, X.; Wang, S.; Liu, X.; Wang, Y. Learning a Fully Connected U-Net for Spectrum Reconstruction of Fourier Transform Imaging Spectrometers. Remote Sens. 2022, 14, 900. [Google Scholar] [CrossRef]
- Cho, J.Y.; Lee, S.; Kim, H.; Jang, W.K. Spectral Reconstruction for High Spectral Resolution in a Static Modulated Fourier-transform Spectrometer. Curr. Opt. Photonics 2022, 6, 244–251. [Google Scholar]
- Shu, Y.; Sun, J.; Lyu, J.; Fan, Y.; Zhou, N.; Ye, R.; Zheng, G.; Chen, Q.; Zuo, C. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 2022, 3, 24. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Z.; Hu, G.; Liu, J.; Zhang, K.; Li, H.; Ratni, B.; Burokur, S.N.; Wu, Q.; Tan, J.; et al. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX 2020, 1, 16. [Google Scholar] [CrossRef]
- Kleinert, A.; Friedl-Vallon, F.; Guggenmoser, T.; Höpfner, M.; Neubert, T.; Ribalda, R.; Sha, M.; Ungermann, J.; Blank, J.; Ebersoldt, A. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: Generation of radiometrically and spectrally calibrated spectra. Atmos. Meas. Tech. 2014, 7, 4167–4184. [Google Scholar] [CrossRef]
- Coudrain, C.; Bernhardt, S.; Caes, M.; Domel, R.; Ferrec, Y.; Gouyon, R.; Henry, D.; Jacquart, M.; Kattnig, A.; Perrault, P. SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures. Opt. Express 2015, 23, 16164–16176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Q.; Yan, T.; Mu, T.; Wei, Y. High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope. Opt. Express 2016, 24, 23314–23332. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhang, C.; Zhang, J.; Quan, N.; Tong, C. High resolution channeled imaging spectropolarimetry based on liquid crystal variable retarder. Opt. Express 2018, 26, 10382–10391. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, F.; Wang, X.; Zhu, C. Low crosstalk polarization-difference channeled imaging spectropolarimeter using double-Wollaston prism. Opt. Express 2019, 27, 11734–11747. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Cao, L.; Zhong, Y.; Jia, Z. Field-Based High-Quality Emissivity Spectra Measurement Using a Fourier Transform Thermal Infrared Hyperspectral Imager. Remote Sens. 2021, 13, 4453. [Google Scholar] [CrossRef]
- ElZeiny, W.E.; Sabry, Y.M.; Khalil, D.A. Complex Kernel-based spectrum reconstruction algorithm for cascaded Fabry–Perot interferometric spectrometer. Appl. Opt. 2021, 60, 8999–9006. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, L.; Xu, H.; Shen, X.; Deng, Y.; Xu, H.; Liu, J.; Liu, W. Three-dimensional reconstruction of a leaking gas cloud based on two scanning FTIR remote-sensing imaging systems. Opt. Express 2022, 30, 25581–25596. [Google Scholar] [CrossRef]
- Shi, H.; Xiong, W.; Ye, H.; Wu, S.; Zhu, F.; Li, Z.; Luo, H.; Li, C.; Wang, X. High Resolution Fourier Transform Spectrometer for Ground-Based Verification of Greenhouse Gases Satellites. Remote Sens. 2023, 15, 1671. [Google Scholar] [CrossRef]
- Ren, J.; Lü, J.; Zhao, B.; Wang, Q.; Qin, Y.; Tao, J.; Liang, J.; Wang, W. Optical design and investigation of a dual-interference channels and bispectrum static fourier-transform imaging spectrometer based on stepped micro-mirror. IEEE Access 2021, 9, 81871–81881. [Google Scholar] [CrossRef]
- Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, S.; Jiao, L.; Tian, D.; Wang, S. A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4328–4338. [Google Scholar] [CrossRef]
- Vuylsteke, P.; Schoeters, E.P. Multiscale image contrast amplification (MUSICA). In Medical Imaging 1994: Image Processing; SPIE: Bellingham, WA, USA, 1994; pp. 551–560. [Google Scholar]
- Lichun, M.; Renzhong, Y.; Lu, S. Improvement and implementation of Forman phase correction algorithm. Remote Sens. Nat. Resour. 2013, 25, 97–101. [Google Scholar]
- Xiang, Y.; Yuan, Y. Research on data processing methods of unilateral interferograms. Acta Photonica Sin. 2006, 35, 12. [Google Scholar]
- Zhao, B.; Liang, J.; Lv, J.; Zheng, K.; Zhao, Y.; Chen, Y.; Sheng, K.; Qin, Y.; Wang, W. Reducing the Influence of Systematic Errors in Interference Core of Stepped Micro-Mirror Imaging Fourier Transform Spectrometer: A Novel Calibration Method. Remote Sens. 2023, 15, 985. [Google Scholar] [CrossRef]
- Jiao, Y.; Xu, L.; Gao, M.; Jin, L.; Tong, J.; Li, S.; Wei, X. Investigation of the Limit of Detection of an Infrared passive Remote Sensing and Scanning Imaging System for Pollution Gas. Spectrosc. Spectr. Anal. 2013, 33, 2617–2620. [Google Scholar]
- Jiao, Y.; Xu, L.; Gao, M.; Jin, L.; Tong, J.; Li, S.; Wei, X. Real-time data processing of remote measurement of air pollution by infrared passive scanning imaging system. Acta Phys. Sin. 2013, 62, 140705. [Google Scholar] [CrossRef]
- Gao, M.; Liu, W.; Zhang, T.; Liu, C.; Liu, J.; Wei, Q.; Lu, Y.; Wang, Y.; Zhu, J.; Xu, L. Passive FTIR Remote Sensing of Gaseous Pollutant in Heated Plume. Spectrosc. Spectr. Anal. 2006, 26, 47–50. [Google Scholar]
Serial Number | CWL/cm−1 | 50% Transmittance Range/cm−1 | Material | Thickness/mm |
---|---|---|---|---|
1st | 2198 | 2146~2252 | Sapphire | 1 |
2nd | 2203 | 2124~2286 | Sapphire | 1 |
3rd | 2150 | 2102~2200 | Sapphire | 1 |
Overall Parameters | Value |
---|---|
Spectral region | 3.7–4.8 μm |
Spectral resolution | 50 cm−1, 3.125 cm−1 |
Spatial resolution | 0.3 m@2000 m |
Detector material | HgCdTe |
Detector array size | 320 × 256 |
Pixel size | 30 × 30 μm |
Evaluation Index | Original Scene Image | Scene Image after Enhanced and Denoised | Lifting Range/% |
---|---|---|---|
Image entropy | 6.1283 | 7.6036 | 24.07 |
Image average gradient | 2.4959 | 9.4530 | 278.74 |
Channel Type | NESR/10−8 w·(cm2·Sr·cm−1)−1 | Gas Type | NECL/ppm·m |
---|---|---|---|
Broad-band channel | 1.2452 | CO2 | 304.25 |
High-resolution channel 1st | 1.2686 | CO2 | 322.41 |
High-resolution channel 2nd | 1.9441 | N2O | 2.21 |
High-resolution channel 3rd | 1.9842 | CO | 11.88 |
Channel Number | Gas Type | Temperature/K | Pressure/atm | Gas Concentration |
---|---|---|---|---|
Broad-band channel | CO2 | 293 | 1 | 10% |
N2O | 293 | 1 | 10% | |
CO | 293 | 1 | 1% | |
Mixed gas | 293 | 1 | 10%CO2 & 10%N2O & 1%CO | |
High-resolution channel 1st | CO2 | 293 | 1 | 10%, 20%, 30%, 40%, 50%, 60% |
High-resolution channel 2nd | N2O | 293 | 1 | 1%, 1.5%, 2%, 2.5%, 3%, 5% |
High-resolution channel 3rd | CO | 293 | 1 | 0.5%, 1%, 3%, 5%, 7%, 9% |
Gas Type | Theoretical Peak Position/cm−1 | Measured Peak Position/cm−1 | Absolute Error/cm−1 | Relative Error/% |
---|---|---|---|---|
CO2 | 2325.7 | 2335.3 | 9.6 | 0.41 |
N2O | 2205.5 | 2213.1 | 7.6 | 0.34 |
CO | 2117.3 | 2109 | 8.3 | 0.39 |
Mixed gas | 2265.5 | 2249.3 | 16.2 | 0.71 |
Channel Number | Gas Type | Temperature /K | Pressure /atm | Waveband /cm−1 | Concentration Range | Concentration Sampling Interval |
---|---|---|---|---|---|---|
1st | CO2 | 293 | 1 | 2210–2250 | 2–100% | 2% |
2nd | N2O | 293 | 1 | 2145–2195 | 0.2–10% | 0.2% |
3rd | CO | 293 | 1 | 2150–2200 | 0.2–10% | 0.2% |
Gas Type | Characteristic Wavenumber Point/cm−1 | Transmittance Range | Concentration Range | R2 | Mean R2 |
---|---|---|---|---|---|
CO2 | 2250 | 1~0.65 | 0~14% | 0.9942 | 0.996 |
0.65~0.45 | 14~34% | 0.9958 | |||
0.45~0.25 | 34~70% | 0.9955 | |||
0.25~0 | 70~100% | 0.9983 | |||
N2O | 2165 | 1~0.8 | 0~1.2% | 0.9702 | 0.9853 |
0.8~0.6 | 1.2~3% | 0.9846 | |||
0.6~0.4 | 3~6.2% | 0.9919 | |||
0.4~0.2 | 6.2~10% | 0.9945 | |||
CO | 2175 | 1~0.75 | 0~1% | 0.9810 | 0.9913 |
0.75~0.59 | 1~3% | 0.9917 | |||
0.59~0.45 | 3~6% | 0.9957 | |||
0.45~0.3 | 6~10% | 0.9968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Liang, J.; Lv, J.; Zhao, B.; Zhao, Y.; Zheng, K.; Chen, Y.; Qin, Y.; Wang, W.; Wang, S.; et al. Dual-Interference Channels Static Fourier Transform Imaging Spectrometer Based on Stepped Micro-Mirror: Data Processing and Experiment Research. Remote Sens. 2024, 16, 407. https://doi.org/10.3390/rs16020407
Liu G, Liang J, Lv J, Zhao B, Zhao Y, Zheng K, Chen Y, Qin Y, Wang W, Wang S, et al. Dual-Interference Channels Static Fourier Transform Imaging Spectrometer Based on Stepped Micro-Mirror: Data Processing and Experiment Research. Remote Sensing. 2024; 16(2):407. https://doi.org/10.3390/rs16020407
Chicago/Turabian StyleLiu, Guohao, Jingqiu Liang, Jinguang Lv, Baixuan Zhao, Yingze Zhao, Kaifeng Zheng, Yupeng Chen, Yuxin Qin, Weibiao Wang, Shurong Wang, and et al. 2024. "Dual-Interference Channels Static Fourier Transform Imaging Spectrometer Based on Stepped Micro-Mirror: Data Processing and Experiment Research" Remote Sensing 16, no. 2: 407. https://doi.org/10.3390/rs16020407
APA StyleLiu, G., Liang, J., Lv, J., Zhao, B., Zhao, Y., Zheng, K., Chen, Y., Qin, Y., Wang, W., Wang, S., & Sheng, K. (2024). Dual-Interference Channels Static Fourier Transform Imaging Spectrometer Based on Stepped Micro-Mirror: Data Processing and Experiment Research. Remote Sensing, 16(2), 407. https://doi.org/10.3390/rs16020407