A Framework for Fine-Grained Land-Cover Classification Using 10 m Sentinel-2 Images
Abstract
:1. Introduction
- This paper proposes a fine-grained classification system iteration algorithm, which aims to explore a stable classification system tailored to specific sensors based on the target region. We applied this method to deduce a classification system for Sentinel-2 data, initially training the model with the sample dataset and constructing the initial classification system. Subsequently, the trained model was used to predict the target region, merging land-cover types with insufficient discriminability at a 10 m resolution. Through multiple iterations and the refinement of the classification system, we ultimately developed a stable classification system encompassing 23 land-cover types and achieved optimal mapping results.
- The paper aims to address challenges in large-scale scenes, such as varying scales of target features, imbalanced sample quantities, and weak connectivity of slender features. We introduce a pyramid pooling module based on Swin-UNet to enhance the model’s perception of features at different scales. Additionally, we designed a combination loss function based on class balance, balancing the model’s learning ability for different features. Independent model training was conducted for roads and water. Leveraging spatial relationships in natural features as clues, we used a voting algorithm to integrate predictions from independent models and the overall classification model, enhancing the generalization ability of slender features in complex scenarios.
- Based on this framework, we produced the 2017 fine-grained land-cover product JJJLC-10 for the Beijing–Tianjin–Hebei region. We quantitatively assessed the accuracy of JJJLC-10 using a validation sample set of 4254 samples and visually compare it with four mainstream large-scale land-cover products, thus demonstrating the advantages of our product more intuitively. To the best of our knowledge, it is by far the richest product in terms of surface coverage types at the 10 m scale.
2. Materials
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Remote Sensing Data
2.2.2. Data Processing
2.3. Sample
3. Methods
3.1. Overall Framework
3.2. Deep Learning Network for Fine-Grained Land-Cover Classification
3.2.1. Swin-UNet Overview
3.2.2. Swin Transformer Block
3.2.3. Pyramid Pool Module
3.2.4. Slender Feature Mapping Optimization
3.2.5. Combination Loss Function Weighting Method Based on Class Balance
3.2.6. Experimental Settings
3.3. Classification System Iterative Method
Algorithm 1: Stable classification system algorithm | |
Input: Sample set with Primary Classes on target sensor and region ; classification network ; | |
Output: Stable classes for target region and sensor; stable classification network ; | |
1: | train with |
2: | inference and evaluate on |
3: | calculate accuracy for |
4: | While do |
5: | |
6: | for do |
7: | if then |
8: | continue |
9: | else |
10: | |
11: | end for |
12: | end for |
13: | for |
14: | if then |
15: | combinate |
16: | update |
17: | update to |
4. Results
4.1. Accuracy Assessment Index
4.2. JJJLC-10:10 m Resolution Fine-Grained Land-Cover Map of the Beijing–Tianjin–Hebei Region
4.3. Accuracy Assessment of the JJJLC-10 Map
4.4. Comparison with Other Land-Cover Products
5. Discussion
5.1. Exploration of a Stable Classification System at 10 m Resolution
5.2. Slender Land-Cover Type Mapping Optimization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Chen, P.; Huang, H.; Shi, W. Reference-free method for investigating classification uncertainty in large-scale land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102673. [Google Scholar] [CrossRef]
- Running, S.W. Climate change. Ecosystem disturbance, carbon, and climate. Science 2008, 321, 652–653. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J. The most detailed portrait of Earth. Eur. Space Agency 2008, 136, 25–31. [Google Scholar]
- Bicheron, P.; Leroy, M.; Brockmann, C.; Krämer, U.; Miras, B.; Huc, M.; Ninõ, F.; Defourny, P.; Vancutsem, C.; Arino, O. Globcover: A 300 m global land cover product for 2005 using ENVISAT MERIS time series. In Proceedings of the Recent Advances in Quantitative Remote Sensing Symposium, Valencia, Spain, 25–29 September 2006; pp. 538–542. [Google Scholar]
- Giri, C.; Pengra, B.; Long, J.; Loveland, T.R. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 30–37. [Google Scholar] [CrossRef]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Le, Y.; Zhao, Y.; Zhao, Y. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data. 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, X.; Wang, Z.; Fu, D.; Li, H.; Meng, D.; Zeng, X.; Zhang, J. A Field-Data-Aided Comparison of Three 10 m Land Cover Products in Southeast Asia. Remote Sens. 2022, 14, 5053. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Hu, Y.; Zhang, M.; Zhu, Y.; Wang, Z.; Li, D.; Yang, M.; Wang, F. Land Use and Land Cover Mapping in China Using Multi-modal Fine-grained Dual Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4405219. [Google Scholar]
- Peng, G.; Han, L.; Meinan, Z.; Congcong, L.; Jie, W.; Huabing, H.; Nicholas, C.; Luyan, J.; Wenyu, L.; Yuqi, B.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S. ESA WorldCover 10 m 2020 v100, Zenodo. 2021. Available online: https://zenodo.org/records/5571936/ (accessed on 21 September 2023).
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual: LCCS; FAO: Rome, Italy, 2005. [Google Scholar]
- CH/T 9029-2019; Basic Geographic National Conditions Monitoring Content and Indicators. Standards Press of China: Beijing, China, 2019.
- Zhang, J.; Feng, Z.; Jiang, L. Progress on studies of land use/land cover classification systems. Resour. Sci. 2011, 33, 1195–1203. [Google Scholar]
- Chen, J.; Chen, J.; Gong, P.; Liao, A.; He, C. Higher resolution GLC mapping. Geomat. World 2011, 4, 12–14. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS-J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Giulia, C.; Paolo, D.F.; Pasquale, D.; Luca, C.; Marco, M.; Michele, M. Land Cover Mapping with Convolutional Neural Networks Using Sentinel-2 Images: Case Study of Rome. Land 2023, 12, 879. [Google Scholar]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, Y.; Shang, Y.; Chen, Z.; Shen, Z.; Yin, J. IterDANet: Iterative intra-domain adaptation for semantic segmentation of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5629517. [Google Scholar] [CrossRef]
- Alem, A.; Kumar, S. Deep learning methods for land cover and land use classification in remote sensing: A review. In Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 4–5 June 2020; pp. 903–908. [Google Scholar]
- Xuemei, Z.; Lianru, G.; Zhengchao, C.; Bing, Z.; Wenzhi, L. Large-scale Landsat image classification based on deep learning methods. Apsipa Trans. Signal Inf. Proc. 2019, 8, e26. [Google Scholar]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Liu, Y.; Mei, S.; Zhang, S.; Wang, Y.; He, M.; Du, Q. Semantic Segmentation of High-Resolution Remote Sensing Images Using an Improved Transformer. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3496–3499. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In Computer Vision—ECCV 2022 Workshops, Proceedings of the European Conference on Computer Vision, TEL Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 205–218. [Google Scholar]
- Yan, Y.; Chen, M.; Shyu, M.; Chen, S. Deep Learning for Imbalanced Multimedia Data Classification. In Proceedings of the 2015 IEEE International Symposium on Multimedia (ISM), Miami, FL, USA, 14–16 December 2015; pp. 483–488. [Google Scholar]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhou, R.; Tang, L.; Chen, R. A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data. Appl. Soft Comput. 2018, 69, 192–202. [Google Scholar] [CrossRef]
- Islam, M.T.; Islam, M.R.; Uddin, M.P.; Ulhaq, A. A Deep Learning-Based Hyperspectral Object Classification Approach via Imbalanced Training Samples Handling. Remote Sens. 2023, 15, 3532. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, Y.; Liang, L.; Wang, H.; Gao, X.; Wu, J. A balanced random learning strategy for CNN based Landsat image segmentation under imbalanced and noisy labels. Pattern Recognit. 2023, 144, 109824. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. Gisci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 318–327. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, M.; Lin, T.; Song, Y.; Belongie, S. Class-Balanced Loss Based on Effective Number of Samples. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9260–9269. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
Band | Description | Resolution (m) | Wavelength (nm) |
---|---|---|---|
Band 1 | Aerosols | 60 | 443.9 |
Band 2 | Blue | 10 | 496.6 |
Band 3 | Green | 10 | 560 |
Band 4 | Red | 10 | 664.5 |
Band 5 | Red Edge 1 | 20 | 703.9 |
Band 6 | Red Edge 2 | 20 | 740.2 |
Band 7 | Red Edge 3 | 20 | 782.5 |
Band 8 | NIR | 10 | 835.1 |
Band 8A | Red Edge 4 | 20 | 864.8 |
Band 9 | Water vapor | 60 | 945 |
Band 10 | Cirrus | 60 | 1373.5 |
Band 11 | SWIR 1 | 20 | 1613.7 |
Band 12 | SWIR 2 | 20 | 2202.4 |
Class Name | Proportion (%) | Class Name | Proportion (%) |
---|---|---|---|
Road | 1.78 | Opencast mining | 0.32 |
Water | 2.94 | Open-air stadium | 0.03 |
Orchard | 3.8 | Shrubland | 24.33 |
Nursery | 0.59 | Sparse forest | 0.49 |
Building | 8.35 | Broadleaf tree forest | 7.4 |
Bareland | 0.08 | Coniferous tree forest | 3.22 |
Dryland | 34.37 | Mixed coniferous forest | 0.1 |
Paddy field | 0.65 | Mixed forest of trees and shrubs | 0.03 |
Greenhouse | 0.54 | High-coverage grassland | 7.44 |
Hardened surface | 1.45 | Medium-coverage grassland | 0.74 |
Industrial facilities | 0.51 | Low-coverage grassland | 0.08 |
Construction site | 0.76 |
WF | DC | OC | NS | TBF | TCF | MCF | SL | MT&S | SF | HCG | MCG | LCG | BD | RA | HS | OS | GH | WT | BL | OM | CS | IF | Total | P.A. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WF | 113 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 124 | 0.911 |
DC | 3 | 414 | 5 | 6 | 4 | 1 | 0 | 2 | 0 | 1 | 8 | 3 | 1 | 6 | 1 | 3 | 0 | 5 | 2 | 3 | 4 | 3 | 1 | 476 | 0.870 |
OC | 2 | 10 | 145 | 7 | 2 | 2 | 0 | 8 | 1 | 1 | 6 | 1 | 1 | 4 | 4 | 0 | 0 | 4 | 0 | 1 | 1 | 2 | 0 | 202 | 0.718 |
NS | 2 | 3 | 3 | 105 | 1 | 0 | 0 | 1 | 0 | 4 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 2 | 0 | 0 | 1 | 130 | 0.808 |
TBF | 3 | 5 | 4 | 3 | 160 | 2 | 15 | 19 | 11 | 13 | 3 | 1 | 4 | 2 | 3 | 1 | 2 | 1 | 1 | 0 | 4 | 2 | 2 | 261 | 0.613 |
TCF | 1 | 0 | 1 | 1 | 3 | 143 | 9 | 8 | 6 | 4 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 0 | 186 | 0.769 |
MCF | 0 | 0 | 1 | 1 | 7 | 4 | 107 | 4 | 7 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 3 | 1 | 147 | 0.728 |
SL | 2 | 4 | 5 | 1 | 9 | 10 | 5 | 307 | 24 | 5 | 12 | 10 | 3 | 2 | 6 | 1 | 2 | 0 | 0 | 4 | 6 | 6 | 1 | 425 | 0.722 |
MT&S | 1 | 0 | 2 | 2 | 4 | 1 | 4 | 8 | 84 | 4 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 122 | 0.689 |
SF | 1 | 3 | 3 | 9 | 6 | 5 | 1 | 7 | 2 | 91 | 5 | 1 | 12 | 5 | 4 | 2 | 3 | 1 | 0 | 1 | 1 | 1 | 2 | 166 | 0.548 |
HCG | 3 | 8 | 1 | 1 | 2 | 1 | 1 | 7 | 2 | 8 | 139 | 15 | 4 | 1 | 6 | 4 | 1 | 2 | 2 | 6 | 7 | 5 | 6 | 232 | 0.599 |
MCG | 3 | 6 | 0 | 1 | 2 | 2 | 0 | 4 | 1 | 2 | 11 | 97 | 3 | 2 | 2 | 4 | 3 | 0 | 4 | 3 | 12 | 5 | 2 | 169 | 0.574 |
LCG | 1 | 3 | 0 | 2 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 4 | 86 | 1 | 9 | 9 | 5 | 1 | 2 | 2 | 4 | 1 | 6 | 150 | 0.573 |
BD | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 170 | 4 | 10 | 10 | 2 | 1 | 8 | 1 | 1 | 4 | 219 | 0.776 |
RA | 2 | 10 | 3 | 1 | 4 | 0 | 2 | 3 | 1 | 7 | 5 | 4 | 13 | 8 | 101 | 6 | 1 | 0 | 1 | 2 | 7 | 6 | 3 | 190 | 0.532 |
HS | 3 | 1 | 1 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 4 | 0 | 5 | 15 | 6 | 89 | 12 | 1 | 1 | 7 | 5 | 7 | 10 | 171 | 0.520 |
OS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 3 | 101 | 0 | 0 | 0 | 0 | 1 | 1 | 109 | 0.927 |
GH | 1 | 3 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 1 | 125 | 0 | 7 | 0 | 1 | 1 | 146 | 0.856 |
WT | 5 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 2 | 2 | 1 | 138 | 1 | 6 | 4 | 3 | 170 | 0.812 |
BL | 1 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 2 | 0 | 1 | 3 | 2 | 1 | 0 | 92 | 1 | 1 | 1 | 115 | 0.800 |
OM | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 2 | 0 | 0 | 5 | 0 | 81 | 3 | 9 | 116 | 0.698 |
CS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 4 | 0 | 0 | 2 | 0 | 4 | 91 | 2 | 110 | 0.827 |
IF | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 1 | 2 | 2 | 3 | 2 | 1 | 1 | 7 | 0 | 1 | 91 | 118 | 0.771 |
Total | 148 | 475 | 176 | 148 | 213 | 172 | 148 | 386 | 148 | 148 | 214 | 148 | 148 | 220 | 155 | 152 | 148 | 148 | 167 | 148 | 148 | 148 | 148 | 4254 | |
U.A. | 0.764 | 0.872 | 0.824 | 0.709 | 0.751 | 0.831 | 0.723 | 0.795 | 0.568 | 0.615 | 0.638 | 0.655 | 0.581 | 0.773 | 0.652 | 0.586 | 0.601 | 0.845 | 0.826 | 0.622 | 0.547 | 0.615 | 0.615 | ||
O.A. | 0.722 | ||||||||||||||||||||||||
Kappa | 0.706 |
CL | FST | SL | GL | IMP | WT | BL | Total | P.A. | |
---|---|---|---|---|---|---|---|---|---|
CL | 937 | 24 | 22 | 24 | 38 | 6 | 11 | 1062 | 0.882 |
FST | 49 | 550 | 56 | 25 | 29 | 3 | 4 | 716 | 0.768 |
SL | 23 | 40 | 417 | 20 | 21 | 0 | 8 | 529 | 0.788 |
GL | 48 | 31 | 20 | 398 | 61 | 7 | 34 | 599 | 0.664 |
IMP | 31 | 21 | 9 | 23 | 789 | 7 | 38 | 918 | 0.859 |
WT | 6 | 6 | 1 | 8 | 13 | 136 | 12 | 182 | 0.747 |
BL | 1 | 9 | 9 | 12 | 20 | 8 | 189 | 248 | 0.762 |
Total | 1095 | 681 | 534 | 510 | 971 | 167 | 296 | 4254 | |
U.A. | 0.856 | 0.808 | 0.781 | 0.78 | 0.813 | 0.814 | 0.639 | ||
O.A. | 0.803 | ||||||||
Kappa | 0.7602 |
Land-Cover Products | Resolution | Classification System | Data Source | Classification Method |
---|---|---|---|---|
CLCD | 30 m | 9 | Landsat-8 | Random forest classifier |
FROM-GLC | 10 m | 10 | Sentinel-2 | Random forest classifier |
ESA_GLC | 10 m | 11 | Sentinel-1, Sentinel-2 | Deep learning |
ESRI_GLC | 10 m | 10 | Sentinel-2 | Deep learning (UNet) |
CL | FST | SL | GL | IMP | WT | BL | OA | Kappa | ||
---|---|---|---|---|---|---|---|---|---|---|
JJJ-LC10 | UA | 0.856 | 0.808 | 0.781 | 0.78 | 0.813 | 0.814 | 0.639 | 0.803 | 0.7602 |
PA | 0.882 | 0.768 | 0.788 | 0.664 | 0.859 | 0.747 | 0.762 | |||
ESRI | UA | 0.798 | 0.648 | 0.684 | 0.590 | 0.713 | 0.737 | 0.541 | 0.695 | 0.631 |
PA | 0.859 | 0.687 | 0.639 | 0.512 | 0.814 | 0.559 | 0.6438 | |||
FROM-GLC | UA | 0.814 | 0.752 | 0.798 | 0.751 | 0.815 | 0.749 | 0.564 | 0.775 | 0.727 |
PA | 0.893 | 0.808 | 0.741 | 0.616 | 0.872 | 0.644 | 0.515 | |||
ESA | UA | 0.824 | 0.780 | 0.822 | 0.737 | 0.819 | 0.760 | 0.652 | 0.791 | 0.746 |
PA | 0.898 | 0.8812 | 0.742 | 0.660 | 0.874 | 0.668 | 0.578 | |||
CLCD | UA | 0.807 | 0.731 | 0.785 | 0.692 | 0.799 | 0.731 | 0.561 | 0.759 | 0.705 |
PA | 0.901 | 0.781 | 0.734 | 0.597 | 0.854 | 0.619 | 0.452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yang, X.; Yuan, Z.; Chen, Z.; Xu, Y. A Framework for Fine-Grained Land-Cover Classification Using 10 m Sentinel-2 Images. Remote Sens. 2024, 16, 390. https://doi.org/10.3390/rs16020390
Zhang W, Yang X, Yuan Z, Chen Z, Xu Y. A Framework for Fine-Grained Land-Cover Classification Using 10 m Sentinel-2 Images. Remote Sensing. 2024; 16(2):390. https://doi.org/10.3390/rs16020390
Chicago/Turabian StyleZhang, Wenge, Xuan Yang, Zhanliang Yuan, Zhengchao Chen, and Yue Xu. 2024. "A Framework for Fine-Grained Land-Cover Classification Using 10 m Sentinel-2 Images" Remote Sensing 16, no. 2: 390. https://doi.org/10.3390/rs16020390
APA StyleZhang, W., Yang, X., Yuan, Z., Chen, Z., & Xu, Y. (2024). A Framework for Fine-Grained Land-Cover Classification Using 10 m Sentinel-2 Images. Remote Sensing, 16(2), 390. https://doi.org/10.3390/rs16020390