Influence of Flight Altitude and Surface Characteristics on UAS-LiDAR Ground Height Estimate Accuracy in Juncus roemerianus Scheele-Dominated Marshes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Field Data Collection
2.2.1. UAS-LiDAR Data Collection
2.2.2. Topographic Field Survey
2.3. LiDAR Processing
2.3.1. Control Transect: LiDAR vs. GNSS Height
2.3.2. Point Cloud Ground Classification
2.4. Accuracy Evaluation
2.5. Impacts of Surface Characteristics
3. Results
3.1. Accuracy Evaluation
3.2. LiDAR Return Density and Distribution
3.3. Impacts of Surface Characteristics
4. Discussion
4.1. Influence of Altitude, Surface Characteristics, and Sensor Design
4.2. GPE Classification Method
4.3. Considerations and Takeaways
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, K.; Chen, Q.; Wang, H. A Numerical Study of Vegetation Impact on Reducing Storm Surge by Wetlands in a Semi-Enclosed Estuary. Coast. Eng. 2015, 95, 66–76. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, P.; Gong, Z.; Li, B.; Chen, X. Wave Attenuation by Spartina Alterniflora under Macro-Tidal and Storm Surge Conditions. Wetlands 2020, 40, 2151–2162. [Google Scholar] [CrossRef]
- Willemsen, P.W.J.M.; Borsje, B.W.; Vuik, V.; Bouma, T.J.; Hulscher, S.J.M.H. Field-Based Decadal Wave Attenuating Capacity of Combined Tidal Flats and Salt Marshes. Coast. Eng. 2020, 156, 103628. [Google Scholar] [CrossRef]
- Kulawardhana, R.W.; Feagin, R.A.; Popescu, S.C.; Boutton, T.W.; Yeager, K.M.; Bianchi, T.S. The Role of Elevation, Relative Sea-Level History and Vegetation Transition in Determining Carbon Distribution in Spartina Alterniflora Dominated Salt Marshes. Estuar. Coast. Shelf Sci. 2015, 154, 48–57. [Google Scholar] [CrossRef]
- Moseman-Valtierra, S.; Abdul-Aziz, O.I.; Tang, J.; Ishtiaq, K.S.; Morkeski, K.; Mora, J.; Quinn, R.K.; Martin, R.M.; Egan, K.; Brannon, E.Q.; et al. Carbon Dioxide Fluxes Reflect Plant Zonation and Belowground Biomass in a Coastal Marsh. Ecosphere 2016, 7, e01560. [Google Scholar] [CrossRef]
- Leonard, L.A.; Luther, M.E. Flow Hydrodynamics in Tidal Marsh Canopies. Limnol. Oceanogr. 1995, 40, 1474–1484. [Google Scholar] [CrossRef]
- Reed, D.J. Sea-Level Rise and Coastal Marsh Sustainability: Geological and Ecological Factors in the Mississippi Delta Plain. Geomorphology 2002, 48, 233–243. [Google Scholar] [CrossRef]
- Eleuterius, L.N.; Caldwell, J.D. Soil Characteristics of Spartina Alterniflora, Spartina Patens, Juncus Roemerianus, Scirpus Olneyi, and Distichlis Spicata Populations at One Locality in Mississippi. Gulf Res. Rep. 1985, 8, 27–33. [Google Scholar] [CrossRef]
- Anderson, C.P.; Carter, G.A.; Waldron, M.C.B. Precise Elevation Thresholds Associated with Salt Marsh–Upland Ecotones along the Mississippi Gulf Coast. Ann. Am. Assoc. Geogr. 2022, 112, 1850–1865. [Google Scholar] [CrossRef]
- Wallace, L.; Bellman, C.; Hally, B.; Hernandez, J.; Jones, S.; Hillman, S. Assessing the Ability of Image Based Point Clouds Captured from a UAV to Measure the Terrain in the Presence of Canopy Cover. Forests 2019, 10, 284. [Google Scholar] [CrossRef]
- Lovitt, J.; Rahman, M.M.; McDermid, G.J. Assessing the Value of UAV Photogrammetry for Characterizing Terrain in Complex Peatlands. Remote Sens. 2017, 9, 715. [Google Scholar] [CrossRef]
- Rogers, S.R.; Manning, I.; Livingstone, W. Comparing the Spatial Accuracy of Digital Surface Models from Four Unoccupied Aerial Systems: Photogrammetry versus Lidar. Remote Sens. 2020, 12, 2806. [Google Scholar] [CrossRef]
- Akturk, E.; Altunel, A.O. Accuracy Assessment of a Low-Cost UAV Derived Digital Elevation Model (DEM) in a Highly Broken and Vegetated Terrain. Measurement 2019, 136, 382–386. [Google Scholar] [CrossRef]
- Correll, M.D.; Elphick, C.S.; Hantson, W.; Cline, B.B.; Tymkiw, E.L.; Gregory Shriver, W.; Olsen, B.J. A Multi-Scale Comparison of Elevation Measurement Methods in Northeastern Tidal Marshes of the United States. Wetlands 2019, 39, 633–643. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Wilkinson, B.; Ifju, P.; Ortega, A. Estimating Ground Elevation and Vegetation Characteristics in Coastal Salt Marshes Using UAV-Based LiDAR and Digital Aerial Photogrammetry. Remote Sens. 2021, 13, 4506. [Google Scholar] [CrossRef]
- Baltsavias, E.P. A Comparison between Photogrammetry and Laser Scanning. ISPRS J. Photogramm. 1999, 54, 83–94. [Google Scholar] [CrossRef]
- Cooper, H.M.; Zhang, C.; Davis, S.E.; Troxler, T.G. Object-Based Correction of LiDAR DEMs Using RTK-GPS Data and Machine Learning Modeling in the Coastal Everglades. Environ. Model. Softw. 2019, 112, 179–191. [Google Scholar] [CrossRef]
- Muñoz, D.F.; Cissell, J.R.; Moftakhari, H. Adjusting Emergent Herbaceous Wetland Elevation with Object-Based Image Analysis, Random Forest and the 2016 NLCD. Remote Sens. 2019, 11, 2346. [Google Scholar] [CrossRef]
- Rogers, J.N.; Parrish, C.E.; Ward, L.G.; Burdick, D.M. Improving Salt Marsh Digital Elevation Model Accuracy with Full-Waveform Lidar and Nonparametric Predictive Modeling. Estuar. Coast. Shelf Sci. 2018, 202, 193–211. [Google Scholar] [CrossRef]
- Rogers, J.N.; Parrish, C.E.; Ward, L.G.; Burdick, D.M. Assessment of Elevation Uncertainty in Salt Marsh Environments Using Discrete-Return and Full-Waveform Lidar. J. Coast. Res. 2016, 76, 107–122. [Google Scholar] [CrossRef]
- Tiner, R.W. Field Guide to Coastal Wetland Plants of the Southeastern United States, Illustrated ed.; University of Massachusetts Press: Amherst, MA, USA, 1993. [Google Scholar]
- Hladik, C.; Alber, M. Accuracy Assessment and Correction of a LIDAR-Derived Salt Marsh Digital Elevation Model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Rosso, P.H.; Ustin, S.L.; Hastings, A. Use of Lidar to Study Changes Associated with Spartina Invasion in San Francisco Bay Marshes. Remote Sens. Environ. 2006, 100, 295–306. [Google Scholar] [CrossRef]
- Nayegandhi, A.; Brock, J.C.; Wright, W.; O’Connell, M.J. Evaluating A Small Footprint Waveform-Resolving Lidar Over Coastal Vegetation Communities. Photogramm. Eng. Remote Sens. 2006, 12, 1407–1417. [Google Scholar]
- Schmid, K.A.; Hadley, B.C.; Wijekoon, N. Vertical Accuracy and Use of Topographic LIDAR Data in Coastal Marshes. J. Coast. Res. 2011, 27, 116–132. [Google Scholar] [CrossRef]
- Resop, J.P.; Lehmann, L.; Cully Hession, W. Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial Lidar. Drones 2019, 3, 35. [Google Scholar] [CrossRef]
- Alsadik, B.; Remondino, F. Flight Planning for LiDAR-Based UAS Mapping Applications. ISPRS Int. J. Geoinf. 2020, 9, 378. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
- Boucher, P.B.; Hockridge, E.G.; Singh, J.; Davies, A.B. Flying High: Sampling Savanna Vegetation with UAV-lidar. Methods Ecol. Evol. 2023, 14, 7. [Google Scholar] [CrossRef]
- Curcio, A.C.; Peralta, G.; Aranda, M.; Barbero, L. Evaluating the Performance of High Spatial Resolution UAV-Photogrammetry and UAV-LiDAR for Salt Marshes: The Cádiz Bay Study Case. Remote Sens. 2022, 14, 3582. [Google Scholar] [CrossRef]
- Montane, J.M.; Torres, R. Accuracy Assessment of Lidar Saltmarsh Topographic Data Using RTK GPS. Photogramm. Eng. Remote Sens. 2006, 72, 961–967. [Google Scholar] [CrossRef]
- Fernandez-Nunez, M.; Burningham, H.; Ojeda Zujar, J. Improving Accuracy of LiDAR-Derived Digital Terrain Models for Saltmarsh Management. J. Coast. Conserv. 2017, 21, 209–222. [Google Scholar] [CrossRef]
- Eleuterius, L.N. The Marshes of Mississippi. Castanea 1972, 37, 153–168. [Google Scholar]
- Medeiros, S.; Hagen, S.; Weishampel, J.; Angelo, J. Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density. Remote Sens. 2015, 7, 3507–3525. [Google Scholar] [CrossRef]
- Mississippi Department of Marine Resources (MDMR). Coastal Preserves. Available online: https://dmr.ms.gov/coastal-preserves-2/ (accessed on 9 August 2022).
- Microdrones. Putting Microdrones to Work for You. Available online: https://www.microdrones.com/en/integrated-systems/expert-drone-line/mdlidar3000/?gclid=EAIaIQobChMI3LyNjMrR8QIVxMDICh1RUQkREAAYASAAEgK-cvD_BwE (accessed on 6 July 2021).
- Davidson, L.; Mills, J.P.; Haynes, I.; Augarde, C.; Bryan, P.; Douglas, M. Airborne to uas lidar: An analysis of uas lidar ground control targets. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 255–262. [Google Scholar] [CrossRef]
- Gulf Coast Geospatial Center (GCGC). Gulf Coast Geospatial Center Real-Time Network. Available online: http://rtn.usm.edu/default.aspx (accessed on 21 September 2023).
- Applanix. POSPac UAV v8.6. Available online: https://www.applanix.com/products/pospac-uav.htm (accessed on 21 September 2023).
- MdInfinity Desktop v2020.5. Available online: https://www.microdrones.com/en/content/drone-lidar-data-processing-made-easy-mdinfinity/ (accessed on 21 September 2023).
- Wang, C.; Menenti, M.; Stoll, M.P.; Feola, A.; Belluco, E.; Marani, M. Separation of Ground and Low Vegetation Signtures in LiDAR Measurements of Salt-Marsh Environments. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2014–2023. [Google Scholar] [CrossRef]
- Pricope, N.G.; Halls, J.N.; Mapes, K.L.; Baxley, J.B.; Wu, J.J. Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping. Sensors 2020, 20, 4453. [Google Scholar] [CrossRef] [PubMed]
- Buffington, K.J.; Dugger, B.D.; Thorne, K.M.; Takekawa, J.Y. Statistical Correction of Lidar-Derived Digital Elevation Models with Multispectral Airborne Imagery in Tidal Marshes. Remote Sens. Environ. 2016, 186, 616–625. [Google Scholar] [CrossRef]
- Rapidlasso. LASTools. Available online: https://lastools.github.io/ (accessed on 21 September 2023).
- Brown, V.A. An Introduction to Linear Mixed-Effects Modeling in R. Adv. Methods Pract. Psychol. Sci. 2021, 4, 2515245920960351. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67. [Google Scholar] [CrossRef]
- Luke, S.G. Evaluating Significance in Linear Mixed-Effects Models in R. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef]
- Hopkinson, C. The Influence of Flying Altitude, Beam Divergence, and Pulse Repetition Frequency on Laser Pulse Return Intensity and Canopy Frequency Distribution. Can. J. Remote Sens. 2007, 33, 312–324. [Google Scholar] [CrossRef]
- Zhao, X.; Su, Y.; Hu, T.; Cao, M.; Liu, X.; Yang, Q.; Guan, H.; Liu, L.; Guo, Q. Analysis of UAV Lidar Information Loss and Its Influence on the Estimation Accuracy of Structural and Functional Traits in a Meadow Steppe. Ecol. Indic. 2022, 135, 108515. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar]
- Jenson, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Tamari, S.; Mory, J.; Guerrero-Meza, V. Testing a Near-Infrared Lidar Mounted with a Large Incidence Angle to Monitor the Water Level of Turbid Reservoirs. ISPRS J. Photogramm. Remote Sens. 2011, 66, 585–591. [Google Scholar] [CrossRef]
- SICK Sensor Intelligence. LD-MRS 3D LiDAR Sensors. Available online: https://cdn.sick.com/media/docs/3/03/803/operating_instructions_ld_mrs_3d_lidar_sensors_en_im0032803.pdf (accessed on 21 September 2023).
- Hofton, M.A.; Rocchio, L.E.; Blair, J.B.; Dubayah, R. Validation of Vegetation Canopy Lidar Sub-Canopy Topography Measurements for a Dense Tropical Forest. J. Geodyn. 2002, 34, 491–502. [Google Scholar] [CrossRef]
- Su, J.; Bork, E. Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy. Photogramm. Eng. Remote Sens. 2006, 72, 1265–1274. [Google Scholar] [CrossRef]
Altitude (m) | Correction Factors (cm) |
---|---|
24 | −3 |
48 | +0 |
72 | +3 |
96 | +6 |
120 | +9 |
Surface Type | |||
---|---|---|---|
Altitude (m) | Grass (%) | Asphalt (%) | Marsh (%) |
24 | 99 | 100 | 98 |
48 | 100 | 100 | 98 |
72 | 100 | 100 | 84 |
96 | 100 | 100 | 34 |
120 | 100 | 59 | 34 |
Random Effects | |
---|---|
σ2 | 198.96 |
T00Site | 12.32 |
ICC | 0.06 |
N Site | 4 |
Observations | 815 |
Marginal r2/Conditional r2 | 0.568/0.593 |
Group | Conditional Mean (cm) | Conditional Standard Deviation (cm) |
---|---|---|
Graveline | −3.451 | 1.012 |
Hancock | −2.061 | 0.890 |
Pascagoula | 3.010 | 1.042 |
Wolf | 2.502 | 0.890 |
Ground Height Difference (cm) | |||
---|---|---|---|
Predictors | Estimates | Std. Error | p-Value |
(Intercept) | 29.35 | 8.01 | <0.001 |
Inundation depth (cm) | −3.47 | 0.96 | <0.001 |
Erect canopy height (cm) | 0.25 | 0.05 | <0.001 |
Altitude (m) | −0.20 | 0.10 | 0.048 |
Flattened canopy height (cm) | 0.39 | 0.30 | 0.189 |
Inundation depth × Flattened canopy height | −0.03 | 0.01 | 0.003 |
Inundation depth × Erect canopy height | 0.03 | 0.01 | <0.001 |
Altitude × Flattened canopy height | 0.00 | 0.00 | 0.081 |
Inundation depth × Altitude | 0.01 | 0.00 | 0.013 |
Erect canopy height × Altitude | −0.00 | 0.00 | <0.001 |
Erect canopy height × Flattened canopy height | −0.00 | 0.00 | 0.399 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amelunke, M.; Anderson, C.P.; Waldron, M.C.B.; Raber, G.T.; Carter, G.A. Influence of Flight Altitude and Surface Characteristics on UAS-LiDAR Ground Height Estimate Accuracy in Juncus roemerianus Scheele-Dominated Marshes. Remote Sens. 2024, 16, 384. https://doi.org/10.3390/rs16020384
Amelunke M, Anderson CP, Waldron MCB, Raber GT, Carter GA. Influence of Flight Altitude and Surface Characteristics on UAS-LiDAR Ground Height Estimate Accuracy in Juncus roemerianus Scheele-Dominated Marshes. Remote Sensing. 2024; 16(2):384. https://doi.org/10.3390/rs16020384
Chicago/Turabian StyleAmelunke, Michael, Carlton P. Anderson, Margaret C. B. Waldron, George T. Raber, and Gregory A. Carter. 2024. "Influence of Flight Altitude and Surface Characteristics on UAS-LiDAR Ground Height Estimate Accuracy in Juncus roemerianus Scheele-Dominated Marshes" Remote Sensing 16, no. 2: 384. https://doi.org/10.3390/rs16020384
APA StyleAmelunke, M., Anderson, C. P., Waldron, M. C. B., Raber, G. T., & Carter, G. A. (2024). Influence of Flight Altitude and Surface Characteristics on UAS-LiDAR Ground Height Estimate Accuracy in Juncus roemerianus Scheele-Dominated Marshes. Remote Sensing, 16(2), 384. https://doi.org/10.3390/rs16020384