Landslide Mapping and Causes of Landslides in the China–Nepal Transportation Corridor Based on Remote Sensing Technology
Abstract
:1. Introduction
2. Overview of the Study Area
2.1. Tectonic Activity
2.2. Lithology
2.3. Topographic and Climatic Characteristics
3. Data and Methodology
3.1. Data Sources
3.2. Historical Landslide Mapping
3.3. Landslide Volume Calculation
3.4. Interferometric Synthetic Aperture Radar (InSAR) Technology
3.5. Correlation between Landslides and Influencing Factors
4. Results
4.1. Landslide Area–Volume
4.2. Interpretation of Historical Landslides
4.3. Factors That Influence Landslides
4.4. Landslide Potential Threat Area
5. Discussion
Causes of Landslides
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petley, D.N. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Zhang, M.; Nie, L.; Xu, Y.; Dai, S. A thrust load-caused landslide triggered by excavation of the slope toe: A case study of the Chaancun Landslide in Dalian City, China. Arab. J. Geosci. 2015, 8, 6555–6565. [Google Scholar] [CrossRef]
- Yin, G.; Luo, J.; Niu, F.; Lin, Z.; Liu, M. Machine learning-based thermokarst landslide susceptibility modeling across the permafrost region on the Qinghai-Tibet Plateau. Landslides 2021, 18, 2639–2649. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, R.; Meng, X.; Zhao, S.; Wang, S.; Ma, J.; Wang, H. Effects of changes in soil properties caused by progressive infiltration of rainwater on rainfall-induced landslides. Catena 2023, 233, 107475. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, R.; Zhao, S.; Meng, X.; Ma, J.; Yin, H.; Long, Z. Effects of irrigation projects on the classification of yellow river terrace landslides and their failure modes: A case study of heitai terrace. Remote Sens. 2023, 15, 2015. [Google Scholar] [CrossRef]
- Roback, K.; Clark, M.; West, A.; Zekkos, D.; Li, G.; Gallen, S.; Chamlagain, D.; Godt, J. The size, distribution, and mobility of landslides caused by the 2015 M(w)7.8 Gorkha earthquake, Nepal. Geomorphology 2018, 301, 121–138. [Google Scholar] [CrossRef]
- Fan, W.; Lv, J.; Cao, Y.; Shen, M.; Deng, L.; Wei, Y. Characteristics and block kinematics of a fault-related landslide in the Qinba Mountains, western China. Eng. Geol. 2019, 249, 162–171. [Google Scholar] [CrossRef]
- Shang, Y.; Hyun, C.; Park, H.; Yang, Z.; Yuan, G. The 102 Landslide: Human–slope interaction in SE Tibet over a 20-year period. Environ. Earth Sci. 2017, 76, 47. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, H.; Ye, F.; Liu, B.; Fu, W. The characteristics, induced factors, and formation mechanism of the 2018 Baige landslide in Jinsha River, Southwest China. Catena 2021, 203, 105337. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, B.; Ye, F.; Fu, W.; Tang, W.; Qin, Y.; Fang, T. Landslide distribution and sliding mode control along the Anninghe fault zone at the eastern edge of the Tibetan Plateau. J. Mt. Sci. 2021, 18, 2094–2107. [Google Scholar] [CrossRef]
- Zhao, B.; Li, W.; Wang, Y.; Lu, J.; Li, X. Landslides triggered by the Ms 6.9 Nyingchi earthquake, China (18 November 2017): Analysis of the spatial distribution and occurrence factors. Landslides 2019, 16, 765–776. [Google Scholar] [CrossRef]
- Martha, T.; Roy, P.; Mazumdar, R.; Govindharaj, K.; Kumar, K. Spatial characteristics of landslides triggered by the 2015 M w 7.8 (Gorkha) and M w 7.3 (Dolakha) earthquakes in Nepal. Landslides 2017, 14, 697–704. [Google Scholar] [CrossRef]
- Dortch, J.; Owen, L.; Haneberg, W.; Caffee, M.; Dietsch, C.; Kamp, U. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 2009, 28, 1037–1054. [Google Scholar] [CrossRef]
- Du, G.; Zhang, Y.; Yao, X.; Yang, Z.; Yuan, Y. Field investigations and numerical modeling of a giant landslide in the region of Eastern Himalayan Syntaxis: Jiaobunong landslide. J. Mt. Sci. 2021, 18, 3230–3232. [Google Scholar] [CrossRef]
- Gong, Y.; Yao, A.; Li, Y.; Li, Y.; Tian, T. Classification and distribution of large-scale high-position landslides in southeastern edge of the Qinghai–Tibet Plateau, China. Environ. Earth Sci. 2022, 81, 311. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Hao, M. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Zhou, F.; Bao, Y.; Yan, J.; Zhang, Y.; Li, Y.; Gu, F.; Wang, Q. Combined numerical investigation of the Gangda paleolandslide runout and associated dam breach flood propagation in the upper Jinsha River, SE Tibetan Plateau. Landslides 2022, 19, 941–962. [Google Scholar] [CrossRef]
- Guo, J.; Cui, Y.; Xu, W.; Shen, W.; Li, T.; Yi, S. A novel friction weakening-based dynamic model for landslide runout assessment along the Sichuan-Tibet Railway. Eng. Geol. 2022, 365, 106721. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T. Geologic Evolution of the Himalayan–Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H.; Wright, T.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Meng, W.; Guo, C.; Mao, B.; Lu, H.; Chen, Q.; Xu, X. Tectonic Stress Field and Engineering Influence of China—Nepal Railway Corridor. Geoscience 2020, 35, 167–179. [Google Scholar]
- Jia, Y.; Liu, J.; Guo, L.; Deng, Z.; Li, J.; Zheng, H. Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions. Sustainability 2021, 13, 10488. [Google Scholar] [CrossRef]
- Wu, Z.; Barosh, P.; Ha, G.; Yao, X.; Xu, Y.; Liu, J. Damage induced by the 25 April 2015 Nepal earthquake in the Tibetan border region of China and increased post seismic hazards. Nat. Hazard Earth Syst. Sci. 2019, 19, 873–888. [Google Scholar] [CrossRef]
- Ma, F.; Li, Z.; Wang, J.; Kuo, D. Monitoring and engineering geology analysis of the Zhangmu landslide in Tibet, China. Bull. Eng. Geol. Environ. 2017, 76, 855–873. [Google Scholar] [CrossRef]
- Guo, M.; Liu, S.; Yin, S.; Wang, S. Stability analysis of the Zhangmu multi-layer landslide using the vector sum method in Tibet, China. Bull. Eng. Geol. Environ. 2019, 78, 4187–4200. [Google Scholar] [CrossRef]
- Han, D.; Yang, C.; Dong, J. InSAR monitoring and analysis of landslide deformation after the earthquake in the Zhangmu port, Tibet. J. Geomech. 2020, 26, 565–574. [Google Scholar]
- Han, P.; Wang, M.; Jiang, Z.; Fan, X.; Tian, S. Geological disasters and their influencing factors in Jilong County, Tibet. Chin. J. Geol. Hazard Control 2020, 31, 111–118. [Google Scholar]
- Xiong, D.; Cui, X. The relationship between main geological hazard and topography in the Himalayan seismic belt: A case study in the Xigaze area, Tibet. Geol. Bull. China 2021, 40, 1967–1980. [Google Scholar]
- Fu, M.; Zhan, T.; Xu, C. Characteristics and Developmental Laws of Geological Hazards along G318 Lhasa-Shigatse. J. Seismol. Res. 2019, 42, 438–446+456. [Google Scholar]
- Li, T. The process and mechanism of the rise of the Qinghai-Tibet Plateau. Tectonophysics 1996, 260, 45–53. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Zhu, D.; Zhao, Z.; Niu, Y.; Dilek, Y.; Hou, Z.; Mo, X. The origin and pre enozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Zhu, D.; Zhao, Z.; Niu, Y.; Dilek, Y.; Mo, X. Lhasa terrane in southern Tibet came from Australia. Geology 2011, 39, 727–730. [Google Scholar] [CrossRef]
- Yin, A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision. J. Geophys. Res.-Solid Earth 2000, 105, 21745–21759. [Google Scholar] [CrossRef]
- Zhang, J.; Santosh, M.; Wang, X.; Guo, L.; Yang, X.; Zhang, B. Tectonics of the northern Himalaya since the India–Asia collision. Gondwana Res 2012, 21, 939–960. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, L. Structure and geochronology of the southern Xainza–Dinggye rift and its relationship to the south Tibetan detachment system. J. Asian. Earth. Sci 2007, 29, 722–736. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.; Zeng, J.; Peng, L. Strain rate distribution in south-central Tibet fromtwo-decades of InSAR and GPS. Geophys. Res. Lett. 2019, 46, 5170–5179. [Google Scholar] [CrossRef]
- Taylor, M.; Yin, A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 2009, 5, 199–214. [Google Scholar] [CrossRef]
- He, R.; Gao, R. Some significances of studying north southern rift in Tibet plateau. Prog. Geophys. 2003, 18, 35–43. [Google Scholar]
- Hou, Z.; Gao, Y.; Qu, X.; Rui, Z.; Mo, X. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Liao, Q.; Li, D.; Lu, L.; Yuan, Y.; Chu, L. Paleoproterozoic granitic gneisses of the Dinggye and LhagoiKangri areas from the higher and northern Himalaya, Tibet: Geochronology and implications. Sci. China Earth Sci. 2008, 51, 240–248. [Google Scholar] [CrossRef]
- Kang, Z.; Xu, J.; Wilde, S.; Feng, Z.; Chen, J.; Wang, B.; Fu, W.; Pan, H. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos 2014, 200–201, 157–168. [Google Scholar] [CrossRef]
- Leier, A.; Kapp, P.; Gehrels, G.; DeCelles, P. Detrital zircon geochronology of arboniferous–Cretaceous strata in the Lhasa Terrane, Southern Tibet. Basin Res. 2007, 9, 361–378. [Google Scholar] [CrossRef]
- Yu, X.; Lv, X.; Cao, H. Geochemistry and detrital zircon U-Pb Geochronology of the Triassic nieru formation in the eastern Himalayas and its tectonic implications. Min. Pet. 2021, 41, 95–108. [Google Scholar]
- Liu, G.; Einsele, G. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol. Rundsch. 1994, 83, 32–61. [Google Scholar] [CrossRef]
- Chen, N.; Liu, M.; Deng, M.; Iqbal, J.; Hu, G.; Wahid, S.; Liu, W.; Han, D. The incision variations of Poiqu documented by the Zhangmu landslide in the Upper Himalaya of Tibet. Quat. Int. 2019, 532, 66–74. [Google Scholar] [CrossRef]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Mondini, A.; Guzzetti, F.; Reichenbach, P.; Rossi, M.; Cardinal, M.; Ardizzone, F. Semi-automatic recognition and maping of rainfall induced shallow landslides using optical satellite images. Remote Sens. Environ. 2011, 115, 1743–1757. [Google Scholar] [CrossRef]
- Salvati, P.; Balducci, V.; Bianchi, C.; Guzzetti, F.; Tonelli, G. A WebGIS for the dissemination of information on historical landslides and floods in Umbria, Italy. GeoInformatica 2009, 13, 205–322. [Google Scholar] [CrossRef]
- Pike, R. The geometric signature: Quantifying landslide-terrain types from digital elevation models. Math. Geol. 1988, 20, 491–511. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Malamud, B.; Turcotte, D.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Rossi, M.; Valigi, D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci. Lett. 2009, 279, 222–229. [Google Scholar] [CrossRef]
- Larsen, I.; Montgomery, D.; Korup, O. Landslide erosion controlled by hillslope material. Nat. Geosci. 2010, 3, 247–251. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Dijkstra, T. Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens. Environ. 2020, 241, 111738. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, K.; Deng, J.; Ge, B.; Liang, R.; Li, W.; Xu, Q. Identifying potential landslides by stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Zhao, S.; Zeng, R.; Zhang, H.; Meng, X.; Zhang, Z.; Meng, X.; Wang, H.; Zhang, Y.; Liu, J. Impact of water level fluctuations on landslide deformation at Longyangxia reservoir, Qinghai province, China. Remote Sens. 2022, 14, 212. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. IEEE Int. Geosci. Remote Sens. Symp. 2003, 7, 4362–4364. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Y.; Montgomery, D.; Du, Y.; Zhang, G.; Wang, S. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China? Geomorphology 2016, 259, 145–154. [Google Scholar] [CrossRef]
- Qi, T.; Meng, X.; Qing, F.; Zhao, Y.; Shi, W.; Chen, G.; Zhang, Y.; Li, Y.; Yue, D.; Su, X.; et al. Distribution and characteristics of large landslides in a fault zone: A case study of the NE Qinghai-Tibet Plateau. Geomorphology 2021, 379, 107592. [Google Scholar] [CrossRef]
- Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C. Fault zone fabric and fault weakness. Nature 2009, 462, 907–910. [Google Scholar] [CrossRef]
- Meng, X.; Chen, G.; Guo, P.; Xiong, M.; Wasowski, J. Research of landslide and debris flows in Bailong River basin: Progress and prospect. Mar. Geol. Quat. Geol. 2013, 33, 1–15. [Google Scholar] [CrossRef]
- Valagussa, A.; Marc, O.; Frattini, P.; Crosta, G. Seismic and geological controls on earthquake-induced landslide size. Earth Planet Sci. Lett. 2019, 506, 268–281. [Google Scholar] [CrossRef]
- Bui, D.; Tsangaratos, P.; Nguyen, V.; Liem, N.; Trinh, P. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena 2020, 188, 104426. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 2014, 11, 425–439. [Google Scholar] [CrossRef]
- Clarke, B.; Burbank, D. Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides. Earth Planet. Sci. Lett. 2010, 297, 577–586. [Google Scholar] [CrossRef]
- Liu, C.; Qi, S.; Tong, L.; An, G.; Li, X. Great landslides in Himalaya mountain area and their occurrence with lithology. J. Eng. Geol. 2010, 18, 669–676. [Google Scholar]
- Zhao, H.; Ma, F.; Li, Z.; Guo, J.; Zhang, J. Geological hazards and protective measures of road slope in Himalaya mountain area. J. Eng. Geol. 2022, 30, 656–671. [Google Scholar]
- Wang, X.; Clague, J.; Crosta, G.; Sun, J.; Stead, D.; Qi, S.; Zhang, L. Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges. Eng. Geol. 2021, 292, 106281. [Google Scholar] [CrossRef]
- Collins, B.; Stock, G. Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat. Geosci. 2016, 9, 395–400. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.; Melesse, A. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility map** based on hyperparameter optimization using Bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Liu, W.; Huang, J.; Hong, Y.; Chen, W. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108236. [Google Scholar] [CrossRef]
- Patton, A.; Rathburn, S.; Capps, D. Landslide response to climate change in permafrost regions. Geomorphology 2019, 340, 116–128. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Klein, E. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, C.; Wen, Y.; Xu, Y.; Ding, K.; Wang, J. Contemporary tectonic stressing rates of major strike-slip faults in the Tibetan Plateau from GPS observations using least-squares collocation. Tectonophysics 2014, 615, 85–95. [Google Scholar] [CrossRef]
- Keefer, D. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Yang, X.; Qi, G. Tectonic and environmental evolution of Gyirong basin, and its relationship to the uplift of Tibetan plateau. Acta Sci. Nat. Univ. Pekin. 2009, 45, 79–89. [Google Scholar]
- Wang, X.; Zhang, J.; Yang, X. Geochemical characteristics of the leucogranites from Gyirong, south Tibet: Formation mechanism and tectonic implications. Geotecton. Metallog. 2017, 41, 354–368. [Google Scholar]
- Zhang, Y.; Guo, C.; Yao, X.; Yang, Z.; Wu, R.; Du, G. Research on the Geohazard effect of active fault on the eastern marg of the Tibetan Plateau. Acta. Geol. Sin. 2016, 37, 277–286. [Google Scholar]
- Delgado, F.; Zerathe, S.; Schwartz, s.; Mathieux, B.; Benavente, C. Inventory of large landslides along the Central Western Andes (ca. 15°–20° S): Landslide distribution patterns and insights on controlling factors. J. S. Am. Earth. Sci 2022, 116, 103824. [Google Scholar] [CrossRef]
- Yin, A.; Kapp, P.; Murphy, M.; Manning, C.; Harrison, T.; Grove, M.; Wu, C. Significant late Neogene east-west extension in northern Tibet. Geology 1999, 27, 787–790. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Frisch, W.; Liu, G.; Chen, C. Distributed deformation in southern and western Tibet during and after the India-Asia collision. J. Geophys. Res. Solid Earth 1994, 99, 19917–19945. [Google Scholar] [CrossRef]
- Meunier, P.; Hovius, N.; Haines, J. Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci. Lett. 2008, 275, 221–232. [Google Scholar] [CrossRef]
- He, K.; Ma, G.; Hu, X. Formation mechanisms and evolution model of the tectonic-related ancient giant basalt landslide in Yanyuan County, China. Nat. Hazards 2021, 106, 2575–2597. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, C.; Wu, Z.; Fan, T.; Li, H. Numerical study of the crustal stress, strain rate and fault activity in the eastern Tibetan plateau. Acta Geol. Sin. 2017, 38, 385–392. [Google Scholar]
- Zhang, C.; Li, X. Attribution of the Cretaceous Melange along eastern segment of the Yarlung Zangbo suture zone: Implications to tectonics boundary between India and Aisa collision. Geol. Bull. China 2015, 34, 2236–2245. [Google Scholar]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, S.; Wu, S.; Shi, J.; Sun, P.; Yao, X.; Xiong, T. Research on relationship between fault movement and large-scale landslide in intensive earthquake region. Chin. J. Rock Mech. Eng. 2011, 30, 3503–3513. [Google Scholar]
- Feng, J.; Zhang, Y.; He, J.; Zhu, H.; Huang, L.; Mao, W.; Fu, H.; Li, D. Dynamic response and failure evolution of low-angled interbedding soft and hard stratum rock slope under earthquake. Bull. Eng. Geol. Environ. 2022, 81, 400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zeng, R.; Zhang, Z.; Meng, X.; Qi, T.; Long, Z.; Guo, W.; Si, G. Landslide Mapping and Causes of Landslides in the China–Nepal Transportation Corridor Based on Remote Sensing Technology. Remote Sens. 2024, 16, 356. https://doi.org/10.3390/rs16020356
Zhao S, Zeng R, Zhang Z, Meng X, Qi T, Long Z, Guo W, Si G. Landslide Mapping and Causes of Landslides in the China–Nepal Transportation Corridor Based on Remote Sensing Technology. Remote Sensing. 2024; 16(2):356. https://doi.org/10.3390/rs16020356
Chicago/Turabian StyleZhao, Shufen, Runqiang Zeng, Zonglin Zhang, Xingmin Meng, Tianjun Qi, Zhao Long, Weiwei Guo, and Guojun Si. 2024. "Landslide Mapping and Causes of Landslides in the China–Nepal Transportation Corridor Based on Remote Sensing Technology" Remote Sensing 16, no. 2: 356. https://doi.org/10.3390/rs16020356
APA StyleZhao, S., Zeng, R., Zhang, Z., Meng, X., Qi, T., Long, Z., Guo, W., & Si, G. (2024). Landslide Mapping and Causes of Landslides in the China–Nepal Transportation Corridor Based on Remote Sensing Technology. Remote Sensing, 16(2), 356. https://doi.org/10.3390/rs16020356