Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Nitrogen Concentration and Aboveground Biomass Measurements
2.3. Sentinel-2 Images Acquisition
2.4. Spectral Indices Calculation
2.5. SPA and PCA
2.6. Machine Learning Model Construction
2.7. Model Performance Evaluation
3. Results
3.1. Correlation Analysis of SIs and PNC and AGB
3.2. Estimation of Potato PNC and AGB Using Different Machine Learning Models
3.3. Optimization of Input Variables of Machine Learning Models
3.3.1. SPA and PCA-Based Data Dimensionality Reduction
3.3.2. SPA-PCA-Based Data Dimensionality Reduction
3.4. Mapping PNC and AGB Using Sentinel-2 Imagery
4. Discussion
4.1. Comparison of PNC and AGB Sensitive Bands
4.2. Comparison of Different Types of SIs
4.3. Differences in Model Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Wang, X.; Guo, Z.; Huang, N.; Hou, S.; He, G.; Batchelor, W.D.; Siddique, K.H.; Wang, Z.; Zhang, D. Optimizing nitrogen fertilizer inputs and plant populations for greener wheat production with high yields and high efficiency in dryland areas. Field Crop. Res. 2021, 276, 108374. [Google Scholar] [CrossRef]
- Vergara-Díaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.; Rascher, U.; et al. Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Chen, P. A Comparison of Two Approaches for Estimating the Wheat Nitrogen Nutrition Index Using Remote Sensing. Remote Sens. 2015, 7, 4527–4548. [Google Scholar] [CrossRef]
- Shiu, Y.S.; Chuang, Y.C. Yield estimation of paddy rice based on satellite imagery: Comparison of global and local regression models. Remote Sens. 2019, 11, 111. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zhu, X.; Guo, W. Estimation of leaf nitrogen concentration in wheat using the MK-SVR algorithm and satellite remote sensing data. Comput. Electron. Agric. 2017, 140, 327–337. [Google Scholar] [CrossRef]
- Naik, P.; Dalponte, M.; Bruzzone, L. Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data. Remote Sens. 2021, 13, 1282. [Google Scholar] [CrossRef]
- Xu, M.; Lacey, C.; Armstrong, S. The feasibility of satellite remote sensing and spatial interpolation to estimate cover crop biomass and nitrogen uptake in a small watershed. J. Soil Water Conserv. 2018, 73, 682–692. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Feng, W.; Wu, Y.; He, L.; Ren, X.; Wang, Y.; Hou, G.; Wang, Y.; Liu, W.; Guo, T. An optimized non-linear vegetation index for estimating leaf area index in winter wheat. Precis. Agric. 2019, 20, 1157–1176. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sens. 2019, 11, 1745. [Google Scholar] [CrossRef]
- Clevers JG, P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Yang, H.; Yin, H.; Li, F.; Hu, Y.; Yu, K. Machine learning models fed with optimized spectral indices to advance crop nitrogen monitoring. Field Crop. Res. 2023, 293, 108844. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Zheng, Z.; Qiao, Y.; Zhang, K.; Guo, T.; Chen, J. Estimation of Potato Chlorophyll Content from UAV Multispectral Images with Stacking Ensemble Algorithm. Agronomy 2022, 12, 2318. [Google Scholar] [CrossRef]
- Prado Osco, L.; Marques Ramos, A.P.; Roberto Pereira, D.; Akemi Saito Moriya, É.; Nobuhiro Imai, N.; Takashi Matsubara, E.; Estrabis, N.; de Souza, M.; Marcato Junior, J.; Gonçalves, W.N.; et al. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sens. 2019, 11, 2925. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, K.; Xiao, C.; Wei, D.; Zhao, X.; Lan, J.; Wei, X.; Yao, Y.; Wang, B.; Sun, Y.; et al. Leaf Area Index Estimation Algorithm for GF-5 Hyperspectral Data Based on Different Feature Selection and Machine Learning Methods. Remote Sens. 2020, 12, 2110. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; et al. Combining Spectral and Texture Features of UAS-Based Multispectral Images for Maize Leaf Area Index Estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial Color Infrared Photography for Determining Late-Season Nitrogen Requirements in Corn. Agron. J. 2005, 97, 1443–1451. [Google Scholar] [CrossRef]
- Sripada, R.P.; Farrer, D.C.; Weisz, R.; Heiniger, R.W.; White, J.G. Aerial Color Infrared Photography to Optimize In-Season Nitrogen Fertilizer Recommendations in Winter Wheat. Agron. J. 2007, 99, 1424–1435. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Derivation of a Variable Rate Nitrogen Application Model for In-Season Fertilization of Corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Use of a virtual-reference concept to interpret active crop canopy sensor data. Precis. Agric. 2012, 14, 71–85. [Google Scholar] [CrossRef]
- van Evert, F.K.; Booij, R.; Jukema, J.N.; ten Berge, H.F.; Uenk, D.; Meurs, E.B.; van Geel, W.C.; Wijnholds, K.H. Using crop reflectance to determine sidedress N rate in potato saves N and maintains yield. Eur. J. Agron. 2012, 43, 58–67. [Google Scholar] [CrossRef]
- Peng, J.; Manevski, K.; Kørup, K.; Larsen, R.; Andersen, M.N. Random forest regression results in accurate assessment of potato nitrogen status based on multispectral data from different platforms and the critical concentration approach. Field Crop. Res. 2021, 268, 108158. [Google Scholar] [CrossRef]
- Zhou, Z.; Plauborg, F.; Thomsen, A.G.; Andersen, M.N. A RVI/LAI-reference curve to detect N stress and guide N fertigation using combined information from spectral reflectance and leaf area measurements in potato. Eur. J. Agron. 2017, 87, 1–7. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral Indices. Remote Sens. 2021, 13, 2339. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Hu, Y.; Yu, K. Hyperspectral indices optimization algorithms for estimating canopy nitrogen concentration in potato (Solanum tuberosum L.). Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102416. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor]; NASA: Washington, DC, USA, 1974.
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crop. Res. 2012, 138, 21–32. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Miller, J.; Morales, A.; Berjón, A.; Agüera, J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 2004, 90, 463–476. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Xu, X.; Liang, D.; Yang, G.; Feng, H.; Yang, H.; Wang, Y.; Chen, G.; Wei, P. Hyperspectral-Based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables. Sensors 2019, 19, 2898. [Google Scholar] [CrossRef] [PubMed]
- Howley, T.; Madden, M.G.; O’Connell, M.L.; Ryder, A.G. The effect of principal component analysis on machine learning accuracy with high dimensional spectral data. In International Conference on Innovative Techniques and Applications of Artificial Intelligence; Springer: London, UK, 2005; pp. 209–222. [Google Scholar]
- Ji, Y.; Liu, R.; Xiao, Y.; Cui, Y.; Chen, Z.; Zong, X.; Yang, T. Faba bean above-ground biomass and bean yield estimation based on consumer-grade unmanned aerial vehicle RGB images and ensemble learning. Precis. Agric. 2023, 24, 1439–1460. [Google Scholar] [CrossRef]
- Ji, S.; Gu, C.; Xi, X.; Zhang, Z.; Hong, Q.; Huo, Z.; Zhao, H.; Zhang, R.; Li, B.; Tan, C. Quantitative Monitoring of Leaf Area Index in Rice Based on Hyperspectral Feature Bands and Ridge Regression Algorithm. Remote Sens. 2022, 14, 2777. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 2014, 52, 198–209. [Google Scholar] [CrossRef]
- Yang, B.; Wang, M.; Sha, Z.; Wang, B.; Chen, J.; Yao, X.; Cheng, T.; Cao, W.; Zhu, Y. Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles. Sensors 2019, 19, 4416. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Li, Z.; Song, X.; Li, Z.; Xu, X.; Wang, P.; Zhao, C. Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression. Remote Sens. 2020, 12, 3778. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Chakraborty, S.; Behera, M.D. Winter wheat yield prediction in the conterminous United States using solar-induced chlorophyll fluorescence data and XGBoost and random forest algorithm. Ecol. Inform. 2023, 77, 102194. [Google Scholar] [CrossRef]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Optimising three-band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany. ISPRS J. Photogramm. Remote Sens. 2014, 92, 112–123. [Google Scholar] [CrossRef]
- Rao, N.R.; Garg, P.K.; Ghosh, S.K.; Dadhwal, V.K. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. J. Agric. Sci. 2008, 146, 65–75. [Google Scholar]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2018, 222, 133–143. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, S.; Huang, X.; Liu, Y.; Guo, L. Rice Mapping and Growth Monitoring Based on Time Series GF-6 Images and Red-Edge Bands. Remote Sens. 2021, 13, 579. [Google Scholar] [CrossRef]
- Perich, G.; Aasen, H.; Verrelst, J.; Argento, F.; Walter, A.; Liebisch, F. Crop nitrogen retrieval methods for simulated sentinel-2 data using in-field spectrometer data. Remote Sens. 2021, 13, 2404. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelier-Huché, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Yuan, F.; Gnyp, M.L.; Yao, Y.; Cao, Q.; Wang, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages. Remote Sens. 2017, 9, 227. [Google Scholar] [CrossRef]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Hasituya; Li, F.; Elsayed, S.; Hu, Y.; Schmidhalter, U. Passive reflectance sensing using optimized two- and three-band spectral indices for quantifying the total nitrogen yield of maize. Comput. Electron. Agric. 2020, 173, 105403. [Google Scholar] [CrossRef]
- Chen, B.; Lu, X.; Yu, S.; Gu, S.; Huang, G.; Guo, X.; Zhao, C. The Application of Machine Learning Models Based on Leaf Spectral Reflectance for Estimating the Nitrogen Nutrient Index in Maize. Agriculture 2022, 12, 1839. [Google Scholar] [CrossRef]
Stages | Number | Min | Max | Mean | SD |
---|---|---|---|---|---|
Plant nitrogen concentration (%) | |||||
Tuber formation (T1) | 44 | 3.33 | 4.66 | 4.08 | 0.33 |
Tuber bulking (T2) | 44 | 2.64 | 4.28 | 3.47 | 0.40 |
Starch accumulation (T3) | 44 | 1.54 | 3.97 | 2.84 | 0.56 |
Calibration | 92 | 1.54 | 4.66 | 3.51 | 0.67 |
Validation | 40 | 1.80 | 4.64 | 3.36 | 0.65 |
Plant aboveground biomass (t ha−1) | |||||
Tuber formation (T1) | 44 | 0.50 | 2.37 | 1.29 | 0.60 |
Tuber bulking (T2) | 44 | 1.39 | 4.08 | 2.56 | 0.57 |
Starch accumulation (T3) | 44 | 1.39 | 4.79 | 2.98 | 0.85 |
Calibration | 92 | 0.50 | 4.79 | 2.23 | 1.00 |
Validation | 40 | 0.60 | 3.93 | 2.39 | 0.98 |
Band | Band Name | Center Wavelength | Bandwidth (nm) | Ground Resolution (m) |
---|---|---|---|---|
B1 | Coastal aerosol | 443 | 20.00 | 60 |
B2 | Blue | 490 | 65.00 | 10 |
B3 | Green | 560 | 35.00 | 10 |
B4 | Red | 665 | 30.00 | 10 |
B5 | RE1 | 705 | 15.00 | 20 |
B6 | RE2 | 740 | 15.00 | 20 |
B7 | RE3 | 783 | 20.00 | 20 |
B8 | NIR1 | 842 | 115.00 | 10 |
B8a | NIR2 | 865 | 20.00 | 20 |
B9 | Water vapour | 945 | 20.00 | 60 |
B10 | SWIR-cirrus | 1375 | 30.00 | 60 |
B11 | SWIR1 | 1610 | 90.00 | 20 |
B12 | SWIR2 | 2190 | 180.00 | 20 |
Abbreviation | Formulas | Algorithms | Variable | References |
---|---|---|---|---|
NDVI | (NIR − Red)/(NIR + Red) | (Rλ1 − Rλ2)/(Rλ1 + Rλ2) | Biomass/Others | [36] |
RVI | NIR/Red | Rλ1/Rλ2 | Vegetation | [37] |
DVI | NIR − Red | Rλ1 − Rλ2 | Vegetation | [38] |
CIred edge | (NIR/Green) − 1 | (Rλ1/Rλ2) − 1 | Chlorophyll/LAI | [19] |
OSAVI | 1.16 × (NIR − Red)/(NIR + Red + 0.16) | 1.16 × (Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.16) | Vegetation | [39] |
MTCI | (Rededge2 − Rededge1)/(Rededge1 − Red) | (Rλ1 − Rλ2)/(Rλ2 − Rλ3) | Chlorophyll | [40] |
MCARI | [(Rededge1 − Red) − 0.2 × (Rededge1 − Green)] × (Rededge1/Red) | [(Rλ1 − Rλ2) − 0.2 × (Rλ1 − Rλ3)] × (Rλ1/Rλ2) | Chlorophyll | [12] |
PSRI | (Red − Green)/Rededge2 | (Rλ1 − Rλ2)/Rλ3 | Vegetation | [41] |
mSR705 | (Rededge2 − Blue)/(Rededge1 − Blue) | (Rλ1 − Rλ2)/(Rλ3 − Rλ2) | Chlorophyll | [42] |
mND705 | (Rededge2 − Blue)/(Rededge2 + Rededge1 − 2 × Blue) | (Rλ1 − Rλ2)/(Rλ1 + Rλ2 − 2 × Rλ3) | Chlorophyll | [42] |
TCARI | 3 × [(Rededge1 − Red) − 0.2 × (Rededge1 − Green) × (Rededge1/Red)] | 3 × [(Rλ1 − Rλ2) − 0.2 × (Rλ1 − Rλ3) × (Rλ1/Rλ2)] | Chlorophyll | [13] |
NPDI | (CIrededge − CIrededge MIN)/(CIrededge MAX − CIrededge MIN | (CIrededge − CIrededge MIN)/(CIrededge MAX − CIrededge MIN) | Nitrogen | [43] |
MCARI/OSAVI | MCARI/OSAVI | MCARI/OSAVI | Chlorophyll | [44] |
TCARI/OSAVI | TCARI/OSAVI | TCARI/OSAVI | Chlorophyll | [13] |
Spectral Indices | PNC | AGB | ||||||
---|---|---|---|---|---|---|---|---|
Rλ1 | Rλ2 | Rλ3 | R2 | Rλ1 | Rλ2 | Rλ3 | R2 | |
NDVI | 705 | 2190 | 0.53 | 490 | 842 | 0.39 | ||
RVI | 705 | 2190 | 0.49 | 490 | 842 | 0.33 | ||
DVI | 705 | 1610 | 0.65 | 560 | 1610 | 0.56 | ||
CIred edge | 705 | 2190 | 0.49 | 490 | 842 | 0.33 | ||
OSAVI | 490 | 2190 | 0.56 | 560 | 1610 | 0.40 | ||
MTCI | 705 | 865 | 1610 | 0.62 | 842 | 1610 | 2190 | 0.40 |
MCARI | 705 | 705 | 1610 | 0.65 | 560 | 560 | 1610 | 0.57 |
PSRI | 865 | 1610 | 2190 | 0.57 | 842 | 1610 | 2190 | 0.40 |
mSR705 | 705 | 865 | 1610 | 0.62 | 842 | 1610 | 2190 | 0.40 |
mND705 | 490 | 560 | 2190 | 0.60 | 490 | 842 | 1610 | 0.47 |
TCARI | 705 | 705 | 1610 | 0.65 | 560 | 705 | 1610 | 0.59 |
NPDI | 705 | 1610 | 2190 | 0.62 | 490 | 783 | 842 | 0.40 |
MCARI/OSAVI | 705 | 865 | 1610 | 0.65 | 560 | 705 | 1610 | 0.59 |
TCARI/OSAVI | 705 | 865 | 1610 | 0.65 | 560 | 705 | 1610 | 0.59 |
Spectral Indices | PNC | AGB | ||
---|---|---|---|---|
T1 | T2 + T3 | T1 | T2 + T3 | |
NDVI | −0.31 | 0.56 | 0.26 | 0.02 |
RVI | −0.31 | 0.52 | 0.22 | 0.03 |
DVI | 0.49 | 0.65 | −0.77 | −0.39 |
CIred edge | −0.31 | 0.52 | 0.22 | 0.03 |
OSAVI | −0.10 | 0.58 | 0.42 | −0.41 |
MTCI | 0.27 | −0.71 | 0.69 | −0.33 |
MCARI | 0.49 | 0.65 | 0.90 | 0.39 |
PSRI | 0.22 | −0.59 | 0.46 | −0.42 |
mSR705 | −0.27 | 0.71 | −0.69 | 0.33 |
mND705 | 0.29 | −0.65 | −0.59 | 0.02 |
TCARI | 0.50 | 0.67 | −0.88 | −0.43 |
NPDI | −0.29 | 0.66 | −0.31 | 0.03 |
MCARI/OSAVI | 0.35 | 0.72 | −0.83 | −0.43 |
TCARI/OSAVI | 0.35 | 0.72 | −0.83 | −0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Li, F.; Yang, H.; Di, Y.; Hu, Y.; Yu, K. Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models. Remote Sens. 2024, 16, 349. https://doi.org/10.3390/rs16020349
Yin H, Li F, Yang H, Di Y, Hu Y, Yu K. Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models. Remote Sensing. 2024; 16(2):349. https://doi.org/10.3390/rs16020349
Chicago/Turabian StyleYin, Hang, Fei Li, Haibo Yang, Yunfei Di, Yuncai Hu, and Kang Yu. 2024. "Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models" Remote Sensing 16, no. 2: 349. https://doi.org/10.3390/rs16020349
APA StyleYin, H., Li, F., Yang, H., Di, Y., Hu, Y., & Yu, K. (2024). Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models. Remote Sensing, 16(2), 349. https://doi.org/10.3390/rs16020349