Predicting Gross Primary Productivity under Future Climate Change for the Tibetan Plateau Based on Convolutional Neural Networks
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. GPP NIRv Data
2.2.2. Climate Variables
2.2.3. CO2 Concentration and Terrain Attributes Data
3. Methodology
3.1. Convolutional Neural Networks
3.2. Performance Measures
4. Results
4.1. Performance of GPP Simulation
4.2. Temporal Variation in GPP
4.3. Spatial Variations in GPP
5. Discussion
5.1. Relative Importance of Environmental Factors
5.2. Comparison with Prior Studies
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piao, S.L.; Zhang, X.Z.; Wang, T.; Liang, E.Y.; Wang, S.P.; Zhu, J.T.; Niu, B. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin. Sci. Bull. 2019, 64, 2842–2855. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global carbon budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef]
- Höhne, N.; Elzen, M.D.; Rogelj, J.; Metz, B.; Fransen, T.; Kuramochi, T.; Olhoff, A.; Alcamo, J.; Winkler, H.; Fu, S.; et al. Emissions: World has four times the work or one-third of the time. Nature 2020, 579, 25–28. [Google Scholar] [CrossRef]
- Fawcett, A.A.; Iyer, G.C.; Clarke, L.E.; Edmonds, J.A.; Hultman, N.E.; McJeon, H.C.; Rogelj, J.; Schuler, R.; Alsalam, J.; Asrar, G.R.; et al. Can Paris pledges avert severe climate change? Science 2015, 350, 1168–1169. [Google Scholar] [CrossRef]
- Hilker, T.; Hall, F.G.; Tucker, C.J.; Coops, N.C.; Black, T.A.; Nichol, C.J.; Sellers, P.J.; Barr, A.; Hollinger, D.Y.; Munger, J.W. Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II model implementation and validation. Remote Sens. Environ. 2012, 121, 287–300. [Google Scholar] [CrossRef]
- Zhang, Z.; Xin, Q.; Li, W. Machine learning-based modeling of vegetation leaf area index and gross primary productivity across North America and comparison with a process-based model. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002802. [Google Scholar] [CrossRef]
- Li, W.-P.; Zhang, Y.-W.; Mu, M.; Shi, X.-L.; Zhou, W.-Y.; Ji, J.-J. Spatial and temporal variations of gross primary production simulated by land surface model BCC_AVIM2. 0. Adv. Clim. Change Res. 2023, 14, 286–299. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Bai, Y.; Koju, U.A.; Igbawua, T.; Chang, Q.; Zhang, D.; Yao, F. Evaluation and improvement of the daily boreal ecosystem productivity simulator in simulating gross primary productivity at 41 flux sites across Europe. Ecol. Model. 2018, 368, 205–232. [Google Scholar] [CrossRef]
- Hajima, T.; Watanabe, M.; Yamamoto, A.; Tatebe, H.; Noguchi, M.A.; Abe, M.; Ohgaito, R.; Ito, A.; Yamazaki, D.; Okajima, H.; et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model. Dev. 2020, 13, 2197–2244. [Google Scholar] [CrossRef]
- Hu, Q.; Li, T.; Deng, X.; Wu, T.; Zhai, P.; Huang, D.; Fan, X.; Zhu, Y.; Lin, Y.; Xiao, X.; et al. Intercomparison of global terrestrial carbon fluxes estimated by MODIS and Earth system models. Sci. Total. Environ. 2022, 810, 152231. [Google Scholar] [CrossRef]
- Zhang, C.; Qi, W.; Dong, J.; Deng, Y. How the CMIP6 climate models project the historical terrestrial GPP in China. Int. J. Clim. 2022, 42, 9449–9461. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Feng, D.; Nooni, I.K. Improving the Gross Primary Production Estimate by Merging and Downscaling Based on Deep Learning. Forests 2023, 14, 1201. [Google Scholar] [CrossRef]
- Yan, H.; Ran, Q.; Hu, R.; Xue, K.; Zhang, B.; Zhou, S.; Zhang, Z.; Tang, L.; Che, R.; Pang, Z.; et al. Machine learning-based prediction for grassland degradation using geographic, meteorological, plant and microbial data. Ecol. Indic. 2022, 137, 108738. [Google Scholar] [CrossRef]
- Guo, R.; Chen, T.; Chen, X.; Yuan, W.; Liu, S.; He, B.; Li, L.; Wang, S.; Hu, T.; Yan, Q.; et al. Estimating global GPP from the plant functional type perspective using a machine learning approach. J. Geophys. Res. Biogeosci. 2023, 128, e2022JG007100. [Google Scholar] [CrossRef]
- Shangguan, W.; Xiong, Z.L.; Nourani, V.; Li, Q.L.; Lu, X.J.; Li, L.; Huang, F.N.; Zhang, Y.; Sun, W.Y.; Dai, Y.J. A 1 km Global Carbon Flux Dataset Using In Situ Measurements and Deep Learning. Forests 2023, 14, 913. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Li, Y.; Wang, T.; Shen, M.; Du, M.; He, H.; Li, Y.; Luo, W.; Ma, M.; et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Glob. Change Biol. 2018, 24, 184–196. [Google Scholar] [CrossRef]
- Pei, Y.; Dong, J.; Zhang, Y.; Yang, J.; Zhang, Y.; Jiang, C.; Xiao, X. Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and PML) for grasslands in drought years. Ecol. Inform. 2020, 56, 101052. [Google Scholar] [CrossRef]
- Tian, Z.K.; Yi, C.X.; Fu, Y.Y.; Kutter, E.; Krakauer, N.Y.; Fang, W.; Zhang, Q.; Luo, H. Fusion of Multiple Models for Improving Gross Primary Production Estimation with Eddy Covariance Data Based on Machine Learning. J. Geophys. Res. Biogeosci. 2023, 128, e2022JG007122. [Google Scholar] [CrossRef]
- Wang, H.; Shao, W.; Hu, Y.; Cao, W.; Zhang, Y. Assessment of Six Machine Learning Methods for Predicting Gross Primary Productivity in Grassland. Remote Sens. 2023, 15, 3475. [Google Scholar] [CrossRef]
- Ren, W.; Zhu, Z.; Wang, Y.; Su, J.; Zeng, R.; Zheng, D.; Li, X. Comparison of Machine Learning Models in Simulating Glacier Mass Balance: Insights from Maritime and Continental Glaciers in High Mountain Asia. Remote Sens. 2024, 16, 956. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, X.; Miao, R.; Li, Y.; Chen, B.; Zhang, Y.; Zhao, B. Trends and controls of terrestrial gross primary productivity of China during 2000–2016. Environ. Res. Lett. 2019, 14, 084032. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, X.; Zhou, Z.; Qu, Y.; Sun, Y. Estimating global maximum gross primary productivity of vegetation based on the combination of MODIS greenness and temperature data. Ecol. Inform. 2021, 63, 101307. [Google Scholar] [CrossRef]
- Hou, H.; Zhou, B.; Pei, F.; Hu, G.; Su, Z.; Zeng, Y.; Zhang, H.; Gao, Y.; Luo, M.; Li, X. Future land use/land cover change has nontrivial and potentially dominant impact on global gross primary productivity. Earth’s Future 2022, 10, e2021EF002628. [Google Scholar] [CrossRef]
- Zhang, Y.; Piao, S.; Sun, Y.; Rogers, B.M.; Li, X.; Lian, X.; Liu, Z.; Chen, A.; Peñuelas, J. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nat. Clim. Change 2022, 12, 581–586. [Google Scholar] [CrossRef]
- Xu, C.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Christoffersen, B.O.; Weng, E.; Middleton, R.S. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 2019, 9, 948–953. [Google Scholar] [CrossRef]
- Yan, M.; Yue, X.; Zhou, B.; Sun, X.; Xin, N. Projected changes of ecosystem productivity and their responses to extreme heat events in northern Asia. Front. Earth Sci. 2022, 10, 970296. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Z.; Huang, M.; Zhao, Q.; Ma, W.; Zeng, H. Projection of gross primary productivity change of global terrestrial ecosystem in the 21st century based on optimal ensemble averaging of CMIP6 models. Adv. Clim. Change Res. 2021, 17, 514–524. [Google Scholar]
- Lu, Q.; Liu, H.; Wei, L.; Zhong, Y.; Zhou, Z. Global prediction of gross primary productivity under future climate change. Sci. Total. Environ. 2024, 912, 169239. [Google Scholar] [CrossRef] [PubMed]
- Boonman, C.C.; Huijbregts, M.A.; Benítez-López, A.; Schipper, A.M.; Thuiller, W.; Santini, L. Trait-based projections of climate change effects on global biome distributions. Divers. Distrib. 2022, 28, 25–37. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Qiu, B.; Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total. Environ. 2021, 755, 142569. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Deng, M.; Meng, X.; Lu, Y.; Li, Z.; Zhao, L.; Niu, H.; Chen, H.; Shang, L.; Wang, S.; Sheng, D. The response of vegetation to regional climate change on the Tibetan Plateau based on remote sensing products and the dynamic global vegetation model. Remote Sens. 2022, 14, 3337. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Qi, Y.; Zhou, X.; He, J.; Lu, H.; Li, X.; Chen, Y.; Li, X.; Zhou, B.; et al. TPHiPr: A long-term (1979–2020) high-accuracy precipitation dataset (1/30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth Syst. Sci. Data 2023, 15, 621–638. [Google Scholar] [CrossRef]
- Cao, B.; Gruber, S.; Zheng, D.; Li, X. The ERA5-Land soil temperature bias in permafrost regions. Cryosphere 2020, 14, 2581–2595. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Dan, L.; Deng, X.; Feng, J.; Wang, Y.; Peng, J.; Tian, J.; Qi, W.; Liu, Z.; Zheng, X. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Sci. Data 2022, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Bohner, J. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Rolf, E. Evaluation challenges for geospatial ML. ICLR 2023 Workshop on Machine Learning for Remote Sensing. arXiv 2023. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.; Ma, Y.; Wang, X.; Liu, W. Improved modeling of gross primary productivity of Alpine Grasslands on the Tibetan Plateau using the biome-BGC model. Remote Sens. 2019, 11, 1287. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Shi, H.; Cai, H.; Fu, Q.; Liu, S.; Li, T. Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecol. Indic. 2020, 117, 106642. [Google Scholar] [CrossRef]
- Ma, M.; Yuan, W. Model differences in gross primary production on the Qinghai-Tibet-Plateau. J. Remote Sens. Technol. 2017, 32, 406–418. [Google Scholar]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef]
- Li, J.; Jia, K.; Zhao, L.; Tao, G.; Zhao, W.; Liu, Y.; Yao, Y.; Zhang, X. An Improved Gross Primary Production Model Considering Atmospheric CO2 Fertilization: The Qinghai–Tibet Plateau as a Case Study. Remote Sens. 2024, 16, 1856. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, H.; Harrison, S.P.; Prentice, I.C.; Qiao, S.; Tan, S. Optimality principles explaining divergent responses of alpine vegetation to environmental change. Glob. Change Biol. 2022, 29, 126–142. [Google Scholar] [CrossRef]
- Liao, W.J.; Jiao, Y.; Li, S.X.; Hu, Z.M.; Bai, L. Comparative analysis of gross primary productivity in the Qinghai-Tibet Plateau based on long-time series of remote sensing products. Chin. J. Ecol. 2024, 43, 1859–1869. [Google Scholar]
- Ma, M.; Yuan, W.; Dong, J.; Zhang, F.; Cai, W.; Li, H. Large-scale estimates of gross primary production on the Qinghai-Tibet plateau based on remote sensing data. Int. J. Digit. Earth 2018, 11, 1166–1183. [Google Scholar] [CrossRef]
- Schlund, M.; Eyring, V.; Camps-Valls, G.; Friedlingstein, P.; Gentine, P.; Reichstein, M. Constraining uncertainty in projected gross primary production with machine learning. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005619. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X.; Tian, H.; Wu, X.; Gao, Z.; Feng, Y.; Piao, S.; Lv, N.; Pan, N.; Fu, B. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Glob. Change Biol. 2021, 27, 5848–5864. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, M.; Ran, Y.; Su, Y.; Liu, F.; Huang, C.; Shen, H.; Xiao, Q.; Su, J.; Yuan, S.; et al. Big Data in Earth system science and progress towards a digital twin. Nat. Rev. Earth Environ. 2023, 4, 319–332. [Google Scholar] [CrossRef]
- Ren, W.; Li, X.; Zheng, D.; Zeng, R.; Su, J.; Mu, T.; Wang, Y. Enhancing flood simulation in data-limited glacial river basins through hybrid modeling and multi-source remote sensing data. Remote Sens. 2023, 15, 4527. [Google Scholar] [CrossRef]
GCM Model | Spatial Resolution | Research Institute and Country |
---|---|---|
ACCESS-CM2 | 0.25° × 0.25° | Commonwealth Scientific and Industrial Research Organization (CSIRO) and the Bureau of Meteorology (BoM), Australia |
CanESM5 | 0.25° × 0.25° | Canadian Centre for Climate Modelling and Analysis (CCCma), Canada |
CNRM-CM6-1 | 0.25° × 0.25° | Centre National de Recherches Météorologiques (CNRM), France |
MIROC6 | 0.25° × 0.25° | Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan |
BCC-CSM2-MR | 0.25° × 0.25° | Beijing Climate Center, China Meteorological Administration, Beijing, China |
MPI-ESM1-2-LR | 0.25° × 0.25° | Max Planck Institute for Meteorology (MPI-M), Germany |
UKESM1-0-LL | 0.25° × 0.25° | A collaborative effort between the Met Office Hadley Centre and the Natural Environment Research Council (NERC), United Kingdom |
Evaluation Criterion | Training | Testing | All | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|---|---|
0.994 | 0.968 | 0.978 | 0.799 | 0.863 | 0.762 | 0.778 | |
RMSE | 0.075 | 0.127 | 0.093 | 0.041 | 0.064 | 0.071 | 0.052 |
MAE | 0.061 | 0.091 | 0.070 | 0.036 | 0.046 | 0.051 | 0.049 |
PBIAS | 2.077% | −1.786% | 0.577% | 5.342% | −0.663% | −4.537% | 9.182% |
Historical 1982–2018 | ssp126 2021–2060 | ssp126 2061–2100 | ssp245 2021–2060 | ssp245 2061–2100 | ssp370 2021–2060 | ssp370 2061–2100 | ssp585 2021–2060 | ssp585 2061–2100 | |
---|---|---|---|---|---|---|---|---|---|
trend | 1.033 | 0.199 | 0.155 | 0.299 | 0.258 | 0.355 | 0.375 | 0.401 | 0.325 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Seasonal | Historical | ssp126 | ssp245 | ssp370 | ssp585 | |||||
---|---|---|---|---|---|---|---|---|---|---|
1982–2018 | 2021–2060 | 2061–2100 | 2021–2060 | 2061–2100 | 2021–2060 | 2061–2100 | 2021–2060 | 2061–2100 | ||
Spring | trend | 1.900 | −0.102 | 0.211 | 0.249 | 0.697 | 0.324 | 1.501 | 0.297 | 1.891 |
p | <0.01 | 0.379 | 0.088 | 0.038 | <0.01 | 0.032 | <0.01 | 0.167 | <0.01 | |
Summer | trend | 4.199 | 1.228 | 1.327 | 1.677 | 2.159 | 1.994 | 1.187 | 2.984 | 0.329 |
p | <0.01 | 0.011 | <0.01 | <0.01 | <0.01 | <0.01 | 0.061 | <0.01 | 0.682 | |
Autumn | trend | 4.151 | 0.999 | 0.072 | 1.530 | 0.779 | 1.820 | 1.576 | 1.580 | 1.493 |
p | <0.01 | 0.012 | 0.752 | <0.01 | 0.018 | <0.01 | <0.01 | <0.01 | <0.01 | |
Winter | trend | 0.778 | −0.059 | 0.029 | −0.014 | −0.153 | −0.251 | −0.177 | −0.250 | −0.056 |
p | 0.074 | 0.339 | 0.684 | 0.017 | 0.028 | <0.01 | 0.040 | <0.01 | 0.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhu, Z.; Ren, W.; Wang, Y. Predicting Gross Primary Productivity under Future Climate Change for the Tibetan Plateau Based on Convolutional Neural Networks. Remote Sens. 2024, 16, 3723. https://doi.org/10.3390/rs16193723
Li M, Zhu Z, Ren W, Wang Y. Predicting Gross Primary Productivity under Future Climate Change for the Tibetan Plateau Based on Convolutional Neural Networks. Remote Sensing. 2024; 16(19):3723. https://doi.org/10.3390/rs16193723
Chicago/Turabian StyleLi, Meimei, Zhongzheng Zhu, Weiwei Ren, and Yingzheng Wang. 2024. "Predicting Gross Primary Productivity under Future Climate Change for the Tibetan Plateau Based on Convolutional Neural Networks" Remote Sensing 16, no. 19: 3723. https://doi.org/10.3390/rs16193723
APA StyleLi, M., Zhu, Z., Ren, W., & Wang, Y. (2024). Predicting Gross Primary Productivity under Future Climate Change for the Tibetan Plateau Based on Convolutional Neural Networks. Remote Sensing, 16(19), 3723. https://doi.org/10.3390/rs16193723