Estimation of Soil Salinity by Combining Spectral and Texture Information from UAV Multispectral Images in the Tarim River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. UAV Image Data Collection and Processing
2.2.2. Ground-Measured Data
2.3. Feature Window Size
2.4. Spectral and Texture Features Extraction
2.5. Construction of the Texture Index
2.5.1. Two-Dimensional Texture Index
2.5.2. Three-Dimensional Texture Index
2.6. Feature Selection
2.7. Estimation Model Strategies
2.7.1. Modeling
2.7.2. Accuracy Assessment
3. Results
3.1. Descriptive Statistics of Soil Samples
3.2. Estimation of Soil Salinity with Different Window Sizes
3.3. Responses of Spectral Information to SSC
3.4. Responses of Texture Information to SSC
3.5. Modeling and Validation Base on Different Datasets
3.6. Soil Salinity Maps Derived from RF, CNN and PLSR Models
3.7. Importance of the Variables
4. Discussion
4.1. Importance of Texture Information for Salinity Prediction
4.2. Defining the Optimal GLCM Window Size for Salinity Prediction
4.3. Transferability and Limitations of the Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haj-Amor, Z.; Araya, T.; Kim, D.G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil Salinity and Its Associated Effects on Soil Microorganisms, Greenhouse Gas Emissions, Crop Yield, Biodiversity and Desertification: A Review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating Soil Salinity from Remote Sensing and Terrain Data in Southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting Long-Term Dynamics of Soil Salinity and Sodicity on a Global Scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, H.; Qian, H.; Gao, L.; Li, C.; Xin, J.; Tan, Y.; Wang, Y.; Li, Z. Minimizing Vegetation Influence on Soil Salinity Mapping with Novel Bare Soil Pixels from Multi-Temporal Images. Geoderma 2023, 439, 116697. [Google Scholar] [CrossRef]
- Cao, X.; Chen, W.; Ge, X.; Chen, X.; Wang, J.; Ding, J. Multidimensional Soil Salinity Data Mining and Evaluation from Different Satellites. Sci. Total Environ. 2022, 846, 157416. [Google Scholar] [CrossRef]
- Guo, B.; Yang, X.; Yang, M.; Sun, D.; Zhu, W.; Zhu, D.; Wang, J. Mapping Soil Salinity Using a Combination of Vegetation Index Time Series and Single-Temporal Remote Sensing Images in the Yellow River Delta, China. Catena 2023, 231, 107313. [Google Scholar] [CrossRef]
- Kaplan, G.; Gašparović, M.; Alqasemi, A.S.; Aldhaheri, A.; Abuelgasim, A.; Ibrahim, M. Soil Salinity Prediction Using Machine Learning and Sentinel–2 Remote Sensing Data in Hyper–Arid Areas. Phys. Chem. Earth Parts A/B/C 2023, 130, 103400. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Shi, H.; Cui, J.; Wang, W.; Ma, H.; Chen, N. Modeling Salinized Wasteland Using Remote Sensing with the Integration of Decision Tree and Multiple Validation Approaches in Hetao Irrigation District of China. Catena 2022, 209, 105854. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote Sensing of Soil Salinity: Potentials and Constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative Estimation of Soil Salinity Using UAV-Borne Hyperspectral and Satellite Multispectral Images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef]
- Nex, F.; Armenakis, C.; Cramer, M.; Cucci, D.A.; Gerke, M.; Honkavaara, E.; Kukko, A.; Persello, C.; Skaloud, J. UAV in the Advent of the Twenties: Where We Stand and What Is Next. ISPRS J. Photogramm. Remote Sens. 2022, 184, 215–242. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision Agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Sankey, J.B.; Sankey, T.T.; Li, J.; Ravi, S.; Wang, G.; Caster, J.; Kasprak, A. Quantifying Plant-Soil-Nutrient Dynamics in Rangelands: Fusion of UAV Hyperspectral-LiDAR, UAV Multispectral-Photogrammetry, and Ground-Based LiDAR-Digital Photography in a Shrub-Encroached Desert Grassland. Remote Sens. Environ. 2021, 253, 112223. [Google Scholar] [CrossRef]
- Liang, Y.; Kou, W.; Lai, H.; Wang, J.; Wang, Q.; Xu, W.; Wang, H.; Lu, N. Improved Estimation of Aboveground Biomass in Rubber Plantations by Fusing Spectral and Textural Information from UAV-Based RGB Imagery. Ecol. Indic. 2022, 142, 109286. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Cao, J.; Wu, Q.; Zhang, B. Estimating Soil Salinity Using Gaofen-2 Imagery: A Novel Application of Combined Spectral and Textural Features. Environ. Res. 2023, 217, 114870. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, B.; Hong, Y.; Chen, S.; Zhao, C.; Peng, J. Minimize of Moisture Effects from Laboratory Simulations of In-Situ Vis-NIR Spectral for the Prediction of Soil Salinity. Infrared Phys. Technol. 2024, 137, 105194. [Google Scholar] [CrossRef]
- Ding, J.; Yu, D. Monitoring and Evaluating Spatial Variability of Soil Salinity in Dry and Wet Seasons in the Werigan–Kuqa Oasis, China, Using Remote Sensing and Electromagnetic Induction Instruments. Geoderma 2014, 235–236, 316–322. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Wang, Z.; Zhao, G. Remote Sensing Prediction and Characteristic Analysis of Cultivated Land Salinization in Different Seasons and Multiple Soil Layers in the Coastal Area. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102838. [Google Scholar] [CrossRef]
- Moreira, L.C.J.; Teixeira, A.D.S.; Galvão, L.S. Potential of Multispectral and Hyperspectral Data to Detect Saline-Exposed Soils in Brazil. GIScience Remote Sens. 2015, 52, 416–436. [Google Scholar] [CrossRef]
- Salcedo, F.P.; Cutillas, P.P.; Cabañero, J.J.A.; Vivaldi, A.G. Use of Remote Sensing to Evaluate the Effects of Environmental Factors on Soil Salinity in a Semi-Arid Area. Sci. Total Environ. 2022, 815, 152524. [Google Scholar] [CrossRef] [PubMed]
- Finstad, K.; Pfeiffer, M.; McNicol, G.; Barnes, J.; Demergasso, C.; Chong, G.; Amundson, R. Rates and Geochemical Processes of Soil and Salt Crust Formation in Salars of the Atacama Desert, Chile. Geoderma 2016, 284, 57–72. [Google Scholar] [CrossRef]
- Grünberger, O.; Macaigne, P.; Michelot, J.L.; Hartmann, C.; Sukchan, S. Salt Crust Development in Paddy Fields Owing to Soil Evaporation and Drainage: Contribution of Chloride and Deuterium Profile Analysis. J. Hydrol. 2008, 348, 110–123. [Google Scholar] [CrossRef]
- Roberti de Siqueira, F.; Robson Schwartz, W.; Pedrini, H. Multi-Scale Gray Level Co-Occurrence Matrices for Texture Description. Neurocomputing 2013, 120, 336–345. [Google Scholar] [CrossRef]
- Howari, F.M.; Goodell, P.C.; Miyamoto, S. Spectral Properties of Salt Crusts Formed on Saline Soils. J. Environ. Qual. 2002, 31, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ma, F.; Yu, H.; Li, Z. Inversion Model of Salt Content in Alfalfa-Covered Soil Based on a Combination of UAV Spectral and Texture Information. Agriculture 2023, 13, 1530. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A Neural Network Approach Using Multi-Scale Textural Metrics from Very High-Resolution Panchromatic Imagery for Urban Land-Use Classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef]
- Chen, S.; Useya, J.; Mugiyo, H. Decision-Level Fusion of Sentinel-1 SAR and Landsat 8 OLI Texture Features for Crop Discrimination and Classification: Case of Masvingo, Zimbabwe. Heliyon 2020, 6, e05358. [Google Scholar] [CrossRef]
- Shaban, M.A.; Dikshit, O. Improvement of Classification in Urban Areas by the Use of Textural Features: The Case Study of Lucknow City, Uttar Pradesh. Int. J. Remote Sens. 2001, 22, 565–593. [Google Scholar] [CrossRef]
- Duan, M.; Song, X.; Li, Z.; Zhang, X.; Ding, X.; Cui, D. Identifying Soil Groups and Selecting a High-Accuracy Classification Method Based on Multi-Textural Features with Optimal Window Sizes Using Remote Sensing Images. Ecol. Inf. 2024, 81, 102563. [Google Scholar] [CrossRef]
- Wei, Y.; Ding, J.; Yang, S.; Wang, F.; Wang, C. Soil Salinity Prediction Based on Scale-Dependent Relationships with Environmental Variables by Discrete Wavelet Transform in the Tarim Basin. Catena 2021, 196, 104939. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Hu, B.; Biswas, A.; Jiang, Q.; Liu, W.; Wang, N.; Peng, J. Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sens. 2020, 12, 4043. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.G.P.W.; Kooistra, L. Identification of Soil Heavy Metal Sources and Improvement in Spatial Mapping Based on Soil Spectral Information: A Case Study in Northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Karakouzian, M.; Pitchford, A.; Leonard, M.; Johnson, B. Measurements of Soluble Salt Content of Soils from Arid and Semi-Arid Regions. Geotech. Test. J. 1996, 19, 364–372. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Performance Evaluation of Spectral Vegetation Indices Using a Statistical Sensitivity Function. Remote Sens. Environ. 2007, 106, 59–65. [Google Scholar] [CrossRef]
- Barreto, A.C.; Ferreira Neto, M.; de Oliveira, R.P.; Moreira, L.C.J.; de Medeiros, J.F.; Sá, F.V.d.S. Comparative Analysis of Spectral Indexes for Soil Salinity Mapping in Irrigated Areas in a Semi-Arid Region, Brazil. J. Arid. Environ. 2023, 209, 104888. [Google Scholar] [CrossRef]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, R.; Liu, L.; Zhou, D. A Method of Salt-Affected Soil Information Extraction Based on a Support Vector Machine with Texture Features. Math. Comput. Model. 2010, 51, 1319–1325. [Google Scholar] [CrossRef]
- Hu, B.; Xie, M.; Zhou, Y.; Chen, S.; Zhou, Y.; Ni, H.; Peng, J.; Ji, W.; Hong, Y.; Li, H.; et al. A High-Resolution Map of Soil Organic Carbon in Cropland of Southern China. Catena 2024, 237, 107813. [Google Scholar] [CrossRef]
- Bai, Z.; Xie, M.; Hu, B.; Luo, D.; Wan, C.; Peng, J.; Shi, Z. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China. Sensors 2022, 22, 6124. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhang, X.; Wang, Y.; Men, Z.; Liu, H. Regional Soil Organic Matter Mapping Models Based on the Optimal Time Window, Feature Selection Algorithm and Google Earth Engine. Soil. Tillage Res. 2022, 219, 105325. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Luo, C.; Zhang, X.; Liu, H. SOC Content of Global Mollisols at a 30 m Spatial Resolution from 1984 to 2021 Generated by the Novel ML-CNN Prediction Model. Remote Sens. Environ. 2024, 300, 113911. [Google Scholar] [CrossRef]
- Hu, B.; Bourennane, H.; Arrouays, D.; Denoroy, P.; Lemercier, B.; Saby, N.P.A. Developing Pedotransfer Functions to Harmonize Extractable Soil Phosphorus Content Measured with Different Methods: A Case Study across the Mainland of France. Geoderma 2021, 381, 114645. [Google Scholar] [CrossRef]
- Tajik, S.; Ayoubi, S.; Shirani, H.; Zeraatpisheh, M. Digital Mapping of Soil Invertebrates Using Environmental Attributes in a Deciduous Forest Ecosystem. Geoderma 2019, 353, 252–263. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Reza Owliaie, H.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the Spatial Prediction of Soil Organic Carbon Using Environmental Covariates Selection: A Comparison of a Group of Environmental Covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Liu, H.; Shi, T.; Chen, Y.; Wang, J.; Fei, T.; Wu, G. Improving Spectral Estimation of Soil Organic Carbon Content through Semi-Supervised Regression. Remote Sens. 2017, 9, 29. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil. Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing Soil Salinity Using Soil Salinity and Vegetation Indices Derived from IKONOS High-Spatial Resolution Imageries: Applications in a Date Palm Dominated Region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Duan, M.; Song, X.; Liu, X.; Cui, D.; Zhang, X. Mapping the Soil Types Combining Multi-Temporal Remote Sensing Data with Texture Features. Comput. Electron. Agric. 2022, 200, 107230. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.; Feng, H.; Chen, R.; Bian, M.; Ma, Y.; Yue, J.; Yang, G. Estimating Potato Above-Ground Biomass Based on Vegetation Indices and Texture Features Constructed from Sensitive Bands of UAV Hyperspectral Imagery. Comput. Electron. Agric. 2024, 220, 108918. [Google Scholar] [CrossRef]
- Saboori, M.; Asghar Torahi, A.; Reza Riyahi Bakhtyari, H. Combining Multi-Scale Textural Features from the Panchromatic Bands of High Spatial Resolution Images with ANN and MLC Classification Algorithms to Extract Urban Land Uses. Int. J. Remote Sens. 2019, 40, 8608–8634. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved Estimation of Rice Aboveground Biomass Combining Textural and Spectral Analysis of UAV Imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Li, Z.; Jin, X.; Fan, Y.; Feng, Z.; Yang, G.; Laneve, G.; Yang, C.; et al. Estimation of Aboveground Biomass of Potatoes Based on Characteristic Variables Extracted from UAV Hyperspectral Imagery. Remote Sens. 2022, 14, 5121. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef]
- Marcone, A.; Impollonia, G.; Croci, M.; Blandinières, H.; Pellegrini, N.; Amaducci, S. Garlic Yield Monitoring Using Vegetation Indices and Texture Features Derived from UAV Multispectral Imagery. Smart Agric. Technol. 2024, 8, 100513. [Google Scholar] [CrossRef]
- Lu, H.; Liu, C.; Li, N.; Fu, X.; Li, L. Optimal Segmentation Scale Selection and Evaluation of Cultivated Land Objects Based on High-Resolution Remote Sensing Images with Spectral and Texture Features. Environ. Sci. Pollut. Res. 2021, 28, 27067–27083. [Google Scholar] [CrossRef]
- Mao, P.; Ding, J.; Jiang, B.; Qin, L.; Qiu, G.Y. How Can UAV Bridge the Gap between Ground and Satellite Observations for Quantifying the Biomass of Desert Shrub Community? ISPRS J. Photogramm. Remote Sens. 2022, 192, 361–376. [Google Scholar] [CrossRef]
Filters | Blue | Green | Red | Red Edge | Near-Infrared |
---|---|---|---|---|---|
Wavelength | 450 nm ± 16 nm | 560 nm ± 16 nm | 650 nm ± 16 nm | 730 nm ± 16 nm | 840 nm ± 26 nm |
Data | Land Surface Parameters | Abbreviation | Formula | Reference |
---|---|---|---|---|
Spectral values | Blue | B | - | - |
Green | G | - | - | |
Red | R | - | - | |
Red edge | RE | - | - | |
Near-infrared | NIR | - | - | |
Spectral index | Normalized Difference Vegetation Index | NDVI | (NIR − R)/(NIR + R) | [2] |
Soil-Adjusted Vegetation Index | SAVI | [(NIR − R) × (1 + L)]/(NIR + R + L) | ||
Difference Vegetation Index | DVI | NIR − R | [18] | |
Salinity index | SI1 | [2] | ||
Salinity index | SI2 | (B − R)/(B + R) | ||
Salinity index | SI3 | (G × R)/B | ||
Salinity index | SI4 | (R × NIR)/G | ||
Texture index | Mean | MEA | [15] | |
Variance | VAR | |||
Homogeneity | HOM | |||
Contrast | CON | |||
Dissimilarity | DIS | |||
Entropy | ENT | |||
Second moment | SEM | |||
Correlation | COR |
Datasets | Soil Properties | Maximum | Minimum | Mean | Median | SD | CV (%) |
---|---|---|---|---|---|---|---|
Calibration | SSC (g kg−1) | 156.05 | 29.93 | 86.40 | 84.47 | 19.74 | 22.85 |
pH | 8.36 | 7.54 | 8.13 | 8.13 | 0.16 | 1.98 | |
Validation | SSC (g kg−1) | 144.64 | 35.71 | 86.34 | 84.48 | 19.44 | 22.52 |
pH | 8.30 | 7.34 | 8.12 | 8.13 | 0.14 | 1.95 | |
Total | SSC (g kg−1) | 156.05 | 29.93 | 86.38 | 84.47 | 19.60 | 22.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, J.; Wang, N.; Hu, B.; Han, J.; Feng, C.; Peng, J.; Luo, D.; Shi, Z. Estimation of Soil Salinity by Combining Spectral and Texture Information from UAV Multispectral Images in the Tarim River Basin, China. Remote Sens. 2024, 16, 3671. https://doi.org/10.3390/rs16193671
Zhai J, Wang N, Hu B, Han J, Feng C, Peng J, Luo D, Shi Z. Estimation of Soil Salinity by Combining Spectral and Texture Information from UAV Multispectral Images in the Tarim River Basin, China. Remote Sensing. 2024; 16(19):3671. https://doi.org/10.3390/rs16193671
Chicago/Turabian StyleZhai, Jiaxiang, Nan Wang, Bifeng Hu, Jianwen Han, Chunhui Feng, Jie Peng, Defang Luo, and Zhou Shi. 2024. "Estimation of Soil Salinity by Combining Spectral and Texture Information from UAV Multispectral Images in the Tarim River Basin, China" Remote Sensing 16, no. 19: 3671. https://doi.org/10.3390/rs16193671
APA StyleZhai, J., Wang, N., Hu, B., Han, J., Feng, C., Peng, J., Luo, D., & Shi, Z. (2024). Estimation of Soil Salinity by Combining Spectral and Texture Information from UAV Multispectral Images in the Tarim River Basin, China. Remote Sensing, 16(19), 3671. https://doi.org/10.3390/rs16193671