Perspectives and Challenges in Bolide Infrasound Processing and Interpretation: A Focused Review with Case Studies
Abstract
:1. Introduction
2. Key Considerations in Bolide Infrasound
2.1. Modes of Shock Production
2.2. Considerations in Short- and Long-Range Detections
2.3. Energy Deposition
2.4. Infrasound Sensing
2.5. Propagation Effects
3. Global Detections of Bolides
3.1. Case Studies
3.1.1. Near-Field: A Regional Event and the Greenland Bolide
3.1.2. Far-Field: The Indonesian Bolide
4. Methodology
4.1. Signal Detection and Analysis
4.2. Signal Characteristics
4.3. Propagation Modeling
5. Case Study Analyses and Discussion
5.1. Near-Field
5.2. Far-Field
6. Conclusions and Future Direction
- (1)
- Rigorously and systematically examine as well as test for all potential causes of variability in the observed signal periods.
- (2)
- From (1), determine if a correction can be applied to new events to refine signal period estimates and improve yield calculations using period-based energy relations, considering factors like Doppler shift, propagation effects, and station effects.
- (3)
- Develop strategies to address inconsistencies in the signal measurement, analysis, and interpretation.
- (4)
- Investigate possible causes for large (>10°) deviations in the observed back azimuths while also taking into consideration variability in propagation effects. Ideally, this should be done using a large sample of reasonably energetic events (low-energy events are less likely to generate signals strong enough to reach a sufficiently large number of stations).
- (5)
- Expand on to-date work and statistically explore infrasound records associated with well-documented and well-characterized events toward a better understanding of bolide mass distribution and impact flux.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silber, E.A.; Boslough, M.; Hocking, W.K.; Gritsevich, M.; Whitaker, R.W. Physics of meteor generated shock waves in the Earth’s atmosphere—A review. Adv. Space Res. 2018, 62, 489–532. [Google Scholar] [CrossRef]
- Ceplecha, Z.; Borovička, J.; Elford, W.G.; ReVelle, D.O.; Hawkes, R.L.; Porubčan, V.; Šimek, M. Meteor Phenomena and Bodies. Space Sci. Rev. 1998, 84, 327–471. [Google Scholar] [CrossRef]
- Ben-Dor, G.; Igra, O.; Elperin, T. Handbook of Shock Waves, Three Volume Set; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Tsikulin, M. Shock Waves during the Movement of Large Meteorites in the Atmosphere; DTIC: Springfield, VA, USA, 1970. [Google Scholar]
- ReVelle, D.O. On meteor-generated infrasound. J. Geophys. Res. 1976, 81, 1217–1230. [Google Scholar] [CrossRef]
- Moreno-Ibáñez, M.; Silber, E.A.; Gritsevich, M.; Trigo-Rodríguez, J.M. Verification of the flow regimes based on high-fidelity observations of bright meteors. Astrophys. J. 2018, 863, 174. [Google Scholar] [CrossRef]
- Popova, O.; Sidneva, S.; Strelkov, A.; Shuvalov, V. Formation of disturbed area around fast meteor body. In Proceedings of the Meteoroids 2001 Conference, Kiruna, Sweden, 6–10 August 2001; pp. 237–245. [Google Scholar]
- Popova, O.P.; Sidneva, S.N.; Shuvalov, V.V.; Strelkov, A.S. Screening of meteoroids by ablation vapor in high-velocity meteors. Earth Moon Planets 2000, 82, 109–128. [Google Scholar]
- Bronshten, V.A. Physics of Meteoric Phenomena; Reidel Publishing Co: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Brown, P.; Edwards, W.; ReVelle, D.; Spurny, P. Acoustic analysis of shock production by very high-altitude meteors—I: Infrasonic observations, dynamics and luminosity. J. Atmos. Sol.-Terr. Phys. 2007, 69, 600–620. [Google Scholar] [CrossRef]
- Silber, E.A.; Brown, P.G. Optical observations of meteors generating infrasound—I: Acoustic signal identification and phenomenology. J. Atmos. Sol.-Terr. Phys. 2014, 119, 116–128. [Google Scholar] [CrossRef]
- Edwards, W.N.; Eaton, D.W.; Brown, P.G. Seismic observations of meteors: Coupling theory and observations. Rev. Geophys. 2008, 46, RG4007. [Google Scholar] [CrossRef]
- Trigo-Rodríguez, J.M. Asteroid Impact Risk, Impact Hazard from Asteroids and Comets; Springer: Cham, Switzerland, 2022; p. 126. [Google Scholar]
- Whipple, F. The great Siberian meteor and the waves, seismic and aerial, which it produced. Q. J. Meteorol. Soc. 1930, 56, 287–304. [Google Scholar]
- Chyba, C.F.; Thomas, P.J.; Zahnle, K.J. The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature 1993, 361, 40–44. [Google Scholar] [CrossRef]
- Brown, P.G.; Assink, J.D.; Astiz, L.; Blaauw, R.; Boslough, M.B.; Borovicka, J.; Brachet, N.; Brown, D.; Campbell-Brown, M.; Ceranna, L.; et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 2013, 503, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Pilger, C.; Ceranna, L.; Ross, J.O.; Le Pichon, A.; Mialle, P.; Garcés, M.A. CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys. Res. Lett. 2015, 42, 2523–2531. [Google Scholar] [CrossRef]
- Popova, O.P.; Jenniskens, P.; Emel’yanenko, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.; Shuvalov, V.; Rybnov, Y.; Dudorov, A.; Grokhovsky, V.I.; et al. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization. Science 2013, 342, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Le Pichon, A.; Ceranna, L.; Pilger, C.; Mialle, P.; Brown, D.; Herry, P.; Brachet, N. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys. Res. Lett. 2013, 40, 3732–3737. [Google Scholar] [CrossRef]
- Bender, M.W.; Carey, M.; Bell, L.M.D. Planetary Asteroid Defense Study: Assessing and Responding to the Natural Space Debris Threat; DTIC: Springfield, VA, USA, 1995. [Google Scholar]
- Daubar, I.J.; Fernando, B.A.; Garcia, R.F.; Grindrod, P.M.; Zenhäusern, G.; Wójcicka, N.; Teanby, N.A.; Stähler, S.C.; Posiolova, L.; Horleston, A.C.; et al. Two Seismic Events from InSight Confirmed as New Impacts on Mars. Planet. Sci. J. 2023, 4, 175. [Google Scholar] [CrossRef]
- Fernando, B.; Wójcicka, N.; Maguire, R.; Stähler, S.C.; Stott, A.E.; Ceylan, S.; Charalambous, C.; Clinton, J.; Collins, G.S.; Dahmen, N.; et al. Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nat. Astron. 2022, 6, 59–64. [Google Scholar] [CrossRef]
- Garcia, R.F.; Daubar, I.J.; Beucler, É.; Posiolova, L.V.; Collins, G.S.; Lognonné, P.; Rolland, L.; Xu, Z.; Wójcicka, N.; Spiga, A.; et al. Newly formed craters on Mars located using seismic and acoustic wave data from InSight. Nat. Geosci. 2022, 15, 774–780. [Google Scholar] [CrossRef]
- Blaske, C.H.; O’Rourke, J.G.; Desch, S.J.; Borrelli, M.E. Meteors May Masquerade as Lightning in the Atmosphere of Venus. J. Geophys. Res. Planets 2023, 128, e2023JE007914. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Bowman, D.C. A “Floatilla” of Airborne Seismometers for Venus. Geophys. Res. Lett. 2023, 50, e2022GL100978. [Google Scholar] [CrossRef]
- Petculescu, A.; Lueptow, R.M. Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus 2007, 186, 413. [Google Scholar] [CrossRef]
- Bowman, D.C. Airborne Infrasound Makes a Splash. Geophys. Res. Lett. 2021, 48, e2021GL096326. [Google Scholar] [CrossRef]
- Zinn, J.; O’Dean, P.J.; ReVelle, D.O. Leonid meteor ablation, energy exchange, and trail morphology. Adv. Space Res. 2004, 33, 1466–1474. [Google Scholar] [CrossRef]
- Trigo-Rodríguez, J.M.; Dergham, J.; Gritsevich, M.; Lyytinen, E.; Silber, E.A.; Williams, I.P. A Numerical Approach to Study Ablation of Large Bolides: Application to Chelyabinsk. Adv. Astron. 2021, 2021, 8852772. [Google Scholar] [CrossRef]
- Shober, P.M.; Jansen-Sturgeon, T.; Sansom, E.K.; Devillepoix, H.A.; Towner, M.C.; Bland, P.A.; Cupák, M.; Howie, R.M.; Hartig, B.A. Where did they come from, where did they go: Grazing fireballs. Astron. J. 2020, 159, 191. [Google Scholar] [CrossRef]
- Moreno, A.; Madiedo, J.M.; Zamorano, J.; Goncalves, R.; Esparteros, F.; Trigo-Rodríguez, J.M.; Ortiz, J.L.; Lacruz, J.; Aceituno, J.; De Guindos, E.; et al. Preliminary Spectroscopic and Dynamical Analysis of an Earth-Grazer Fireball Observed on December 24, 2014. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 1088. [Google Scholar]
- Silber, E.A.; Bowman, D.C.; Carr, C.G.; Eisenberg, D.P.; Elbing, B.R.; Fernando, B.; Garces, M.A.; Haaser, R.; Krishnamoorthy, S.; Langston, C.A.; et al. Geophysical Observations of the 24 September 2023 OSIRIS-REx Sample Return Capsule Re-Entry. arXiv 2024, arXiv:2407.02420. [Google Scholar]
- Fernando, B.; Charalambous, C.; Saliby, C.; Sansom, E.; Larmat, C.; Buttsworth, D.; Hicks, D.; Johnson, R.; Lewis, K.; McCleary, M. Seismoacoustic measurements of the OSIRIS-REx re-entry with an off-grid Raspberry PiShake. Seismica 2024, 3, 1154. [Google Scholar] [CrossRef]
- Fernando, B.; Charalambous, C.; Schmerr, N.; Craig, T.J.; Wolf, J.; Lewis, K.; Sansom, E.; Saliby, C.; McCleary, M.; Inman, J. Array-based seismic measurements of OSIRIS-REx’s re-entry. Earth ArXiv 2024. [Google Scholar] [CrossRef]
- Brown, P.; McCausland, P.J.A.; Fries, M.; Silber, E.; Edwards, W.N.; Wong, D.K.; Weryk, R.J.; Fries, J.; Krzeminski, Z. The fall of the Grimsby meteorite—I: Fireball dynamics and orbit from radar, video, and infrasound records. Meteorit. Planet. Sci. 2011, 46, 339–363. [Google Scholar] [CrossRef]
- Hedlin, M.A.H.; Walker, K.T. A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2013, 371, 20110542. [Google Scholar] [CrossRef]
- Silber, E.A.; Le Pichon, A.; Brown, P.G. Infrasonic detection of a near-Earth object impact over Indonesia on 8 October 2009. Geophys. Res. Lett. 2011, 38, L12201. [Google Scholar] [CrossRef]
- Pilger, C.; Ceranna, L.; Le Pichon, A.; Brown, P. Large Meteoroids as Global Infrasound Reference Events. In Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 451–470. [Google Scholar]
- Silber, E.A.; Brown, P. Infrasound Monitoring as a Tool to Characterize Impacting Near-Earth Objects (NEOs). In Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 939–986. [Google Scholar]
- Dumond, J.W.M.; Cohen, R.; Panofsky, W.K.H.; Deeds, E. A Determination of the Wave Forms and Laws of Propagation and Dissipation of Ballistic Shock Waves. J. Acoust. Soc. Am. 1946, 18, 97–118. [Google Scholar] [CrossRef]
- Revelle, D.O. Historical Detection of Atmospheric Impacts by Large Bolides Using Acoustic-Gravity Wavesa. Ann. N. Y. Acad. Sci. 1997, 822, 284–302. [Google Scholar] [CrossRef]
- Christie, D.R.; Campus, P. The IMS infrasound network: Design and establishment of infrasound stations. In Infrasound Monitoring for Atmospheric Studies; Springer: Berlin/Heidelberg, Germany, 2010; pp. 29–75. [Google Scholar]
- Brachet, N.; Brown, D.; Bras, R.; Cansi, Y.; Mialle, P.; Coyne, J. Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 77–118. [Google Scholar]
- National Research Council. The Comprehensive Nuclear Test Ban Treaty: Technical Issues for the United States; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Pilger, C.; Gaebler, P.; Hupe, P.; Ott, T.; Drolshagen, E. Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs. Atmosphere 2020, 11, 83. [Google Scholar] [CrossRef]
- Arrowsmith, S.; ReVelle, D.; Edwards, W.; Brown, P. Global Detection of Infrasonic Signals from Three Large Bolides. Earth Moon Planets 2008, 102, 357–363. [Google Scholar] [CrossRef]
- Ott, T.; Drolshagen, E.; Koschny, D.; Mialle, P.; Pilger, C.; Vaubaillon, J.; Drolshagen, G.; Poppe, B. Combination of infrasound signals and complementary data for the analysis of bright fireballs. Planet. Space Sci. 2019, 179, 104715. [Google Scholar] [CrossRef]
- Mutschlecner, J.P.; Whitaker, R.W. The Design and Operation of Infrasonic Microphones; OSTI.GOV: Oak Ridge, TN, USA, 1997; p. 29.
- Slad, G.; Merchant, B.J. Evaluation of Low Cost Infrasound Sensor Packages; Sandia National Laboratories: Albuquerque, NM, USA, 2021; p. 191.
- Albert, S.; Bowman, D.; Silber, E.; Dannemann Dugick, F. The AtmoSOFAR channel: First direct observations of an elevated acoustic duct. Earth Space Sci. 2023, 10, e2023EA003149. [Google Scholar] [CrossRef]
- Bowman, D.C.; Albert, S.A. Acoustic event location and background noise characterization on a free flying infrasound sensor network in the stratosphere. Geophys. J. Int. 2018, 213, 1524–1535. [Google Scholar] [CrossRef]
- Bowman, D.C.; Rouse, J.W.; Krishnamoorthy, S.; Silber, E.A. Infrasound direction of arrival determination using a balloon-borne aeroseismometer. JASA Express Lett. 2022, 2, 054001. [Google Scholar] [CrossRef] [PubMed]
- de Groot-Hedlin, C.D.; Hedlin, M.A.H.; Drob, D. Atmospheric variability and infrasound monitoring. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Drob, D. Meteorology, Climatology, and Upper Atmospheric Composition for Infrasound Propagation Modeling. In Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 485–508. [Google Scholar]
- Drob, D.P.; Garces, M.; Hedlin, M.; Brachet, N. The Temporal Morphology of Infrasound Propagation. Pure Appl. Geophys. 2010, 167, 437–453. [Google Scholar] [CrossRef]
- Kulichkov, S. On infrasonic arrivals in the zone of geometric shadow at long distances from surface explosions. In Proceedings of the Ninth Annual Symposium on Long-Range Propagation, Den Haag, The Netherlands, 1 January 2000; pp. 238–251. [Google Scholar]
- Negraru, P.T.; Golden, P.; Herrin, E.T. Infrasound Propagation in the “Zone of Silence”. Seismol. Res. Lett. 2010, 81, 614–624. [Google Scholar] [CrossRef]
- Nippress, A.; Green, D.N.; Marcillo, O.E.; Arrowsmith, S.J. Generating regional infrasound celerity-range models using ground-truth information and the implications for event location. Geophys. J. Int. 2014, 197, 1154–1165. [Google Scholar] [CrossRef]
- Averbuch, G.; Ronac-Giannone, M.; Arrowsmith, S.; Anderson, J.F. Evidence for Short Temporal Atmospheric Variations Observed by Infrasonic Signals: 1. The Troposphere. Earth Space Sci. 2022, 9, e2021EA002036. [Google Scholar] [CrossRef]
- Hedlin, M.A.H.; Garces, M.; Bass, H.; Hayward, C.; Herrin, G.; Olson, J.; Wilson, C. Listening to the secret sounds of Earth’s atmosphere. Eos Trans. AGU 2002, 83, 557–565. [Google Scholar] [CrossRef]
- Green, D.N.; Vergoz, J.; Gibson, R.; Le Pichon, A.; Ceranna, L. Infrasound radiated by the Gerdec and Chelopechene explosions: Propagation along unexpected paths. Geophys. J. Int. 2011, 185, 890–910. [Google Scholar] [CrossRef]
- Silber, E.A.; Bowman, D.C. Isolating the Source Region of Infrasound Travel Time Variability Using Acoustic Sensors on High-Altitude Balloons. Remote Sens. 2023, 15, 3661. [Google Scholar] [CrossRef]
- Chunchuzov, I. Influence of internal gravity waves on sound propagation in the lower atmosphere. Meteorol. Atmos. Phys. 2004, 85, 61–76. [Google Scholar] [CrossRef]
- Norris, D.; Gibson, R.; Bongiovanni, K. Numerical Methods to Model Infrasonic Propagation Through Realistic Specifications of the Atmosphere. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 541–573. [Google Scholar]
- Matoza, R.S.; Fee, D.; Assink, J.D.; Iezzi, A.M.; Green, D.N.; Kim, K.; Toney, L.; Lecocq, T.; Krishnamoorthy, S.; Lalande, J.-M.; et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 2022, 377, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Golden, P.; Negraru, P. Infrasound Studies for Yield Estimation of HE Explosions; DTIC: Springfield, VA, USA, 2011. [Google Scholar]
- Pilger, C.; Hupe, P.; Gaebler, P.; Ceranna, L. 1001 Rocket Launches for Space Missions and Their Infrasonic Signature. Geophys. Res. Lett. 2021, 48, e2020GL092262. [Google Scholar] [CrossRef]
- Wilson, C.R. Auroral Infrasonic Waves and Poleward Expansions of Auroral Substorms at Inuvik, N.W.T., Canada. Geophys. J. R. Astron. Soc. 1971, 26, 179–181. [Google Scholar] [CrossRef]
- Farges, T.; Blanc, E. Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res. 2010, 115, A00E31. [Google Scholar] [CrossRef]
- Silber, E.A. The utility of infrasound in global monitoring of extraterrestrial impacts: A case study of the 23 July 2008 Tajikistan bolide. Astron. J. 2024, 168, 17. [Google Scholar] [CrossRef]
- Nemtchinov, I.V.; Svetsov, V.V.; Kosarev, I.B.; Golub, A.P.; Popova, O.P.; Shuvalov, V.V.; Spalding, R.E.; Jacobs, C.; Ta-gliaferri, E. Assessment of Kinetic Energy of Meteoroids Detected by Satellite-Based Light Sensors. Icarus 1997, 130, 259–274. [Google Scholar] [CrossRef]
- Peña-Asensio, E.; Trigo-Rodríguez, J.M.; Rimola, A. Orbital Characterization of Superbolides Observed from Space: Dynamical Association with Near-Earth Objects, Meteoroid Streams, and Identification of Hyperbolic Meteoroids. Astron. J. 2022, 164, 76. [Google Scholar] [CrossRef]
- Karakostas, F.; Schmerr, N.; Bailey, S.H.; Dellagiustina, D.; Habib, N.; Bray, V.; Pettit, E.; Dahl, P.; Quinn, T.; Marusiak, A. The Qaanaaq airburst as an analog of seismic source in extraterrestrial atmospheres: Seismic and infrasound investigation. In Proceedings of the Europlanet Science Congress 2020, Online, 21 September–9 October 2020. [Google Scholar]
- Schmerr, N.C.; Bailey, H.; DellaGiustina, D.; Bray, V.J.; Habib, N.; Pettit, E.C.; Dahl, P.; Quinn, T.; Marusiak, A.G.; Avenson, B.; et al. The 2018 Qaanaaq Fireball: A Seismic Recording of a Meteorite Impact Event into the Greenland Ice Sheet. In Proceedings of the American Geophysical Union Fall Meeting 2018, Washington, DC, USA, 10–14 December 2018. P21E–3406. [Google Scholar]
- Harris, M.; Young, C. MatSeis: A seismic GUI and tool-box for MATLAB. Seism. Res. Lett 1997, 68, 267–269. [Google Scholar]
- Blom, P.S.; Marcillo, O.E.; Euler, G.G. InfraPy: Python-Based Signal Analysis Tools for Infrasound; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2016.
- Cansi, Y. An automatic seismic event processing for detection and location: The P.M.C.C. Method. Geophys. Res. Lett. 1995, 22, 1021. [Google Scholar] [CrossRef]
- Mialle, P.; Brown, D.; Arora, N.; IDC, c.f. Advances in operational processing at the international data centre. In Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits; Springer: Berlin/Heidelberg, Germany, 2019; pp. 209–248. [Google Scholar]
- Ens, T.A.; Brown, P.G.; Edwards, W.N.; Silber, E.A. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. 2012, 80, 208–229. [Google Scholar] [CrossRef]
- Gi, N.; Brown, P. Refinement of bolide characteristics from infrasound measurements. Planet. Space Sci. 2017, 143, 169–181. [Google Scholar] [CrossRef]
- Edwards, W.N.; Brown, P.G.; ReVelle, D.O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1136–1160. [Google Scholar] [CrossRef]
- Green, D.N.; Waxler, R.; Lalande, J.-M.; Velea, D.; Talmadge, C. Regional infrasound generated by the Humming Roadrunner ground truth experiment. Geophys. J. Int. 2018, 214, 1847–1864. [Google Scholar] [CrossRef]
- Diamond, M. Cross Wind Effect on Sound Propagation. J. Appl. Meteorol. 1964, 3, 208–210. [Google Scholar] [CrossRef]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications, 4th ed.; Pearson Prentice-Hall: Upper saddle River, NJ, USA, 2006. [Google Scholar]
- Dziewonski, A.; Hales, A. Numerical analysis of dispersed seismic waves. In Seismology: Surface Waves and Earth Oscillations; Elsevier: Amsterdam, The Netherlands, 1972; Volume 11, pp. 39–84. [Google Scholar]
- Silber, E.A. Observational and Theoretical Investigation of Cylindrical Line Source Blast Theory Using Meteors. Ph.D. Thesis, Western University, London, ON, Canada, 2014. [Google Scholar]
- Blom, P. GeoAc: Numerical Tools to Model Acoustic Propagation in the Geometric Limit; Los Alamos National Laboratory: Los Alamos, NM, USA, 2014.
- Waxler, R.M.; Assink, J.D.; Hetzer, C.; Velea, D. NCPAprop—A software package for infrasound propagation modeling. J. Acoust. Soc. Am. 2017, 141, 3627. [Google Scholar] [CrossRef]
- Averbuch, G.; Sabatini, R.; Arrowsmith, S. Evidence for Short Temporal Atmospheric Variations Observed by Infrasonic Signals: 2. The Stratosphere. Earth Space Sci. 2022, 9, e2022EA002454. [Google Scholar] [CrossRef]
- Silber, E.A.; Bowman, D.C.; Albert, S. A Review of Infrasound and Seismic Observations of Sample Return Capsules since the End of the Apollo Era in Anticipation of the OSIRIS-REx Arrival. Atmosphere 2023, 14, 1473. [Google Scholar] [CrossRef]
- ReVelle, D.O.; Edwards, W.; Sandoval, T.D. Genesis—An artificial, low velocity “meteor” fall and recovery: September 8, 2004. Meteorit. Planet. Sci. 2005, 40, 895–916. [Google Scholar] [CrossRef]
- ReVelle, D.O.; Edwards, W.N. Stardust—An artificial, low-velocity “meteor” fall and recovery: 15 January 2006. Meteorit. Planet. Sci. 2006, 42, 271–299. [Google Scholar] [CrossRef]
- Nishikawa, Y.; Yamamoto, M.-y.; Sansom, E.K.; Devillepoix, H.A.R.; Towner, M.C.; Hiramatsu, Y.; Kawamura, T.; Fujita, K.; Yoshikawa, M.; Ishihara, Y.; et al. Modeling of 3D trajectory of Hayabusa2 re-entry based on acoustic observations. Publ. Astron. Soc. Jpn. 2022, 74, 308–317. [Google Scholar] [CrossRef]
- Yamamoto, M.-Y.; Ishihara, Y.; Hiramatsu, Y.; Kitamura, K.; Ueda, M.; Shiba, Y.; Furumoto, M.; Fujita, K. Detection of acoustic/infrasonic/seismic waves generated by hypersonic re-entry of the HAYABUSA capsule and fragmented parts of the spacecraft. Publ. Astron. Soc. Jpn. 2011, 63, 971–978. [Google Scholar] [CrossRef]
- Ronac Giannone, M.; Silber, E.; Bowman, D. Quantitatively Assessing Variations in Infrasound Generated by Bolides with Disparate Entry Angles. In Proceedings of the 86th Annual Meeting of the Meteoritical Society, Los Angeles, CA, USA, 13–18 August 2023; p. 6049. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silber, E.A. Perspectives and Challenges in Bolide Infrasound Processing and Interpretation: A Focused Review with Case Studies. Remote Sens. 2024, 16, 3628. https://doi.org/10.3390/rs16193628
Silber EA. Perspectives and Challenges in Bolide Infrasound Processing and Interpretation: A Focused Review with Case Studies. Remote Sensing. 2024; 16(19):3628. https://doi.org/10.3390/rs16193628
Chicago/Turabian StyleSilber, Elizabeth A. 2024. "Perspectives and Challenges in Bolide Infrasound Processing and Interpretation: A Focused Review with Case Studies" Remote Sensing 16, no. 19: 3628. https://doi.org/10.3390/rs16193628
APA StyleSilber, E. A. (2024). Perspectives and Challenges in Bolide Infrasound Processing and Interpretation: A Focused Review with Case Studies. Remote Sensing, 16(19), 3628. https://doi.org/10.3390/rs16193628