Mapping Earth Hummocks in Daisetsuzan National Park in Japan Using UAV-SfM Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Earth Hummocks in the Study Area
2.3. UAV Data Acquisition Process
2.4. SfM Processing to Generate Orthomosaic Images and DEMs
2.5. Mapping and Visualizing the Terrain Characteristics
2.6. Identifying the Distribution of Earth Hummocks
2.7. Acquiring Data on Individual Hummock Shapes
3. Results
3.1. Image Data Obtained from UAV and Terrain-Related Maps
- Slope: The average slope in Area A was 13.7°, whereas that in Area B was 15.2°. This higher average in Area B was primarily due to the extensive steep slopes in its southern part, although the rest exhibited relatively gentle slopes.
- Aspect: In Area A, the distribution of slope aspects is relatively uniform, whereas in Area B, the slopes predominantly face the southeast and nearby directions, with notably few slopes facing west.
- TWI: Areas shaded in darker blue indicate higher TWI values and light blue areas indicate lower TWI values. Both study areas feature complex networks of drainage channels that typically originate near the hiking trail.
- Geomorphon Landforms: In both study areas, the most prevalent landform was slope, accounting for 58.11% and 64.11% of the total area in Areas A and B, respectively. The distribution of peaks and pits was the least common, comprising less than 2% of each study area (Table 2).
3.2. Distribution of Earth Hummocks
3.3. Morphological Features of the Earth Hummocks
3.4. Terrain Characteristics of the Distribution Area of Earth Hummocks
3.5. Analysis of the Relationship between Morphological Features and Topographical Conditions
4. Discussion
4.1. Earth Hummocks in Daisetsuzan National Park
4.1.1. Distribution Characteristics
4.1.2. Morphological Characteristics
4.2. Advantages of UAV-SfM Framework in the Mountainous Area Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- French, H.M. Does Lozinski’s periglacial realm exist today? A discussion relevant to modern usage of the term ‘periglacial’. Permafr. Periglac. Process. 2000, 11, 35–42. [Google Scholar] [CrossRef]
- Murton, J.B. What and where are periglacial landscapes? Permafr. Periglac. Process. 2021, 32, 186–212. [Google Scholar] [CrossRef]
- Warburton, J.; Beylich, A.A.; Etienne, S.; Etzelmüller, B.; Gordeev, V.V.; Käyhkö, J.; Tweed, F.S. Sediment budgets and rates of sediment transfer across cold environments in Europe: Introduction and background to the european science foundation network ‘sedimentary source-to-sink fluxes in cold environments’ (sediflus). Geogr. Ann. Ser. A Phys. Geogr. 2007, 89, 1–3. [Google Scholar] [CrossRef]
- Knight, J.; Harrison, S. Periglacial and paraglacial environments: A view from the past into the future. Geol. Soc. Lond. Spec. Publ. 2009, 320, 1–4. [Google Scholar] [CrossRef]
- Rouyet, L.; Karjalainen, O.; Niittynen, P.; Aalto, J.; Luoto, M.; Lauknes, T.R.; Larsen, Y.; Hjort, J. Environmental controls of InSAR-based periglacial ground dynamics in a sub-arctic landscape. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006175. [Google Scholar] [CrossRef]
- Engel, Z.; Křížek, M.; Braucher, R.; Uxa, T.; Krause, D.; Aster Team. 10Be exposure age for sorted polygons in the sudetes mountains. Permafr. Periglac. Process. 2021, 32, 154–168. [Google Scholar] [CrossRef]
- Grab, S. Characteristics and palaeoenvironmental significance of relict sorted patterned ground, Drakensberg plateau, Southern Africa. Quat. Sci. Rev. 2002, 21, 1729–1744. [Google Scholar] [CrossRef]
- Garankina, E.V.; Lobkov, V.A.; Shorkunov, I.G.; Belyaev, V.R. Identifying relict periglacial features in watershed landscape and deposits of Borisoglebsk Upland, Central European Russia. J. Geol. Soc. 2022, 179, jgs2021. [Google Scholar] [CrossRef]
- Ruiz-Fernández, J.; Oliva, M.; Otero, X.L.; García-Hernández, C. Morphometric and sedimentological characteristics of Late Holocene earth hummocks in the Zackenberg Valley (NE Greenland). Sci. Total Environ. 2020, 737, 140281. [Google Scholar] [CrossRef]
- Grab, S. Aspects of the geomorphology, genesis and environmental significance of earth hummocks (thúfur, pounus): Miniature cryogenic mounds. Prog. Phys. Geogr. Earth Environ. 2005, 29, 139–155. [Google Scholar] [CrossRef]
- Li, G.; Mu, J.; Liu, Y.; Smith, N.G.; Sun, S. Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau. Plant Soil 2017, 421, 147–155. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, D.; Yan, Y.; Wu, J.; Wang, X. Alpine hummocks drive plant diversity and soil fertile islands on the Tibetan plateau. Wetlands 2020, 40, 1217–1227. [Google Scholar] [CrossRef]
- Washburn, A.L. Classification of patterned ground and review of suggested origins. Geol. Soc. Am. Bull. 1956, 67, 823–866. [Google Scholar] [CrossRef]
- Tarnocai, C.; Zoltai, S.C. Earth hummocks of the Canadian arctic and subarctic. Arct. Alp. Res. 1978, 10, 581. [Google Scholar] [CrossRef]
- Mackay, J.R.; MacKay, D.K. Cryostatic pressures in nonsorted circles (mud hummocks), Inuvik, Northwest Territories. Can. J. Earth Sci. 1976, 13, 889–897. [Google Scholar] [CrossRef]
- Peterson, R.A.; Krantz, W.B. A Mechanism for differential frost heave and its implications for patterned-ground formation. J. Glaciol. 2003, 49, 69–80. [Google Scholar] [CrossRef]
- Killingbeck, J.; Ballantyne, C.K. Earth hummocks in West Dartmoor, SW England: Characteristics, age and origin. Permafr. Periglac. Process. 2012, 23, 152–161. [Google Scholar] [CrossRef]
- Verret, M.; Wang, Y.; Bjornson, J.; Lacelle, D. Hummocks in alpine tundra, Northern British Columbia, Canada: Distribution, morphology and organic carbon composition. Arct. Sci. 2019, 5, 127–147. [Google Scholar] [CrossRef]
- Pettapiece, W.W. A hummocky permafrost soil from the subarctic of Northwestern Canada and some Influences of fire. Can. J. Soil Sci. 1974, 54, 343–355. [Google Scholar] [CrossRef]
- Van Vliet-Lanoë, B. Patterned Ground and Climate Change. In Permafrost: Distribution, Composition and Impacts on Infrastructure and Ecosystems; Podrovsky, O., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014; Chapter 2; pp. 67–106. ISBN 978-162-948-830-1. [Google Scholar]
- Pintaldi, E.; D’Amico, M.E.; Siniscalco, C.; Cremonese, E.; Celi, L.; Filippa, G.; Prati, M.; Freppaz, M. Hummocks affect soil properties and soil-vegetation relationships in a subalpine grassland (North-Western Italian Alps). Catena 2016, 145, 214–226. [Google Scholar] [CrossRef]
- Lehmkuhl, F. Modern and past periglacial features in Central Asia and their implication for paleoclimate reconstructions. Prog. Phys. Geogr.-Earth Environ. 2016, 40, 369–391. [Google Scholar] [CrossRef]
- Feuillet, T.; Mercier, D.; Decaulne, A.; Cossart, E. Classification of sorted patterned ground areas based on their environmental characteristics (Skagafjörður, Northern Iceland). Geomorphology 2012, 139–140, 577–587. [Google Scholar] [CrossRef]
- Lewkowicz, A.G. Slope hummock development, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Quat. Res. 2011, 75, 334–346. [Google Scholar] [CrossRef]
- Kim, T. Thufur and turf exfollation in a subalpine grassland on Mt Halla, Jeju Island, Korea. Mt. Res. Dev. 2008, 28, 272–278. [Google Scholar] [CrossRef]
- Quinton, W.L.; Marsh, P. The influence of mineral earth hummocks on subsurface drainage in the continuous permafrost zone. Permafr. Periglac. Process. 1998, 9, 213–228. [Google Scholar] [CrossRef]
- Jaworski, T.; Chutkowski, K. Genesis, morphology, age and distribution of cryogenic mounds on Kaffiøyra and Hermansenøya, Northwest Svalbard. Permafr. Periglac. Process. 2015, 26, 304–320. [Google Scholar] [CrossRef]
- Grab, S. Non-sorted patterned ground in the high Drakensberg, Southern Africa: Some new data. Geogr. J. 1998, 164, 19–31. [Google Scholar] [CrossRef]
- Walker, D.A.; Epstein, H.E.; Romanovsky, V.E.; Ping, C.L.; Michaelson, G.J.; Daanen, R.P.; Shur, Y.; Peterson, R.A.; Krantz, W.B.; Raynolds, M.K.; et al. Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect. J. Geophys. Res. Biogeosci. 2008, 113, G03S01. [Google Scholar] [CrossRef]
- Gillespie, A.W.; Sanei, H.; Diochon, A.; Ellert, B.H.; Regier, T.Z.; Chevrier, D.; Dynes, J.J.; Tarnocai, C.; Gregorich, E.G. Perennially and annually frozen soil carbon differ in their susceptibility to decomposition: Analysis of subarctic earth hummocks by bioassay, XANES and pyrolysis. Soil Biol. Biochem. 2014, 68, 106–116. [Google Scholar] [CrossRef]
- Khani, H.M.; Kinnard, C.; Gascoin, S.; Levesque, E. Fine-scale environment control on ground surface temperature and thaw depth in a High Arctic tundra landscape. Permafr. Periglac. Process. 2023, 34, 467–480. [Google Scholar] [CrossRef]
- Biasi, C.; Wanek, W.; Rusalimova, O.; Kaiser, C.; Meyer, H.; Barsukov, P.; Richter, A. Microtopography and plant-cover controls on nitrogen dynamics in hummock tundra ecosystems in Siberia. Arct. Antarct. Alp. Res. 2005, 37, 435–443. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Burn, C.R.; Tarnocai, C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 2007, 39, 99–109. [Google Scholar] [CrossRef]
- Luoto, M.; Seppälä, M. Characteristics of earth hummocks (pounus) with and without permafrost in Finnish Lapland. Geogr. Ann. Ser. Phys. Geogr. 2002, 84, 127–136. [Google Scholar] [CrossRef]
- Grab, S.W. Earth hummocks (thúfur): New insights to their thermal characteristics and development in Eastern Lesotho, Southern Africa. Earth Surf. Process. Landf. 2005, 30, 541–555. [Google Scholar] [CrossRef]
- Gurney, S.D.; Hayward, S. Earth hummocks in North-east Okstindan, Northern Norway: Morphology, distribution and environmental constraints. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2015, 69, 299–309. [Google Scholar] [CrossRef]
- Milošević, M.; Ćalić, J.; Kovačević-Majkić, J.; Milivojević, M. Thufur morphology within the Ponor depression (Stara Planina, Serbia). J. Geogr. Inst. Jovan Cvijić SASA 2022, 72, 117–132. [Google Scholar] [CrossRef]
- Hallet, B.; Prestrud, S. Dynamics of periglacial sorted circles in western Spitsbergen. Quat. Res. 1986, 26, 81–99. [Google Scholar] [CrossRef]
- Hjort, J.; Marmion, M. Effects of sample size on the accuracy of geomorphological models. Geomorphology 2008, 102, 341–350. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Eltner, A.; Sofia, G. Chapter 1—Structure from motion photogrammetric technique. In Developments in Earth Surface Processes; Tarolli, P., Mudd, S.M., Eds.; Remote Sensing of Geomorphology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, pp. 1–24. ISBN 978-044-464-177-9. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Deliry, S.I.; Avdan, U. Accuracy evaluation of UAS photogrammetry and structure from motion in 3D modeling and volumetric calculations. J. Appl. Remote Sens. 2023, 17, 024515. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; Sánchez-Hermosilla López, J.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Reconstruction of extreme topography from UAV structure from motion photogrammetry. Measurement 2018, 121, 127–138. [Google Scholar] [CrossRef]
- Bi, R.; Gan, S.; Yuan, X.; Li, R.; Gao, S.; Yang, M.; Hu, L. Multi-view analysis of high-resolution geomorphic features in complex mountains based on UAV–LiDAR and SfM–MVS: A case study of the northern pit rim structure of the mountains of Lufeng, China. Appl. Sci. 2023, 13, 738. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Yoshida, H.; Drǎguţ, L.; Oguchi, T. Automated extraction of hummocks in debris avalanche deposits using DEMs: A case study at Mt. Gassan, Northwest Japan. Z. Geomorphol. Suppl. Issues 2017, 61, 199–212. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Yoshida, H.; Obanawa, H.; Naruhashi, R.; Okumura, K.; Zaiki, M.; Kontani, R. Characteristics of debris avalanche deposits inferred from source volume estimate and hummock morphology around Mt. Erciyes, central Turkey. Nat. Hazards Earth Syst. Sci. 2018, 18, 429–444. [Google Scholar] [CrossRef]
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV platforms and the SfM-MVS approach in the 3D surveys and modelling: A review in the cultural heritage field. Appl. Sci. 2022, 12, 12886. [Google Scholar] [CrossRef]
- Lousada, M.; Pina, P.; Vieira, G.; Bandeira, L.; Mora, C. Evaluation of the use of very high resolution aerial imagery for accurate ice-wedge polygon mapping (Adventdalen, Svalbard). Sci. Total Environ. 2018, 615, 1574–1583. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Ewertowski, M.W.; Stawska, M.; Rachlewicz, G. Detailed alluvial fan geomorphology in a high-arctic periglacial environment, Svalbard: Application of unmanned aerial vehicle (UAV) surveys. J. Maps 2019, 15, 460–473. [Google Scholar] [CrossRef]
- Pereira, F.; Marques, J.S.; Heleno, S.; Pina, P. Detection and delineation of sorted stone circles in Antarctica. Remote Sens. 2020, 12, 160. [Google Scholar] [CrossRef]
- Dąbski, M.; Zmarz, A.; Pabjanek, P.; Korczak-Abshire, M.; Karsznia, I.; Chwedorzewska, K.J. UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology 2017, 290, 29–38. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Watanabe, T. Evaluation of the effectiveness of trail repair works based on three-dimensional monitoring around Mount Kurodake, Daisetsuzan National Park, Japan. Sustainability 2023, 15, 12794. [Google Scholar] [CrossRef]
- Wang, T.; Watanabe, T. Monitoring campsite soil erosion by structure-from-motion photogrammetry: A case study of Kuro-Dake campsites in Daisetsuzan National Park, Japan. J. Environ. Manag. 2022, 314, 115106. [Google Scholar] [CrossRef] [PubMed]
- Katsui, Y.; Ito, T. 24. Daisetsuzan Ohachidaira Caldera. In Proceedings of the Volcanological Society of Japan Spring Meeting 1975, Tokyo, Japan, 19–21 May 1975; Volcanology Volume 20. p. 113. (In Japanese) [Google Scholar] [CrossRef]
- Sone, T. Permafrost environment of the Daisetsu Mountains, Hokkaido, Japan. Permafr. Periglac. Process. 1992, 3, 235–240. [Google Scholar] [CrossRef]
- Abe, T.; Iwahana, G.; Sone, T.; Uchida, M. Distribution of surface displacement induced by seasonal ground thaw in the Daisetsu Mountains using synthetic aperture radar. Seppyo 2022, 84, 13–27. (In Japanese) [Google Scholar] [CrossRef]
- Ishige, K.; Nakagawa, M. Late Pleistocene-Holocene volcanic history of Asahidake subgroup of Taisetsu volcano group, central Hokkaido, Japan. J. Geol. Soc. Jpn. 2017, 123, 73–91, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Yasuda, Y.; Sato, E.; Wada, K.; Suzuki-Kamata, K. Eruption interval between two pyroclastic-flows from the Ohachidaira caldera of Taisetsu Volcano, central Hokkaido, Japan: Estimation from the paleomagnetic directions. Kazan 2015, 60, 447–459, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Koaze, T. The Patterned grounds on the Daisetsu volcanic group, central Hokkaido. Geogr. Rev. Jpn. 1965, 38, 179–199. (In Japanese) [Google Scholar] [CrossRef]
- Ishikawa, M.; Sawagaki, T. GIS-simulation of the spatial distribution of snow cover and observed ground temperatures in the Daisetsu Mountains, Japan. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2001, 55, 212–218. [Google Scholar] [CrossRef]
- Sone, T. The lower limit of permafrost distribution in Daisetsuzan, Hokkaido. In Proceedings of the General Meeting of the Association of Japanese Geographers, Tokyo, Japan, 20–23 March 2016; p. 100298. (In Japanese). [Google Scholar] [CrossRef]
- Fukuda, M.; Kinoshita, S. Permafrost at Mt. Taisetsu, Hokkaido and its climatic environment. Quat. Res. 1974, 12, 192–202, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Igarashi, Y.; Takahashi, N. Origin and vegetational succession of upland bogs in the Daisetsu Mountains, central Hokkaido (I). Quat. Res. 1985, 24, 99–109, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Takahashi, N. Alpine environment of the Takanegahara plateau in the central Daisetsuzan Mountain. Hokkai Gakuen Univ. Gakuen Ronshu 2010, 144, 1–35. Available online: https://cir.nii.ac.jp/crid/1050001337523154560 (accessed on 1 August 2024). (In Japanese).
- Sato, K.; Takahashi, N. Specific alpine vegetation at the crater of Mt. Hakuundake, Daisetsuzan. Hokkai Gakuen Univ. Gakuen Ronshu 2016, 167, 31–48. Available online: http://hokuga.hgu.jp/dspace/handle/123456789/3063 (accessed on 1 August 2024). (In Japanese).
- Dinkov, D.D. 4D Monitoring of mountain areas using the UAV-PPK workflow. Silva Balcanica 2023, 24, 13–35. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In Proceedings of the International Symposium on GPS/GNSS, International Convention Center, Jeju, Republic of Korea, 12–17 July 2009; Volume 1. [Google Scholar]
- Obanawa, H.; Hayakawa, Y.S.; Sakanoue, S. How to reduce doming without GCPs in RTK-UAV surveys?–Photographing and data processing that achieves cm-level accuracy. J. Jpn. Agric. Syst. Soc. 2021, 37, 29–38, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Agisoft (2022) Agisoft Metahshape Manual—Standard Edition, Version 1.8. Available online: https://www.agisoft.com/pdf/metashape_1_8_en.pdf (accessed on 20 August 2024).
- Ågren, A.M.; Lidberg, W.; Strömgren, M.; Ogilvie, J.; Arp, P.A. Evaluating digital terrain indices for soil wetness mapping—A Swedish case study. Hydrol. Earth Syst. Sci. 2014, 18, 3623–3634. [Google Scholar] [CrossRef]
- Kopecký, M.; Macek, M.; Wild, J. Topographic wetness index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 2021, 757, 143785. [Google Scholar] [CrossRef]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef]
- Mattivi, P.; Franci, F.; Lambertini, A.; Bitelli, G. TWI computation: A comparison of different open source GISs. Open Geospat. Data Softw. Stand. 2019, 4, 6. [Google Scholar] [CrossRef]
- Melo, P.A.; Alvarenga, L.A.; Tomasella, J.; Mello, C.R.; Martins, M.A.; Coelho, G. Sensitivity and performance analyses of the distributed hydrology–soil–vegetation model using geomorphons for landform mapping. Water 2021, 13, 2032. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Veronesi, F.; Hurni, L. A GIS tool to increase the visual quality of relief shading by automatically changing the light direction. Comput. Geosci. 2015, 74, 121–127. [Google Scholar] [CrossRef]
- Farmakis-Serebryakova, M.; Hurni, L. Comparison of relief shading techniques applied to landforms. ISPRS Int. J. Geo-Inf. 2020, 9, 253. [Google Scholar] [CrossRef]
- Loissios, D.; Tzelepis, N.; Nakos, B. A methodology for creating analytical hillshading by combining different lighting directions. In Proceedings of the 23rd International Cartographic Conference, ICC, Moscow, Russia, 4–10 August 2007. [Google Scholar] [CrossRef]
- Sasaki, S. Earth hummocks of Northern Hokkaido. Quat. Res. 1979, 18, 31–37, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Ogata, T. Morphology and environmental factors of periglacial hummocks in the Nemuro Peninsula, Northern Japan. Geogr. Rev. Jpn. 2007, 80, 246–258. [Google Scholar] [CrossRef]
- Koaze, T.; Shimizu, C.; Sawada, Y.; Takeda, K.; Kawauchi, K. Earth hummocks in Obihiro, Hokkaido. Rep. Obihiro Cent. City Mus. 2020, 38, 25–32. Available online: https://ndlsearch.ndl.go.jp/books/R000000004-I033277072 (accessed on 15 August 2024). (In Japanese).
- Scotter, G.W.; Zoltai, S.C. Earth hummocks in the sunshine Area of the Rocky Mountains, Alberta and British Columbia. Arctic 1982, 35, 411–416. [Google Scholar] [CrossRef]
- Marcu, M.F. Glacial and periglacial relief in the Făgăraş Mountain, with special focus on the Vâlsan river basin. Forum Geogr. 2011, 10, 27–34. [Google Scholar] [CrossRef]
- Onaca, A.; Urdea, P.; Ardelean, A.; Serban, R. Assessement of internal structure of periglacial landforms from Southern Carpathians (Romania) using dc resistivity tomography. Carpathian J. Earth Environ. Sci. 2013, 8, 113–122. [Google Scholar]
- Matsuoka, N. Periglacial landform formation processes from the perspective of freeze-thaw mechanisms. Geogr. Rev. Jpn. Ser. A 1992, 65, 56–74. (In Japanese) [Google Scholar] [CrossRef]
- Pescott, O.L.; Stewart, G.B. Assessing the impact of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2014, 2, e360. [Google Scholar] [CrossRef]
- Rawat, M.; Jägerbrand, A.K.; Molau, U.; Bai, Y.; Alatalo, J.M. Visitors off the trail: Impacts on the dominant plant, bryophyte, and lichen species in alpine heath vegetation in sub-arctic Sweden. Environ. Chall. 2021, 3, 100050. [Google Scholar] [CrossRef]
- Milošević, M.V.; Kovačević-Majkić, J.; Ćalić, J.; Milivojević, M. Sub-alpine periglacial morphology of thufur on the southern rim of Vlasina Lake, Serbia. Erdkunde 2015, 69, 33–47. [Google Scholar] [CrossRef]
- Eichel, J.; Draebing, D.; Kattenborn, T.; Senn, J.A.; Klingbeil, L.; Wieland, M.; Heinz, E. Unmanned aerial vehicle-based mapping of turf-banked solifluction lobe movement and its relation to material, geomorphometric, thermal and vegetation properties. Permafr. Periglac. Process. 2020, 31, 97–109. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, L.; Wang, X.; Zhao, L.; Wu, T.; Cai, J.; Zhu, X.; Hao, J. Quantification of permafrost creep provides kinematic evidence for classifying a puzzling periglacial landform. Earth Surf. Process. Landf. 2021, 46, 465–477. [Google Scholar] [CrossRef]
Study Areas | Survey Dates | Numbers of Flights | Flight Heights | Coverage | Camera Angles | Image Numbers | Ground Sample Resolution (GSD) |
---|---|---|---|---|---|---|---|
Area A | Sept. 9 | 6 | 80 m | ca. 1750 m × 750 m | 70° | 1703 | 2.0 cm/pixel |
3 | 40 m | ca. 1400 m × 100 m | 75° | 1051 | |||
Area B | Sept. 8 | 2 | 80 m | ca. 1700 m × 500 m | 70° | 747 | 1.8 cm/pixel |
2 | 40 m | ca. 1200 m × 60 m | 75° | 750 |
Study Areas | Flat | Peak | Ridge | Shoulder | Spur | Slope | Hollow | Valley | Footslope | Pit | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Area A | 1.02% | 0.03% | 4.55% | 4.70% | 13.43% | 58.11% | 10.36% | 2.09% | 5.72% | 0.01% | 100.00% |
Area B | 1.91% | 0.01% | 2.27% | 6.95% | 9.42% | 64.11% | 7.05% | 2.75% | 5.39% | 0.15% | 100.00% |
Area A (N = 5843) | Area B (N = 12,995) | All (N = 18,838) | |
---|---|---|---|
Length (m) | |||
Mean | 1.27 | 1.20 | 1.22 |
Median | 1.22 | 1.16 | 1.18 |
Range | 0.96–1.52 | 0.94–1.40 | 0.95–1.44 |
SD | 0.42 | 0.37 | 0.39 |
Width (m) | |||
Mean | 1.08 | 1.01 | 1.03 |
Median | 1.04 | 0.99 | 1.00 |
Range | 0.82–1.30 | 0.80–1.19 | 0.81–1.22 |
SD | 0.34 | 0.30 | 0.32 |
Height (m) | |||
Mean | 0.16 | 0.15 | 0.15 |
Median | 0.14 | 0.14 | 0.14 |
Range | 0.10–0.20 | 0.10–0.18 | 0.10–0.19 |
SD | 0.09 | 0.08 | 0.08 |
Length/Width ratio | |||
Mean | 1.19 | 1.19 | 1.19 |
Median | 1.15 | 1.15 | 1.15 |
Range | 1.07–1.27 | 1.07–1.27 | 1.07–1.27 |
SD | 0.16 | 0.17 | 0.17 |
Height/Length ratio | |||
Mean | 0.13 | 0.12 | 0.12 |
Median | 0.12 | 0.12 | 0.12 |
Range | 0.09–0.15 | 0.09–0.14 | 0.09–0.14 |
SD | 0.05 | 0.05 | 0.05 |
Items | Categories | N | Percent (%) | Cumulative Percent (%) |
---|---|---|---|---|
Slope (°) | 0–5 | 1447 | 7.68 | 7.68 |
10–15 | 3951 | 20.97 | 28.65 | |
5–10 | 12,983 | 68.92 | 97.57 | |
>15 | 457 | 2.43 | 100.00 | |
Geomorphon Landforms | Flat | 30 | 0.16 | 0.16 |
Ridge | 94 | 0.50 | 0.66 | |
Shoulder | 468 | 2.48 | 3.14 | |
Spur | 1409 | 7.48 | 10.62 | |
Slope | 14,032 | 74.49 | 85.11 | |
Hollow | 2297 | 12.19 | 97.30 | |
Footslope | 373 | 1.98 | 99.28 | |
Valley | 135 | 0.72 | 100.00 | |
Aspect | E | 8023 | 42.59 | 42.59 |
N | 4980 | 26.44 | 69.03 | |
S | 5474 | 29.06 | 98.08 | |
W | 361 | 1.92 | 100.00 | |
Total | 18,838 | 100 | 100.00 |
Slope (°) | Width (m) | Length (m) | Height (m) | ||
---|---|---|---|---|---|
Slope (°) | Coefficient | 1 | |||
p value | - | ||||
Width (m) | Coefficient | 0.19 * | 1 | ||
p value | 0 | - | |||
Length (m) | Coefficient | 0.20 * | 0.90 * | 1 | |
p value | 0 | 0 | - | ||
Height (m) | Coefficient | 0.17 * | 0.63 * | 0.63 * | 1 |
p value | 0 | 0 | 0 | - |
Slope | Aspect | Geomorphon Landforms | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Width | 206.985 | 0.000 * | 174.513 | 0.000 * | 32.413 | 0.000 * |
Length | 244.469 | 0.000 * | 146.640 | 0.000 * | 26.005 | 0.000 * |
Height | 180.040 | 0.000 * | 19.745 | 0.000 * | 9.553 | 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Watanabe, T.; Hayakawa, Y.S.; Sawada, Y.; Wang, T. Mapping Earth Hummocks in Daisetsuzan National Park in Japan Using UAV-SfM Framework. Remote Sens. 2024, 16, 3610. https://doi.org/10.3390/rs16193610
Meng Y, Watanabe T, Hayakawa YS, Sawada Y, Wang T. Mapping Earth Hummocks in Daisetsuzan National Park in Japan Using UAV-SfM Framework. Remote Sensing. 2024; 16(19):3610. https://doi.org/10.3390/rs16193610
Chicago/Turabian StyleMeng, Yu, Teiji Watanabe, Yuichi S. Hayakawa, Yuki Sawada, and Ting Wang. 2024. "Mapping Earth Hummocks in Daisetsuzan National Park in Japan Using UAV-SfM Framework" Remote Sensing 16, no. 19: 3610. https://doi.org/10.3390/rs16193610
APA StyleMeng, Y., Watanabe, T., Hayakawa, Y. S., Sawada, Y., & Wang, T. (2024). Mapping Earth Hummocks in Daisetsuzan National Park in Japan Using UAV-SfM Framework. Remote Sensing, 16(19), 3610. https://doi.org/10.3390/rs16193610