Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition
Abstract
:1. Introduction
- Based on the RLT, a promising paradigm is mathematically designed by decomposing a radar pulse sequence into three informative latent factors: modulation types, modulation parameters, and measurement characteristics (such as measurement noise). Further, the three informative factors can be disentangled through invariant latent variables.
- A novel disentangled representation learning method named Linking Structure to Task via Representation (LiSTaR) for robust radar inter-pulse modulation feature extraction and recognition is proposed. The performance degradation caused by domain shifts between the training and testing datasets is largely alleviated through the proposed method.
- The effectiveness and superiority of the proposed method compared with baseline methods are verified through experiments on both ideal and non-ideal situations.
2. Preliminary
2.1. Radar Inter-Pulse Modulation Principle
2.2. PRI Sequence Structure
2.3. Auto-Encoder Architecture
3. Methodology
3.1. Overall Disentanglement Procedure
3.2. Feature Representation Learning
3.3. Optimization Principle
3.4. Model Structure
4. Experiments
4.1. Experimental Setup
4.1.1. Data Description
4.1.2. Baseline Methods and Evaluation Metrics
4.1.3. Implementation Details
4.2. Experimental Results in Ideal Situations
4.2.1. Qualitative Evaluation
4.2.2. Quantitative Evaluation
4.3. Experimental Results in Non-Ideal Situations
4.4. Time Complexity and Real-Time Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30–40. [Google Scholar] [CrossRef]
- Gurbuz, S.Z.; Griffiths, H.D.; Charlish, A.; Rangaswamy, M.; Greco, M.S.; Bell, K. An Overview of Cognitive Radar: Past, Present, and Future. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 6–18. [Google Scholar] [CrossRef]
- Charlish, A.; Hoffmann, F.; Degen, C.; Schlangen, I. The Development From Adaptive to Cognitive Radar Resource Management. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 8–19. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S.; Kirubarajan, T.; Dilkes, F. Tracking the Mode of Operation of Multi-Function Radars. In Proceedings of the 2006 IEEE Conference on Radar, IEEE, Verona, NY, USA, 24–27 April 2006; pp. 233–238. [Google Scholar]
- Visnevski, N.; Krishnamurthy, V.; Haykin, S.; Currie, B.; Dilkes, F.; Lavoie, P. Multi-function radar emitter modelling: A stochastic discrete event system approach. In Proceedings of the 42nd IEEE International Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; Volume 6, pp. 6295–6300. [Google Scholar]
- Thornton, C.E.; Buehrer, R.M.; Dhillon, H.S.; Martone, A.F. Universal Learning Waveform Selection Strategies for Adaptive Target Tracking. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5798–5814. [Google Scholar] [CrossRef]
- Selvi, E.; Buehrer, R.M.; Martone, A.; Sherbondy, K. Reinforcement Learning for Adaptable Bandwidth Tracking Radars. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3904–3921. [Google Scholar] [CrossRef]
- Haykin, S.; Xue, Y.; Setoodeh, P. Cognitive Radar: Step Toward Bridging the Gap Between Neuroscience and Engineering. Proc. IEEE 2012, 100, 3102–3130. [Google Scholar] [CrossRef]
- Kauppi, J.P.; Martikainen, K.; Ruotsalainen, U. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns. Neural Netw. 2010, 23, 1226–1237. [Google Scholar] [CrossRef]
- Du, M.; Zhong, P.; Cai, X.; Bi, D.; Jing, A. Robust Bayesian attention belief network for radar work mode recognition. Digit. Signal Process. 2023, 133, 103874. [Google Scholar] [CrossRef]
- Chi, K.; Shen, J.; Li, Y.; Wang, L.; Wang, S. A novel segmentation approach for work mode boundary detection in MFR pulse sequence. Digit. Signal Process. 2022, 126, 103462. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, S.; Li, Y. Model-Based Representation and Deinterleaving of Mixed Radar Pulse Sequences with Neural Machine Translation Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 1733–1752. [Google Scholar] [CrossRef]
- Matuszewski, J. Specific emitter identification. In Proceedings of the 2008 International Radar Symposium (IRS), Wroclaw, Poland, 21–23 May 2008; pp. 1–4. [Google Scholar]
- Du, M.; He, X.; Cai, X.; Bi, D. Balanced Neural Architecture Search and Its Application in Specific Emitter Identification. IEEE Trans. Signal Process. 2021, 69, 5051–5065. [Google Scholar] [CrossRef]
- Jordanov, I.; Petrov, N.; Petrozziello, A. Supervised radar signal classification. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1464–1471. [Google Scholar]
- Li, X.; Liu, Z.; Huang, Z. Attention-Based Radar PRI Modulation Recognition with Recurrent Neural Networks. IEEE Access 2020, 8, 57426–57436. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Ma, Y.; Yang, J. Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical seq2seq LSTM. IET Radar Sonar Navig. 2020, 14, 1343–1353. [Google Scholar] [CrossRef]
- Wei, S.; Qu, Q.; Zeng, X.; Liang, J.; Shi, J.; Zhang, X. Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition. IEEE Trans. Microw. Theory Tech. 2021, 69, 5160–5172. [Google Scholar] [CrossRef]
- Zhang, G.; Jin, W.; Hu, L. Radar emitter signal recognition based on support vector machines. In Proceedings of the ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, Kunming, China, 6–9 December 2004; Volume 2, pp. 826–831. [Google Scholar]
- Hua, X.; Ono, Y.; Peng, L.; Xu, Y. Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous Clutter. IEEE Trans. Commun. 2022, 70, 4107–4120. [Google Scholar] [CrossRef]
- Liu, Z.M.; Yu, P.S. Classification, Denoising, and Deinterleaving of Pulse Streams with Recurrent Neural Networks. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1624–1639. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Wang, F.; Wang, X.; Liu, T. Toward Convolutional Neural Networks on Pulse Repetition Interval Modulation Recognition. IEEE Commun. Lett. 2018, 22, 2286–2289. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, Q.; Zhang, Z.; Niu, F.; Guo, X.; Zhou, F. Shipborne Multi-Function Radar Working Mode Recognition Based on DP-ATCN. Remote Sens. 2023, 15, 3415. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Piezzo, M.; Farina, A.; Wicks, M. Cognitive design of the transmitted phase code and receive filter in reverberating environment. In Proceedings of the 2012 International Waveform Diversity & Design Conference (WDD), Kauai, HI, USA, 22–27 January 2012; pp. 85–90. [Google Scholar]
- Tang, B.; Tuck, J.; Stoica, P. Polyphase Waveform Design for MIMO Radar Space Time Adaptive Processing. IEEE Trans. Signal Process. 2020, 68, 2143–2154. [Google Scholar] [CrossRef]
- Varshney, P.; Babu, P.; Stoica, P. Low-PAPR OFDM Waveform Design for Radar and Communication Systems. IEEE Trans. Radar Syst. 2023, 1, 69–74. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Piezzo, M.; Naghsh, M.M.; Soltanalian, M.; Stoica, P. Cognitive radar waveform design for spectral coexistence in signal-dependent interference. In Proceedings of the 2014 IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014; pp. 0474–0478. [Google Scholar]
- Tang, B.; Stoica, P. Information-theoretic waveform design for MIMO radar detection in range-spread clutter. Signal Process. 2021, 182, 107961. [Google Scholar] [CrossRef]
- Yang, J.; Aubry, A.; De Maio, A.; Yu, X.; Cui, G.; Iommelli, S. Constant Modulus Discrete Phase Radar Waveforms Design Subject to Multi-Spectral Constraints. In Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace, Pisa, Italy, 22–24 June 2020; pp. 28–31. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Higgins, I.; Amos, D.; Pfau, D.; Racaniere, S.; Matthey, L.; Rezende, D.; Lerchner, A. Towards a Definition of Disentangled Representations. arXiv 2018, arXiv:1812.02230. [Google Scholar]
- Yang, M.; Liu, F.; Chen, Z.; Shen, X.; Hao, J.; Wang, J. CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 9593–9602. [Google Scholar]
- Woo, G.; Liu, C.; Sahoo, D.; Kumar, A.; Hoi, S. CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting. arXiv 2022, arXiv:2202.01575. [Google Scholar]
- Bouchacourt, D.; Tomioka, R.; Nowozin, S. Multi-Level Variational Autoencoder: Learning Disentangled Representations From Grouped Observations. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 32, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Zha, D.; Du, M.; Ni, J.; Zhang, D.; Chen, H.; Hu, X. Towards Learning Disentangled Representations for Time Series. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 3270–3278. [Google Scholar]
- Wang, Z.; Xu, X.; Zhang, W.; Trajcevski, G.; Zhong, T.; Zhou, F. Learning Latent Seasonal-Trend Representations for Time Series Forecasting. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Curran Associates, Inc.: New York, NY, USA, 2022; Volume 35, pp. 38775–38787. [Google Scholar]
- Zhang, X.; Zhang, J.; Luo, T.; Huang, T.; Tang, Z.; Chen, Y.; Li, J.; Luo, D. Radar Signal Intrapulse Modulation Recognition Based on a Denoising-Guided Disentangled Network. Remote Sens. 2022, 14, 1252. [Google Scholar] [CrossRef]
- Cai, J.; Gan, F.; Cao, X.; Liu, W.; Li, P. Radar Intra–Pulse Signal Modulation Classification with Contrastive Learning. Remote Sens. 2022, 14, 5728. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.; Wu, H.; Yang, Z.; Wang, H. Time–Frequency Feature Enhancement of Moving Target Based on Adaptive Short-Time Sparse Representation. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Hsu, W.N.; Zhang, Y.; Weiss, R.J.; Chung, Y.A.; Wang, Y.; Wu, Y.; Glass, J. Disentangling Correlated Speaker and Noise for Speech Synthesis via Data Augmentation and Adversarial Factorization. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 5901–5905. [Google Scholar]
- Qian, K.; Zhang, Y.; Gao, H.; Ni, J.; Lai, C.I.; Cox, D.; Hasegawa-Johnson, M.; Chang, S. ContentVec: An Improved Self-Supervised Speech Representation by Disentangling Speakers. In Proceedings of the 39th International Conference on Machine Learning, Baltimore MD, USA, 17–23 July 2022; pp. 18003–18017. [Google Scholar]
- Vowels, M.J.; Camgoz, N.C.; Bowden, R. VDSM: Unsupervised Video Disentanglement with State-Space Modeling and Deep Mixtures of Experts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 8176–8186. [Google Scholar]
- Lei, L.; Jianxing, Z. Feature disentanglement learning model for ocean temperature field forecast. Appl. Math. Model. 2023, 117, 549–562. [Google Scholar] [CrossRef]
- Xie, R.; Xu, W.; Yu, J.; Hu, A.; Ng, D.W.K.; Swindlehurst, A.L. Disentangled Representation Learning for RF Fingerprint Extraction Under Unknown Channel Statistics. IEEE Trans. Commun. 2023, 71, 3946–3962. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114. [Google Scholar]
- Girin, L.; Leglaive, S.; Bie, X.; Diard, J.; Hueber, T.; Alameda-Pineda, X. Dynamical Variational Autoencoders: A Comprehensive Review. Found. Trends Mach. Learn. 2021, 15, 1–175. [Google Scholar] [CrossRef]
- Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Kim, H.; Mnih, A. Disentangling by Factorising. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2649–2658. [Google Scholar]
- Bao, J.; Li, Y.; Zhu, M.; Wang, S. Bayesian Nonparametric Hidden Markov Model for Agile Radar Pulse Sequences Streaming Analysis. IEEE Trans. Signal Process. 2024, 71, 3968–3982. [Google Scholar] [CrossRef]
- Ross, S.M. Stochastic Processes; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, H.W.; Tucker, A.W. Nonlinear programming. In 2nd Berkeley Symposium; University of California Press: Berkeley, CA, USA, 1951; pp. 481–492. [Google Scholar]
- Karush, W. Minima of Functions of Several Variables with Inequalities as Side Constraints. Master’s Thesis, University of Chicago, Chicago, IL, USA, 1939. [Google Scholar]
- Provotar, O.I.; Linder, Y.M.; Veres, M.M. Unsupervised Anomaly Detection in Time Series Using LSTM-Based Autoencoders. In Proceedings of the 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 18–20 December 2019; pp. 513–517. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Revillon, G.; Mohammad-Djafari, A.; Enderli, C. Radar emitters classification and clustering with a scale mixture of normal distributions. IET Radar Sonar Navig. 2019, 13, 128–138. [Google Scholar] [CrossRef]
Modulation Type | Modulation Parameter | Training | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|---|---|
Periodic | Mean PRI value | 100 | [200, 500] | 100 | [200, 500] |
Deviation of the average PRI | [5%, 10%] | [10%, 15%] | |||
Constant | Mean PRI value | [90, 110] | [200, 500] | [90, 110] | [200, 500] |
Sliding | Initial PRI value | [80, 95] | [200, 500] | [80, 95] | [200, 500] |
Max-min ratio | [1, 1.5] | [1.5, 2] | |||
D&S | Candidate PRI value | [90, 110] | [200, 500] | [90, 110] | [200, 500] |
Number of positions | 3 | [4, 6] | |||
Stagger | Candidate PRI value | [90, 110] | [200, 500] | [90, 110] | [200, 500] |
Number of positions | 5 | [6, 8] |
Method | LiSTaR | AE | VAE | LSTMAE | ||||
---|---|---|---|---|---|---|---|---|
Metric | Acc (%) | DBI | Acc (%) | DBI | Acc (%) | DBI | Acc (%) | DBI |
Scenario 1 | 54.11 | 16.06 | 79.61 | 25.96 | 20.11 | 45.38 | ||
Scenario 2 | 63.46 | 10.20 | 68.03 | 44.27 | 53.10 | 13.18 | ||
Scenario 3 | 62.08 | 34.93 | 64.35 | 27.02 | 19.99 | 19.80 |
Method | Time Complexity | Testing Time (s) |
---|---|---|
LiSTaR | 6.72 | 0.52 |
AE | 6.56 | 0.46 |
VAE | 6.58 | 0.47 |
LSTMAE | 9.83 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhu, M.; Zhang, Z.; Li, Y. Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition. Remote Sens. 2024, 16, 3585. https://doi.org/10.3390/rs16193585
Zhang L, Zhu M, Zhang Z, Li Y. Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition. Remote Sensing. 2024; 16(19):3585. https://doi.org/10.3390/rs16193585
Chicago/Turabian StyleZhang, Luyao, Mengtao Zhu, Ziwei Zhang, and Yunjie Li. 2024. "Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition" Remote Sensing 16, no. 19: 3585. https://doi.org/10.3390/rs16193585
APA StyleZhang, L., Zhu, M., Zhang, Z., & Li, Y. (2024). Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition. Remote Sensing, 16(19), 3585. https://doi.org/10.3390/rs16193585