Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Altimetry Data
2.2. Data Processing
2.3. Eddy Identification Method for DUACS Data
- SLA contours are computed at 0.1 cm intervals.
- The number of internal grids is ≥1 and <4000. Since we focus on the fine-scale eddies in this study, we do not limit the minimum eddy size, but the maximum eddy size is constrained by the total pixel count in the KE region.
- Pass a shape test with error ≤ 55%, where the error is defined as the ratio between the areal sum of closed SLA contour deviations from its fitted circle and the area of that circle.
- The amplitude of the eddy is ≥3 cm for avoiding the interference of SSH noise.
2.4. Eddy Identification Method for SWOT Data
- SLA contours are computed at 0.05 cm intervals. Because the mesoscale signals were filtered out by subtracting the DUACS data, the remaining SLA magnitude is reduced. Therefore, the contour intervals are adjusted to 0.05 cm.
- The number of internal grids is ≥225 and <3600. Although SWOT data has a spatial resolution of 2 km, the estimated SWOT scale in the KE region is about 30 km in wavelength (~15 pixels) [42]. This threshold is used to determine the minimum eddy size, with the maximum eddy size constrained by the wide of the swath (~60 pixels).
- Pass a shape test with error ≤ 55%.
- No additional restrictions are applied to the eddy amplitude. Due to limited familiarity with the properties of fine-scale eddies, no specific amplitude restrictions are imposed.
3. Results
3.1. Revisiting the Mesoscale Eddy Information by DUACS
3.2. Fine-Scale Eddy Information by SWOT
3.2.1. The Scale-Resolving Capability of SWOT
3.2.2. Cases of Fine-Scale Eddies Detected by SWOT
3.2.3. Properties of Fine-Scale Eddies Detected by SWOT
4. Discussion
4.1. Prospect of Detecting Eddies with SWOT on Science Orbit
4.2. Caveats for the Identification of Fine-Scale Eddies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Capet, X.; Campos, E.J.; Paiva, A.M. Submesoscale Activity over the Argentinian Shelf. Geophys. Res. Lett. 2008, 35, L15605. [Google Scholar] [CrossRef]
- Farneti, R.; Delworth, T.L.; Rosati, A.J.; Griffies, S.M.; Zeng, F. The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change. J. Phys. Oceanogr. 2010, 40, 1539–1557. [Google Scholar] [CrossRef]
- Klein, P.; Lapeyre, G.; Siegelman, L.; Qiu, B.; Fu, L.; Torres, H.; Su, Z.; Menemenlis, D.; Le Gentil, S. Ocean-Scale Interactions from Space. Earth Space Sci. 2019, 6, 795–817. [Google Scholar] [CrossRef]
- Ferrari, R.; Wunsch, C. Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic Mass Transport by Mesoscale Eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global Heat and Salt Transports by Eddy Movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef] [PubMed]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.; Le Traon, P.-Y.; Morrow, R. Eddy Dynamics From Satellite Altimetry. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef]
- Chaigneau, A.; Le Texier, M.; Eldin, G.; Grados, C.; Pizarro, O. Vertical Structure of Mesoscale Eddies in the Eastern South Pacific Ocean: A Composite Analysis from Altimetry and Argo Profiling Floats. J. Geophys. Res. Ocean. 2011, 116, C11025. [Google Scholar] [CrossRef]
- Escudier, R.; Renault, L.; Pascual, A.; Brasseur, P.; Chelton, D.; Beuvier, J. Eddy Properties in the Western Mediterranean Sea from Satellite Altimetry and a Numerical Simulation. J. Geophys. Res. Ocean. 2016, 121, 3990–4006. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Sun, L.; Li, S.; Yang, Y.; Liu, S. The Most Typical Shape of Oceanic Mesoscale Eddies from Global Satellite Sea Level Observations. Front. Earth Sci. 2015, 9, 202–208. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wang, W.; Huang, R.X. Universal Structure of Mesoscale Eddies in the Ocean. Geophys. Res. Lett. 2013, 40, 3677–3681. [Google Scholar] [CrossRef]
- You, Z.; Liu, L.; Bethel, B.J.; Dong, C. Feature Comparison of Two Mesoscale Eddy Datasets Based on Satellite Altimeter Data. Remote Sens. 2022, 14, 116. [Google Scholar] [CrossRef]
- Gaube, P.; McGillicuddy, D.J., Jr.; Chelton, D.B.; Behrenfeld, M.J.; Strutton, P.G. Regional Variations in the Influence of Mesoscale Eddies on Near-Surface Chlorophyll. J. Geophys. Res. Ocean. 2014, 119, 8195–8220. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Kozlov, I.E.; Manucharyan, G.E. Large Mesoscale Eddies in the Western Arctic Ocean from Satellite Altimetry Measurements. J. Geophys. Res. Ocean. 2021, 126, e2020JC016670. [Google Scholar] [CrossRef]
- Erickson, Z.K.; Fields, E.; Johnson, L.; Thompson, A.F.; Dove, L.A.; D’Asaro, E.; Siegel, D.A. Eddy Tracking from In Situ and Satellite Observations. J. Geophys. Res. Ocean. 2023, 128, e2023JC019701. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Ho, C.-R.; Zheng, Q.; Kuo, N.-J. Statistical Characteristics of Mesoscale Eddies in the North Pacific Derived from Satellite Altimetry. Remote Sens. 2014, 6, 5164–5183. [Google Scholar] [CrossRef]
- Ducet, N.; Le Traon, P.Y.; Reverdin, G. Global High-Resolution Mapping of Ocean Circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Ocean. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Dufau, C.; Orsztynowicz, M.; Dibarboure, G.; Morrow, R.; Le Traon, P. Mesoscale Resolution Capability of Altimetry: Present and Future. J. Geophys. Res. Ocean. 2016, 121, 4910–4927. [Google Scholar] [CrossRef]
- Amores, A.; Jordà, G.; Arsouze, T.; Le Sommer, J. Up to What Extent Can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products? J. Geophys. Res. Ocean. 2018, 123, 7220–7236. [Google Scholar] [CrossRef]
- Nagai, T.; Gruber, N.; Frenzel, H.; Lachkar, Z.; McWilliams, J.C.; Plattner, G.-K. Dominant Role of Eddies and Filaments in the Offshore Transport of Carbon and Nutrients in the California Current System. J. Geophys. Res. Ocean. 2015, 120, 5318–5341. [Google Scholar] [CrossRef]
- Cipollone, A.; Masina, S.; Storto, A.; Iovino, D. Benchmarking the Mesoscale Variability in Global Ocean Eddy-Permitting Numerical Systems. Ocean. Dyn. 2017, 67, 1313–1333. [Google Scholar] [CrossRef]
- Fu, L.-L.; Ubelmann, C. On the Transition from Profile Altimeter to Swath Altimeter for Observing Global Ocean Surface Topography. J. Atmos. Ocean. Technol. 2014, 31, 560–568. [Google Scholar] [CrossRef]
- Durand, M.; Fu, L.-L.; Lettenmaier, D.P.; Alsdorf, D.E.; Rodriguez, E.; Esteban-Fernandez, D. The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies. Proc. IEEE 2010, 98, 766–779. [Google Scholar] [CrossRef]
- Fu, L.-L.; Pavelsky, T.; Cretaux, J.-F.; Morrow, R.; Farrar, J.T.; Vaze, P.; Sengenes, P.; Vinogradova-Shiffer, N.; Sylvestre-Baron, A.; Picot, N.; et al. The Surface Water and Ocean Topography Mission: A Breakthrough in Radar Remote Sensing of the Ocean and Land Surface Water. Geophys. Res. Lett. 2024, 51, e2023GL107652. [Google Scholar] [CrossRef]
- Morrow, R.; Fu, L.-L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; d’Ovidio, F.; Farrar, J.T.; Gille, S.T.; Lapeyre, G.; et al. Global Observations of Fine-Scale Ocean Surface Topography with the Surface Water and Ocean Topography (SWOT) Mission. Front. Mar. Sci. 2019, 6, 232. [Google Scholar] [CrossRef]
- d’Ovidio, F.; Pascual, A.; Wang, J.; Doglioli, A.M.; Jing, Z.; Moreau, S.; Grégori, G.; Swart, S.; Speich, S.; Cyr, F.; et al. Frontiers in Fine-Scale In Situ Studies: Opportunities during the SWOT Fast Sampling Phase. Front. Mar. Sci. 2019, 6, 168. [Google Scholar] [CrossRef]
- McWilliams, J.C. Submesoscale Currents in the Ocean. Proc. R. Soc. A. 2016, 472, 20160117. [Google Scholar] [CrossRef]
- Zhang, Z.; Miao, M.; Qiu, B.; Tian, J.; Jing, Z.; Chen, G.; Chen, Z.; Zhao, W. Submesoscale Eddies Detected by SWOT and Moored Observations in the Northwestern Pacific. Geophys. Res. Lett. 2024, 51, e2024GL110000. [Google Scholar] [CrossRef]
- Qiu, B.; Kelly, K.A.; Joyce, T.M. Mean Flow and Variability in the Kuroshio Extension from Geosat Altimetry Data. J. Geophys. Res. Ocean. 1991, 96, 18491–18507. [Google Scholar] [CrossRef]
- Kida, S.; Mitsudera, H.; Aoki, S.; Guo, X.; Ito, S.; Kobashi, F.; Komori, N.; Kubokawa, A.; Miyama, T.; Morie, R.; et al. Oceanic Fronts and Jets around Japan: A Review. J. Oceanogr. 2015, 71, 469–497. [Google Scholar] [CrossRef]
- Sasaki, Y.N.; Minobe, S. Climatological Mean Features and Interannual to Decadal Variability of Ring Formations in the Kuroshio Extension Region. J. Oceanogr. 2015, 71, 499–509. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales. J. Phys. Oceanogr. 2005, 35, 2090–2103. [Google Scholar] [CrossRef]
- Ji, J.; Dong, C.; Zhang, B.; Liu, Y.; Zou, B.; King, G.P.; Xu, G.; Chen, D. Oceanic Eddy Characteristics and Generation Mechanisms in the Kuroshio Extension Region. J. Geophys. Res. Ocean. 2018, 123, 8548–8567. [Google Scholar] [CrossRef]
- Yang, H.; Qiu, B.; Chang, P.; Wu, L.; Wang, S.; Chen, Z.; Yang, Y. Decadal Variability of Eddy Characteristics and Energetics in the Kuroshio Extension: Unstable Versus Stable States. J. Geophys. Res. Ocean. 2018, 123, 6653–6669. [Google Scholar] [CrossRef]
- Jing, Z.; Chang, P.; Shan, X.; Wang, S.; Wu, L.; Kurian, J. Mesoscale SST Dynamics in the Kuroshio–Oyashio Extension Region. J. Phys. Oceanogr. 2019, 49, 1339–1352. [Google Scholar] [CrossRef]
- Gómez-Navarro, L.; Cosme, E.; Sommer, J.L.; Papadakis, N.; Pascual, A. Development of an Image De-Noising Method in Preparation for the Surface Water and Ocean Topography Satellite Mission. Remote Sens. 2020, 12, 734. [Google Scholar] [CrossRef]
- Tréboutte, A.; Carli, E.; Ballarotta, M.; Carpentier, B.; Faugère, Y.; Dibarboure, G. KaRIn Noise Reduction Using a Convolutional Neural Network for the SWOT Ocean Products. Remote Sens. 2023, 15, 2183. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S.; Wang, J.; Fu, L.-L. Seasonal and Fortnight Variations in Internal Solitary Waves in the Indonesian Seas from the SWOT Measurements. J. Geophys. Res. Ocean. 2024, 129, e2024JC021086. [Google Scholar] [CrossRef]
- Mason, E.; Pascual, A.; McWilliams, J.C. A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef]
- Wang, J.; Fu, L.-L.; Torres, H.S.; Chen, S.; Qiu, B.; Menemenlis, D. On the Spatial Scales to Be Resolved by the Surface Water and Ocean Topography Ka-Band Radar Interferometer. J. Atmos. Ocean. Technol. 2019, 36, 87–99. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, X.S. On the Seasonal Eddy Variability in the Kuroshio Extension. J. Phys. Oceanogr. 2018, 48, 1675–1689. [Google Scholar] [CrossRef]
- Charney, J.G. Geostrophic Turbulence. J. Atmos. Sci. 1971, 28, 1087–1095. [Google Scholar] [CrossRef]
- Held, I.M.; Pierrehumbert, R.T.; Garner, S.T.; Swanson, K.L. Surface Quasi-Geostrophic Dynamics. J. Fluid Mech. 1995, 282, 1–20. [Google Scholar] [CrossRef]
- Ma, C.; Guo, X.; Zhang, H.; Di, J.; Chen, G. An Investigation of the Influences of SWOT Sampling and Errors on Ocean Eddy Observation. Remote Sens. 2020, 12, 2682. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S.; Klein, P.; Ubelmann, C.; Fu, L.-L.; Sasaki, H. Reconstructability of Three-Dimensional Upper-Ocean Circulation from SWOT Sea Surface Height Measurements. J. Phys. Oceanogr. 2016, 46, 947–963. [Google Scholar] [CrossRef]
- Pujol, M.-I.; Dibarboure, G.; Traon, P.-Y.L.; Klein, P. Using High-Resolution Altimetry to Observe Mesoscale Signals. J. Atmos. Ocean. Technol. 2012, 29, 1409–1416. [Google Scholar] [CrossRef]
- Ubelmann, C.; Klein, P.; Fu, L.-L. Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping. J. Atmos. Ocean. Technol. 2015, 32, 177–184. [Google Scholar] [CrossRef]
- Rogé, M.; Morrow, R.; Ubelmann, C.; Dibarboure, G. Using a Dynamical Advection to Reconstruct a Part of the SSH Evolution in the Context of SWOT, Application to the Mediterranean Sea. Ocean. Dyn. 2017, 67, 1047–1066. [Google Scholar] [CrossRef]
- Archer, M.R.; Li, Z.; Fu, L. Increasing the Space–Time Resolution of Mapped Sea Surface Height From Altimetry. J. Geophys. Res. Ocean. 2020, 125, e2019JC015878. [Google Scholar] [CrossRef]
- Ballarotta, M.; Ubelmann, C.; Rogé, M.; Fournier, F.; Faugère, Y.; Dibarboure, G.; Morrow, R.; Picot, N. Dynamic Mapping of Along-Track Ocean Altimetry: Performance from Real Observations. J. Atmos. Ocean. Technol. 2020, 37, 1593–1601. [Google Scholar] [CrossRef]
- Guillou, F.L.; Metref, S.; Cosme, E.; Ubelmann, C.; Ballarotta, M.; Sommer, J.L.; Verron, J. Mapping Altimetry in the Forthcoming SWOT Era by Back-and-Forth Nudging a One-Layer Quasigeostrophic Model. J. Atmos. Ocean. Technol. 2021, 38, 697–710. [Google Scholar] [CrossRef]
- Dibarboure, G.; Anadon, C.; Briol, F.; Cadier, E.; Chevrier, R.; Delepoulle, A.; Faugère, Y.; Laloue, A.; Morrow, R.; Picot, N.; et al. Blending 2D Topography Images from SWOT into the Altimeter Constellation with the Level-3 Multi-Mission DUACS System. EGUsphere 2024, 2024, 1–64. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S.; Klein, P.; Wang, J.; Torres, H.; Fu, L.-L.; Menemenlis, D. Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean. J. Phys. Oceanogr. 2018, 48, 591–605. [Google Scholar] [CrossRef]
- Callies, J.; Wu, W. Some Expectations for Submesoscale Sea Surface Height Variance Spectra. J. Phys. Oceanogr. 2019, 49, 2271–2289. [Google Scholar] [CrossRef]
- Pujol, M.-I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The New Multi-Mission Altimeter Data Set Reprocessed over 20 Years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
Cyclonic Eddies | Anticyclonic Eddies | |
---|---|---|
Numbers per visit | 2.41 | 2.08 |
Radius (km) | 23.3 ± 5.1 | 23.5 ± 5.0 |
Amplitude (cm) | 3.5 ± 2.5 | 2.8 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, T.; Jing, Z. Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension. Remote Sens. 2024, 16, 3488. https://doi.org/10.3390/rs16183488
Du T, Jing Z. Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension. Remote Sensing. 2024; 16(18):3488. https://doi.org/10.3390/rs16183488
Chicago/Turabian StyleDu, Tianshi, and Zhao Jing. 2024. "Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension" Remote Sensing 16, no. 18: 3488. https://doi.org/10.3390/rs16183488
APA StyleDu, T., & Jing, Z. (2024). Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension. Remote Sensing, 16(18), 3488. https://doi.org/10.3390/rs16183488