Intercomparison of Antarctic Sea-Ice Thickness Estimates from Satellite Altimetry and Assessment over the 2019 Data-Rich Year
Abstract
:1. Introduction
2. Data and Methods
2.1. Remote Sensing Products
2.2. Field Observations
2.3. Estimation of SIT with Satellite Altimetry
2.3.1. The Zero Sea-Ice Freeboard (ZIF) Method
2.3.2. The Empirical Relationship Method (ERM)
2.3.3. Combined Buoyancy Equation and Empirical Relationship Method (BERM)
2.3.4. The One-Layer Method (OLM)
2.3.5. The Sea-Ice Climate Change Initiative Method (SICC)
2.3.6. The Freeboard Differencing Method (FDM)
2.4. Comparison with Field Observations
3. Results
3.1. Assessment with Field Observations
3.2. Spatial Intercomparison of Satellite Methods
3.2.1. Marginal Ice Zone Features
3.2.2. Spatial Patterns
3.3. Thickness Distribution Intercomparison
3.4. Interannual Variability over the Past 5 Years
3.5. Potential Impact of Inaccurate Snow Depth and Freeboard Assumptions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lavergne, T.; Kern, S.; Aaboe, S.; Derby, L.; Dybkjaer, G.; Garric, G.; Heil, P.; Hendricks, S.; Holfort, J.; Howell, S.; et al. A New Structure for the Sea Ice Essential Climate Variables of the Global Climate Observing System. Bull. Am. Meteorol. Soc. 2022, 103, E1502–E1521. [Google Scholar] [CrossRef]
- Sandven, S.; Spreen, G.; Heygster, G.; Girard-Ardhuin, F.; Farrell, S.L.; Dierking, W.; Allard, R.A. Sea Ice Remote Sensing—Recent Developments in Methods and Climate Data Sets. Surv. Geophys. 2023, 44, 1653–1689. [Google Scholar] [CrossRef]
- Kern, S.; Ozsoy-Çiçek, B.; Worby, A. Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches. Remote Sens. 2016, 8, 538. [Google Scholar] [CrossRef]
- Parkinson, C.L. A 40-y Record Reveals Gradual Antarctic Sea Ice Increases Followed by Decreases at Rates Far Exceeding the Rates Seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef]
- Vichi, M. An Indicator of Sea Ice Variability for the Antarctic Marginal Ice Zone. Cryosphere 2022, 16, 4087–4106. [Google Scholar] [CrossRef]
- Purich, A.; Doddridge, E.W. Record Low Antarctic Sea Ice Coverage Indicates a New Sea Ice State. Commun. Earth Environ. 2023, 4, 314. [Google Scholar] [CrossRef]
- Kaleschke, L.; Tian-Kunze, X.; Hendricks, S.; Ricker, R. SMOS-Derived Antarctic Thin Sea Ice Thickness: Data Description and Validation in the Weddell Sea. Earth Syst. Sci. Data 2024, 16, 3149–3170. [Google Scholar] [CrossRef]
- Liao, S.; Luo, H.; Wang, J.; Shi, Q.; Zhang, J.; Yang, Q. An Evaluation of Antarctic Sea-Ice Thickness from the Global Ice-Ocean Modeling and Assimilation System Based on in Situ and Satellite Observations. Cryosphere 2022, 16, 1807–1819. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Liu, B.; Xie, H.; Ozsoy-Cicek, B. Deriving Antarctic Sea-Ice Thickness from Satellite Altimetry and Estimating Consistency for NASA’s ICESat/ICESat-2 Missions. Geophys. Res. Lett. 2021, 48, e2021GL093425. [Google Scholar] [CrossRef]
- Wang, J.; Min, C.; Ricker, R.; Shi, Q.; Han, B.; Hendricks, S.; Wu, R.; Yang, Q. A Comparison between Envisat and ICESat Sea Ice Thickness in the Southern Ocean. Cryosphere 2022, 16, 4473–4490. [Google Scholar] [CrossRef]
- Worby, A.P.; Geiger, C.A.; Paget, M.J.; Van Woert, M.L.; Ackley, S.F.; DeLiberty, T.L. Thickness Distribution of Antarctic Sea Ice. J. Geophys. Res. 2008, 113, 2007JC004254. [Google Scholar] [CrossRef]
- Raphael, M.N.; Hobbs, W. The Influence of the Large-scale Atmospheric Circulation on Antarctic Sea Ice during Ice Advance and Retreat Seasons. Geophys. Res. Lett. 2014, 41, 5037–5045. [Google Scholar] [CrossRef]
- Kern, S. ESA-CCI_Phase2_Standardized_Manual_Visual_Ship-Based_SeaIceObservations_v02 2020, 17458688 Bytes. Available online: https://www.wdc-climate.de/ui/entry?acronym=ESACCIPSMVSBSIOV2 (accessed on 24 March 2025).
- Behrendt, A.; Dierking, W.; Fahrbach, E.; Witte, H. Sea Ice Draft Measured by Upward Looking Sonars in the Weddell Sea (Antarctica). Pangaea 2013, 5, 209–226. [Google Scholar] [CrossRef]
- Munro, D.R.; Dunbar, R.B.; Mucciarone, D.A.; Arrigo, K.R.; Long, M.C. Stable Isotope Composition of Dissolved Inorganic Carbon and Particulate Organic Carbon in Sea Ice from the Ross Sea, Antarctica. J. Geophys. Res. 2010, 115, 2009JC005661. [Google Scholar] [CrossRef]
- Lewis, M.J.; Tison, J.L.; Weissling, B.; Delille, B.; Ackley, S.F.; Brabant, F.; Xie, H. Sea Ice and Snow Cover Characteristics during the Winter–Spring Transition in the Bellingshausen Sea: An Overview of SIMBA 2007. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1019–1038. [Google Scholar] [CrossRef]
- Worby, A.P.; Steer, A.; Lieser, J.L.; Heil, P.; Yi, D.; Markus, T.; Allison, I.; Massom, R.A.; Galin, N.; Zwally, J. Regional-Scale Sea-Ice and Snow Thickness Distributions from in Situ and Satellite Measurements over East Antarctica during SIPEX 2007. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1125–1136. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Kern, S.; Ackley, S.F.; Ozsoy-Cicek, B.; Xie, H. Summer Antarctic Sea Ice as Seen by ASAR and AMSR-E and Observed during Two IPY Field Cruises: A Case Study. Ann. Glaciol. 2011, 52, 327–336. [Google Scholar] [CrossRef]
- Studinger, M. IceBridge ATM L1B Elevation and Return Strength; Version 2; National Snow and Ice Data Center: Boulder, CO, USA, 2013. [Google Scholar]
- Kurtz, N.; Studinger, M.; Harbeck, J.; Onana, V.-D.-P.; Yi, D. IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness; Version 1; National Snow and Ice Data Center: Boulder, CO, USA, 2015. [Google Scholar]
- Meiners, K.M.; Golden, K.M.; Heil, P.; Lieser, J.L.; Massom, R.; Meyer, B.; Williams, G.D. Introduction: SIPEX-2: A Study of Sea-Ice Physical, Biogeochemical and Ecosystem Processes off East Antarctica during Spring 2012. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 131, 1–6. [Google Scholar] [CrossRef]
- Lemke, P. The Expedition of the Research Vessel Polarstern to the Antarctic in 2013 (ANT-XXIX/6); Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung: Bremerhaven, Germany, 2014; Volume 679, pp. 1–154. [Google Scholar]
- de Jong, E.; Vichi, M.; Saunders, C.F.W.; Kotilainen, M.J.; Luyt, H.; Peel, S.P.M.; Swart, D.J. Sea Ice Conditions within the Antarctic Marginal Ice Zone in Summer 2016, Onboard the SA Agulhas II 2018, 603 Data Points. Available online: https://doi.org/10.1594/PANGAEA.885208 (accessed on 24 March 2025).
- Ackley, S. ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April–June 2017. Available online: https://doi.org/10.1594/PANGAEA.901263 (accessed on 24 March 2025).
- de Jong, E.; Vichi, M.; Mehlmann, C.B.; Eayrs, C.; De Kock, W.; Moldenhauer, M.; Audh, R.R. Sea Ice Conditions within the Antarctic Marginal Ice Zone in Winter 2017, Onboard the SA Agulhas II 2018, 303 Data Points. Available online: https://doi.org/10.1594/PANGAEA.885211 (accessed on 24 March 2025).
- Arndt, S. Sea Ice Conditions during POLARSTERN Cruise PS118 (LARSEN) 2019, 2781 Data Points. Available online: https://doi.pangaea.de/10.1594/PANGAEA.901263 (accessed on 24 March 2025).
- Hepworth, E.; Vichi, M.; van Zuydam, A.; Taylor, N.C.; Bossau, J.; Engelbrecht, M.; Aarskog, T. Sea Ice Observations in the Antarctic Marginal Ice Zone during Winter 2019 2020, 330 Data Points. Available online: https://doi.org/10.1594/PANGAEA.921759 (accessed on 24 March 2025).
- Hepworth, E.; Vichi, M.; Engelbrecht, M.; Kaplan, K.; Sandru, A.; Bossau, J.; Pranlall, S.; de Jager, W.; Rogerson, J.J. Sea Ice Observations in the Antarctic Marginal Ice Zone During Spring 2019 2020, 1300 Data Points. Available online: https://doi.pangaea.de/10.1594/PANGAEA.921755 (accessed on 24 March 2025).
- Audh, R.R.; Johnson, S.; Hambrock, M.; Marquart, R.; Pead, J.; Rampai, T.; Skatulla, S.; Vichi, M. Sea Ice Core Temperature and Salinity Data Collected during the 2019 SCALE Spring Cruise 2022. Available online: https://zenodo.org/records/6997631 (accessed on 24 March 2025).
- Johnson, S.; Audh, R.R.; De Jager, W.; Matlakala, B.; Vichi, M.; Womack, A.; Rampai, T. Physical and Morphological Properties of First-Year Antarctic Sea Ice in the Spring Marginal Ice Zone of the Atlantic-Indian Sector. J. Glaciol. 2023, 69, 1351–1364. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, W.; Xie, H.; Ackley, S.; Li, H. Decadal Variations of Sea Ice Thickness in the Amundsen-Bellingshausen and Weddell Seas Retrieved from ICESat and IceBridge Laser Altimetry, 2003–2017. JGR Oceans 2020, 125, e2020JC016077. [Google Scholar] [CrossRef]
- Li, H.; Xie, H.; Kern, S.; Wan, W.; Ozsoy, B.; Ackley, S.; Hong, Y. Spatio-Temporal Variability of Antarctic Sea-Ice Thickness and Volume Obtained from ICESat Data Using an Innovative Algorithm. Remote Sens. Environ. 2018, 219, 44–61. [Google Scholar] [CrossRef]
- Xie, H.; Ackley, S.F.; Yi, D.; Zwally, H.J.; Wagner, P.; Weissling, B.; Lewis, M.; Ye, K. Sea-Ice Thickness Distribution of the Bellingshausen Sea from Surface Measurements and ICESat Altimetry. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1039–1051. [Google Scholar] [CrossRef]
- Ozsoy-Cicek, B.; Ackley, S.; Xie, H.; Yi, D.; Zwally, J. Sea Ice Thickness Retrieval Algorithms Based on in Situ Surface Elevation and Thickness Values for Application to Altimetry. JGR Oceans 2013, 118, 3807–3822. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S.; Webster, M.A.; Kurtz, N.T.; Petty, A.A. Arctic Snow Depth and Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards: A First Examination. JGR Oceans 2020, 125, e2019JC016008. [Google Scholar] [CrossRef]
- Hobbs, W.R.; Massom, R.; Stammerjohn, S.; Reid, P.; Williams, G.; Meier, W. A Review of Recent Changes in Southern Ocean Sea Ice, Their Drivers and Forcings. Glob. Planet. Change 2016, 143, 228–250. [Google Scholar] [CrossRef]
- Kern, S.; Spreen, G. Uncertainties in Antarctic Sea-Ice Thickness Retrieval from ICESat. Ann. Glaciol. 2015, 56, 107–119. [Google Scholar] [CrossRef]
- Kacimi, S.; Kwok, R. The Antarctic Sea Ice Cover from ICESat-2 and CryoSat-2: Freeboard, Snow Depth, and Ice Thickness. Cryosphere 2020, 14, 4453–4474. [Google Scholar] [CrossRef]
- Fons, S.; Kurtz, N.; Bagnardi, M. A Decade-plus of Antarctic Sea Ice Thickness and Volume Estimates from CryoSat-2 Using a Physical Model and Waveform Fitting. Cryosphere 2023, 17, 2487–2508. [Google Scholar] [CrossRef]
- Petty, A.; Kwok, R.; Bagnardi, M.; Ivanoff, A.; Kurtz, N.; Lee, J.; Wimert, J.; Hancock, D. ATLAS/ICESat-2 L3B Daily and Monthly Gridded Sea Ice Freeboard; Version 3; National Snow and Ice Data Center: Boulder, CO, USA, 2021. [Google Scholar]
- European Space Agency. Cryosat L2 SARin Precise Orbit 2019. Available online: https://earth.esa.int/eogateway/catalog/cryosat-products (accessed on 24 March 2025).
- Meier, W.; Markus, T.; Comiso, J. AMSR-E/AMSR2 Unified L3 Daily 12.5 Km Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth Polar Grids; Version 1; National Snow and Ice Data Center: Boulder, CO, USA, 2018. [Google Scholar]
- Skatulla, S.; Audh, R.R.; Cook, A.; Hepworth, E.; Johnson, S.; Lupascu, D.C.; MacHutchon, K.; Marquart, R.; Mielke, T.; Omatuku, E.; et al. Physical and Mechanical Properties of Winter First-Year Ice in the Antarctic Marginal Ice Zone along the Good Hope Line. Cryosphere 2022, 16, 2899–2925. [Google Scholar] [CrossRef]
- Willatt, R.C.; Giles, K.A.; Laxon, S.W.; Stone-Drake, L.; Worby, A.P. Field Investigations of Ku-Band Radar Penetration into Snow Cover on Antarctic Sea Ice. IEEE Trans. Geosci. Remote Sens. 2010, 48, 365–372. [Google Scholar] [CrossRef]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat Measurements of Sea Ice Freeboard and Estimates of Sea Ice Thickness in the Weddell Sea. J. Geophys. Res. 2008, 113, 2007JC004284. [Google Scholar] [CrossRef]
- Shen, X.; Ke, C.-Q.; Wang, Q.; Zhang, J.; Shi, L.; Zhang, X. Assessment of Arctic Sea Ice Thickness Estimates from ICESat-2 Using IceBird Airborne Measurements. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3764–3775. [Google Scholar] [CrossRef]
- Weissling, B.P.; Lewis, M.J.; Ackley, S.F. Sea-Ice Thickness and Mass at Ice Station Belgica, Bellingshausen Sea, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1112–1124. [Google Scholar] [CrossRef]
- Adolphs, U. Ice Thickness Variability, Isostatic Balance and Potential for Snow Ice Formation on Ice Floes in the South Polar Pacific Ocean. J. Geophys. Res. 1998, 103, 24675–24691. [Google Scholar] [CrossRef]
- Ramdas, A.; Trillos, N.; Cuturi, M. On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests. Entropy 2017, 19, 47. [Google Scholar] [CrossRef]
- Raghvendra, S.; Shirzadian, P.; Zhang, K. A New Robust Partial p-Wasserstein-Based Metric for Comparing Distributions. arXiv 2024, arXiv:2405.03664. [Google Scholar]
- Vissio, G.; Lembo, V.; Lucarini, V.; Ghil, M. Evaluating the Performance of Climate Models Based on Wasserstein Distance. Geophys. Res. Lett. 2020, 47, e2020GL089385. [Google Scholar] [CrossRef]
- Kwok, R.; Maksym, T. Snow Depth of the W Eddell and B Ellingshausen Sea Ice Covers from I Ce B Ridge Surveys in 2010 and 2011: An Examination. JGR Oceans 2014, 119, 4141–4167. [Google Scholar] [CrossRef]
- Petty, A.A.; Kwok, R.; Bagnardi, M.; Ivanoff, A.; Kurtz, N.; Lee, J.; Wimert, J.; Hancock, D. ATLAS/ICESat-2 L3B Daily and Monthly Gridded Sea Ice Freeboard (ATL20, Version 4); NASA: Boulder, CO, USA, 2023; Available online: https://nsidc.org/data/atl20/versions/4 (accessed on 24 March 2025).
- Brouwer, J.; Fraser, A.D.; Murphy, D.J.; Wongpan, P.; Alberello, A.; Kohout, A.; Horvat, C.; Wotherspoon, S.; Massom, R.A.; Cartwright, J.; et al. Altimetric Observation of Wave Attenuation through the Antarctic Marginal Ice Zone Using ICESat-2. Cryosphere 2022, 16, 2325–2353. [Google Scholar] [CrossRef]
- Kwok, R.; Petty, A.; Cunningham, G.; Markus, T.; Hancock, D.; Ivanoff, A.; Wimert, J.; Bagnardi, M.; Kurtz, N. ATLAS/ICESat-2 L3A Sea Ice Freeboard; Version 6; National Snow and Ice Data Center: Boulder, CO, USA, 2023. [Google Scholar]
- Vichi, M.; Eayrs, C.; Alberello, A.; Bekker, A.; Bennetts, L.; Holland, D.; De Jong, E.; Joubert, W.; MacHutchon, K.; Messori, G.; et al. Effects of an Explosive Polar Cyclone Crossing the Antarctic Marginal Ice Zone. Geophys. Res. Lett. 2019, 46, 5948–5958. [Google Scholar] [CrossRef]
- Wadhams, P.; Lange, M.A.; Ackley, S.F. The Ice Thickness Distribution across the Atlantic Sector of the Antarctic Ocean in Midwinter. J. Geophys. Res. 1987, 92, 14535–14552. [Google Scholar] [CrossRef]
- Rack, W.; Price, D.; Haas, C.; Langhorne, P.J.; Leonard, G.H. Sea Ice Thickness in the Western Ross Sea. Geophys. Res. Lett. 2021, 48, e2020GL090866. [Google Scholar] [CrossRef]
- Kern, S.; Ozsoy-Çiçek, B. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches. Remote Sens. 2016, 8, 450. [Google Scholar] [CrossRef]
- Alexandrov, V.; Sandven, S.; Wahlin, J.; Johannessen, O.M. The Relation between Sea Ice Thickness and Freeboard in the Arctic. Cryosphere 2010, 4, 373–380. [Google Scholar] [CrossRef]
- Mangatane. Antarctic Sea-Ice Thickness from Six Satellite-Based Methods; Zenodo: Geneva, Switzerland, 2024; Available online: https://doi.org/10.5281/zenodo.14097274 (accessed on 24 March 2025).
Source | Start Date | End Date | Sector Coverage | Types of Observations | Reference |
---|---|---|---|---|---|
ASPeCt data Archive | 01-01-1980 | 31-12-2004 | Circumpolar | Underway visual estimations, drill and airborne measurements | Worby et al. [11] |
ESA-SICCI standardized ship-based observations | 08-05-2002 | 07-05-2017 | Circumpolar | Standardized visual estimations following ASPeCt protocol | Kern [13] |
Moored ULS | 23-11-1990 | 06-01-2011 | Weddell Sea | Upward looking sonar | Behrendt et al. [14] |
CORSACS (NBP 06-08) | 09-11-2006 | 01-12-2006 | Ross Sea | Drill measurements | Munro et al. [15] |
Sea-Ice Mass Balance in Antarctica (SIMBA, NBP 0709) | 01-10-2007 | 24-10-2007 | Bellingshausen/Amundsen Sea | Ice mass buoy, and drill measurements, and visual estimations (ASPeCt) | Lewis et al. [16] |
Sea-Ice Physics and Ecosystem eXperiment (SIPEX) | 09-09-2007 | 11-10-2007 | East Antarctic | Drill measurements and visual estimations (ASPeCt) | Worby et al. [17] |
Oden 2008 and Palmer 2009 (OSO-08-09) | 10-12-2008 | 16-02-2009 | Bellingshausen/Amundsen Sea | Drill measurements and visual estimations (ASPeCt) | Tekeli et al. [18] |
Air-based data (Operation IceBridge) | 30-03-2009 | 15-09-2019 | Weddell Sea and Bellingshausen/Amundsen Sea | Airborne measurements | Studinger [19] and Kurtz [20] |
Sea-Ice Physics and Ecosystems eXperiment 2 (SIPEX-2) | 14-09-2012 | 16-11-2012 | East Antarctic | Autonomous Underwater Vehicle ULS, visual estimations (ASPeCt), and drill and Airborne measurements | Meiners et al. [21] |
ANT-XXIX/6 | 15-06-2013 | 08-08-2013 | Weddell Sea | Autonomous Underwater Vehicle ULS, visual estimations (ASPeCt), and drill and Airborne measurements | Lemke [22] |
SA Agulhas II | 07-12-2016 | 10-12-2016 | King Haakon VII | Visual (ASPeCt) | De Jong et al. [23] |
PIPERS cruise NBP1704 | 19-04-2017 | 05-06-2017 | Ross Sea | Visual (ASPeCt) | Ackley [24] |
SA Agulhas II | 04-07-2017 | 05-07-2017 | King Haakon VII | Visual (ASPeCt) | De Jong et al. [25] |
Polarstern 118 (LARSEN) | 22-02-2019 | 29-03-2019 | Weddell Sea | Visual (ASPeCt) | Arndt [26] |
Southern oCean seAsonaL Experiment (SCALE, WIN19) | 26-07-2019 | 28-07-2019 | King Haakon VII | Visual (ASPeCt) and drill measurements | Hepworth et al. [27] |
SCALE (SPR19) | 22-10-2019 | 08-11-2019 | King Haakon VII | Visual (ASPeCt) and drill measurements | Hepworth et al. [28], Audh et al. [29], and Johnson et al. [30] |
Methods | Equations | Literature Names |
---|---|---|
Sea-Ice Climate Change Initiative (SICC) | If | SICC [3] |
One-layer method (OLM) | Improved One-Layer method [9] | |
Zero sea-ice freeboard method (ZIF) | ZeroIF [31] | |
Buoyancy equation and empirical relationship (BERM) | Improved buoyancy equation [31] | |
Empirical relationship method (ERM) | XOC in [32], originally developed by Xie et al. [33] and Ozsoy-Cicek et al. [34] | |
Freeboard differencing method (FDM) | Kwok et al. [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangatane, M.J.; Vichi, M. Intercomparison of Antarctic Sea-Ice Thickness Estimates from Satellite Altimetry and Assessment over the 2019 Data-Rich Year. Remote Sens. 2025, 17, 1180. https://doi.org/10.3390/rs17071180
Mangatane MJ, Vichi M. Intercomparison of Antarctic Sea-Ice Thickness Estimates from Satellite Altimetry and Assessment over the 2019 Data-Rich Year. Remote Sensing. 2025; 17(7):1180. https://doi.org/10.3390/rs17071180
Chicago/Turabian StyleMangatane, Magata Jesaya, and Marcello Vichi. 2025. "Intercomparison of Antarctic Sea-Ice Thickness Estimates from Satellite Altimetry and Assessment over the 2019 Data-Rich Year" Remote Sensing 17, no. 7: 1180. https://doi.org/10.3390/rs17071180
APA StyleMangatane, M. J., & Vichi, M. (2025). Intercomparison of Antarctic Sea-Ice Thickness Estimates from Satellite Altimetry and Assessment over the 2019 Data-Rich Year. Remote Sensing, 17(7), 1180. https://doi.org/10.3390/rs17071180