Remote Sensing Detection of Growing Season Freeze-Induced Defoliation of Montane Quaking Aspen (Populus tremuloides) in Southern Utah, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and the 2020 Freeze Event
2.2. Satellite Platform Data
2.3. Assessing Changes in Vegetation Health
2.4. Spatial Analysis 1: Median Deviation Method
2.5. Spatial Analysis 2: Change Detection Method
2.6. A Pixel-Based Method for Temporal Dynamics
2.7. Daily Temperature Observations
2.8. Growing Degree Days Model
3. Results
3.1. Spatial Analysis of Aspen Damage Due to the 2020 Freeze Event
3.2. Temporal Dynamics of Aspen Responses to the Freeze Event Compared to Average Data
3.3. Confluence of the NDVI and GDD as Metrics to Evaluate the Timing of Freeze Vulnerability Onset
4. Discussion
4.1. Effective Detection and Requisite Spatial Resolution
4.2. Temporal Dynamics
4.3. Correlation with the Growing Degree Model
4.4. Ruling Out Other Defoliators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, C.; Schreiber, S.G.; Roberts, D.R.; Hamann, A.; Brouard, J.S. Post-Glacial Biogeography of Trembling Aspen Inferred from Habitat Models and Genetic Variance in Quantitative Traits. Sci. Rep. 2017, 7, 4672. [Google Scholar] [CrossRef] [PubMed]
- Currit, N.; St. Clair, S.B. Assessing the Impact of Extreme Climatic Events Aspen Defoliation Using MODIS Imagery. Geocarto Int. 2010, 25, 133–147. [Google Scholar] [CrossRef]
- Laganière, J.; Boča, A.; Van Miegroet, H.; Paré, D. A Tree Species Effect on Soil That Is Consistent across the Species’ Range: The Case of Aspen and Soil Carbon in North America. Forests 2017, 8, 113. [Google Scholar] [CrossRef]
- Meier, G.A.; Brown, J.F.; Evelsizer, R.J.; Vogelmann, J.E. Phenology and Climate Relationships in Aspen (Populus Tremuloides Michx.) Forest and Woodland Communities of Southwestern Colorado. Ecol. Indic. 2015, 48, 189–197. [Google Scholar] [CrossRef]
- St. Clair, S.B.; Guyon, J.; Donaldson, J. Quaking Aspen’s Current and Future Status in Western North America: The Role of Succession, Climate, Biotic Agents and Its Clonal Nature. In Progress in Botany 71; Springer: Berlin/Heidelberg, Germany, 2010; Volume 71, pp. 371–400. [Google Scholar] [CrossRef]
- Worrall, J.J.; Egeland, L.; Eager, T.; Mask, R.A.; Johnson, E.W.; Kemp, P.A.; Shepperd, W.D. Rapid Mortality of Populus Tremuloides in Southwestern Colorado, USA. For. Ecol. Manag. 2008, 255, 686–696. [Google Scholar] [CrossRef]
- Worrall, J.J.; Rehfeldt, G.E.; Hamann, A.; Hogg, E.H.; Marchetti, S.B.; Michaelian, M.; Gray, L.K. Recent Declines of Populus Tremuloides in North America Linked to Climate. For. Ecol. Manag. 2013, 299, 35–51. [Google Scholar] [CrossRef]
- Baker, F.S. Aspen in the Central Rocky Mountain Region. USDA 1925, 1291, 47. [Google Scholar] [CrossRef]
- St. Clair, S.B.; Monson, S.D.; Smith, E.A.; Cahill, D.G.; Calder, W.J. Altered Leaf Morphology, Leaf Resource Dilution and Defense Chemistry Induction in Frost-Defoliated Aspen (Populus Tremuloides). Tree Physiol. 2009, 29, 1259–1268. [Google Scholar] [CrossRef]
- Rubert-Nason, K.F.; Couture, J.J.; Gryzmala, E.A.; Townsend, P.A.; Lindroth, R.L. Vernal Freeze Damage and Genetic Variation Alter Tree Growth, Chemistry, and Insect Interactions. Plant Cell Environ. 2017, 40, 2743–2753. [Google Scholar] [CrossRef]
- Guyon, J.; Hoffman, J. Survey of Aspen Disease in the Intermountain Region (R4-OFO-Report 11-01); USDA Forest Service: Ogden, UT, USA, 2011; pp. 19p. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=8039&context=aspen_bib&httpsredir=1&referer= (accessed on 7 January 2024).
- Hogg, E.H.; Brandt, J.P.; Michaelian, M. Impacts of a Regional Drought on the Productivity, Dieback, and Biomass of Western Canadian Aspen Forests. Can. J. For. Res. 2008, 38, 1373–1384. [Google Scholar] [CrossRef]
- Call, A.C.; Clair, S.B.S. Outbreak of Drepanopeziza Fungus in Aspen Forests and Variation in Stand Susceptibility: Leaf Functional Traits, Compensatory Growth and Phenology. Tree Physiol. 2017, 37, 1198–1207. [Google Scholar] [CrossRef]
- Marchetti, S.B.; Worrall, J.J.; Eager, T. Secondary Insects and Diseases Contribute to Sudden Aspen Decline in Southwestern Colorado, USA. Can. J. For. Res. 2011, 41, 2315–2325. [Google Scholar] [CrossRef]
- Rogers, P.C. Guide to quaking aspen ecology and management with emphasis on Bureau of Land Management Lands in the Western United States; Western Aspen Alliance: Logan, UT, USA, 2017; pp. 98p. Available online: https://digitalcommons.usu.edu/aspen_bib/7606/ (accessed on 7 January 2024).
- Michaelian, M.; Hogg, E.H.; Hall, R.J.; Arsenault, E. Massive Mortality of Aspen Following Severe Drought along the Southern Edge of the Canadian Boreal Forest. Glob. Chang. Biol. 2011, 17, 2084–2094. [Google Scholar] [CrossRef]
- Birch, J.D.; Chikamoto, Y.; DeRose, R.J.; Manvailer, V.; Hogg, E.H.; Karst, J.; Love, D.M.; Lutz, J.A. Frost-Associated Defoliation in Populus Tremuloides Causes Repeated Growth Reductions Over 185 Years. Ecosystems 2023, 26, 843–859. [Google Scholar] [CrossRef]
- Yamaguchi, D.K.; Filion, L.; Savage, M. Relationship of Temperature and Light Ring Formation at Subarctic Treeline and Implications for Climate Reconstruction. Quat. Res. 1993, 39, 256–262. [Google Scholar] [CrossRef]
- Szeicz, J.M.; MacDonald, G.M. A 930-Year Ring-Width Chronology from Moisture-Sensitive White Spruce (Picea Glauca Moench) in Northwestern Canada. Holocene 1996, 6, 345–351. [Google Scholar] [CrossRef]
- Wang, L.; Payette, S.; Bégin, Y. A Quantitative Definition of Light Rings in Black Spruce (Picea Mariana) at the Arctic Treeline in Northern Québec, Canada. Arct. Antarct. Alp. Res. 2000, 32, 324–330. [Google Scholar] [CrossRef]
- Filion, L.; Cournoyer, L. Variation in Wood Structure of Eastern Larch Defoliated by the Larch Sawfly in Subarctic Quebec, Canada. Can. J. For. Res. 1995, 25, 1263–1268. [Google Scholar] [CrossRef]
- Girardin, M.P.; Tardif, J.; Bergeron, Y. Radial Growth Analysis of Larix Laricina from the Lake Deparquet Area, Québec, in Relation to Climate and Larch Sawfly Outbreaks. Ecoscience 2001, 8, 127–138. [Google Scholar] [CrossRef]
- Kulman, H.M.; Hodson, A.C.; Duncan, D.P. Distribution and Effects of Jack-Pine Budworm Defoliation. For. Sci. 1963, 9, 146–157. [Google Scholar] [CrossRef]
- Volney, W.J.A.; Mallett, K.I. Light Rings and the Age of Jack Pine Trees. Can. J. For. Res. 1992, 22, 2011–2013. [Google Scholar] [CrossRef]
- Liang, C.; Filion, L.; Cournoyer, L. Wood Structure of Biotically and Climatically Induced Light Rings in Eastern Larch (Larix Laricina). Can. J. For. Res. 1997, 27, 1538–1547. [Google Scholar] [CrossRef]
- Hogg, E.H.; Hart, M.; Lieffers, V.J. White Tree Rings Formed in Trembling Aspen Saplings Following Experimental Defoliation. Can. J. For. Res. 2002, 32, 1929–1934. [Google Scholar] [CrossRef]
- Kross, A.; Fernandes, R.; Seaquist, J.; Beaubien, E. The Effect of the Temporal Resolution of NDVI Data on Season Onset Dates and Trends across Canadian Broadleaf Forests. Remote Sens. Environ. 2011, 115, 1564–1575. [Google Scholar] [CrossRef]
- Reed, B.C. Trend Analysis of Time-Series Phenology of North America Derived from Satellite Data. GIsci Remote Sens. 2006, 43, 24–38. [Google Scholar] [CrossRef]
- Neigh, C.S.R.; Tucker, C.J.; Townshend, J.R.G. Synchronous NDVI and Surface Air Temperature Trends in Newfoundland: 1982 to 2003. Int. J. Remote Sens. 2007, 28, 2581–2598. [Google Scholar] [CrossRef]
- Huemmrich, K.F.; Black, T.A.; Jarvis, P.G.; McCaughey, J.H.; Hall, F.G. High Temporal Resolution NDVI Phenology from Micrometeorological Radiation Sensors. J. Geophys. Res. Atmos. 1999, 104, 27935–27944. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biosphysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Donnelly, A.; Yu, R.; Caffarra, A.; Hanes, J.; Liang, L.; Desai, A.R.; Liu, L.; Schwartz, M.D. Interspecific and Interannual Variation in the Duration of Spring Phenophases in a Northern Mixed Forest. Agric. For. Meteorol. 2017, 243, 55–67. [Google Scholar] [CrossRef]
- McCloskey, L.; Sams, B.; Harris, J.L.; Salie, M.; Striegler, R.K.; Sanchez, L.; Dokoozlian, N. 120. Relationships between Freeze Damaged Vines and Imagery from Satellites and Unmanned Aerial Vehicles in California Vineyards. In Precision Agriculture ’23; Wageningen Academic Publishers: Washington, DC, USA, 2023; pp. 120–955. ISBN 978-90-8686-393-8. [Google Scholar]
- Cogato, A.; Meggio, F.; Collins, C.; Marinello, F. Medium-Resolution Multispectral Data from Sentinel-2 to Assess the Damage and the Recovery Time of Late Frost on Vineyards. Remote Sens. 2020, 12, 1896. [Google Scholar] [CrossRef]
- Wegler, M.; Kuenzer, C. Potential of Earth Observation to Assess the Impact of Climate Change and Extreme Weather Events in Temperate Forests—A Review. Remote Sens. 2024, 16, 2224. [Google Scholar] [CrossRef]
- Decuyper, M.; Chávez, R.O.; Čufar, K.; Estay, S.A.; Clevers, J.G.P.W.; Prislan, P.; Gričar, J.; Črepinšek, Z.; Merela, M.; de Luis, M.; et al. Spatio-Temporal Assessment of Beech Growth in Relation to Climate Extremes in Slovenia – An Integrated Approach Using Remote Sensing and Tree-Ring Data. Agric. For. Meteorol. 2020, 287, 107925. [Google Scholar] [CrossRef]
- Molnár, T.; Király, G. Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning. J. Imaging 2024, 10, 14. [Google Scholar] [CrossRef]
- Olano, J.M.; García-Cervigón, A.I.; Sangüesa-Barreda, G.; Rozas, V.; Muñoz-Garachana, D.; García-Hidalgo, M.; García-Pedrero, Á. Satellite Data and Machine Learning Reveal the Incidence of Late Frost Defoliations on Iberian Beech Forests. Ecol. Appl. 2021, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- She, B.; Huang, J.F.; Zhang, D.Y.; Huang, L.S. Assessing and Characterizing Oilseed Rape Freezing Injury Based on MODIS and MERIS Data. Int. J. Agric. Biol. Eng. 2017, 10, 143–157. [Google Scholar] [CrossRef]
- Feng, M.-C.; Yang, W.-D.; Cao, L.-L.; Ding, G.-W. Monitoring Winter Wheat Freeze Injury Using Multi-Temporal MODIS Data. Agric. Sci. China 2009, 8, 1053–1062. [Google Scholar] [CrossRef]
- Stephens, J.J.; Black, T.A.; Jassal, R.S.; Nesic, Z.; Grant, N.J.; Barr, A.G.; Helgason, W.D.; Richardson, A.D.; Johnson, M.S.; Christen, A. Effects of Forest Tent Caterpillar Defoliation on Carbon and Water Fluxes in a Boreal Aspen Stand. Agric. For. Meteorol. 2018, 253–254, 176–189. [Google Scholar] [CrossRef]
- Thomas, S.J.; Deschamps, A.; Landry, R.; Van Der Sanden, J.J.; Hall, R.J. Mapping Insect Defoliation Using Multi-Temporal Landsat Data. In Proceedings of the American Society for Photogrammetry and Remote Sensing—28th Canadian Symposium on Remote Sensing and ASPRS Fall Specialty Conference 2007, Ottawa, ON, Canada, 28 October–1 November 2007; pp. 248–257. [Google Scholar]
- Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote Sensing of Forest Pest Damage: A Review and Lessons Learned from a Canadian Perspective. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Hall, R.; Arsenault, E.; Skakun, R. Remotely Sensed Data in the Mapping of Insect Defoliation. Underst. For. Disturb. Spat. Pattern 2006, 85–111. [Google Scholar] [CrossRef]
- Blonder, B.W.; Brodrick, P.G.; Chadwick, K.D.; Carroll, E.; Cruz-de Hoyos, R.M.; Expósito-Alonso, M.; Hateley, S.; Moon, M.; Ray, C.A.; Tran, H.; et al. Climate Lags and Genetics Determine Phenology in Quaking Aspen (Populus tremuloides). New Phytol. 2023, 238, 2313–2328. [Google Scholar] [CrossRef]
- Man, R.; Lu, P.; Colombo, S.; Li, J.; Dang, Q. Photosynthetic and Morphological Responses of White Birch, Balsam Poplar, and Trembling Aspen to Freezing and Artificial Defoliation. Botany 2013, 91, 343–348. [Google Scholar] [CrossRef]
- Hogg, E.H.; Brandt, J.P.; Kochtubajda, B. Growth and Dieback of Aspen Forests in Northwestern Alberta, Canada, in Relation to Climate and Insects. Can. J. For. Res. 2002, 32, 823–832. [Google Scholar] [CrossRef]
- Hogg, E.H. Simulation of Interannual Responses of Trembling Aspen Stands to Climatic Variation and Insect Defoliation in Western Canada. Ecol. Modell. 1999, 114, 175–193. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Hamann, A. Genetic Adaptation of Aspen (Populus tremuloides) Populations to Spring Risk Environments: A Novel Remote Sensing Approach. Can. J. For. Res. 2010, 40, 2082–2090. [Google Scholar] [CrossRef]
- Springer, K.R.; Wang, R.; Gamon, J.A. Parallel Seasonal Patterns of Photosynthesis, Fluorescence, and Reflectance Indices in Boreal Trees. Remote Sens. 2017, 9, 691. [Google Scholar] [CrossRef]
- Barr, A.; Black, T.A.; McCaughey, H. Climatic and Phenological Controls of the Carbon and Energy Balances of Three Contrasting Boreal Forest Ecosystems in Western Canada BT—Phenology of Ecosystem Processes: Applications in Global Change Research; Noormets, A., Ed.; Springer: New York, NY, USA, 2009; pp. 3–34. ISBN 978-1-4419-0026-5. [Google Scholar]
- Rogers, P.C.; Leffler, A.J.; Ryel, R.J. Landscape Assessment of a Stable Aspen Community in Southern Utah, USA. For. Ecol. Manage 2010, 259, 487–495. [Google Scholar] [CrossRef]
- Oukrop, C.M.; Evans, D.M.; Bartos, D.L.; Ramsey, R.D.; Ryel, R.J. Moderate-Scale Mapping Methods of Aspen Stand Types: A Case Study for Cedar Mountain in Southern Utah; United States Department of Agriculture: New York, NY, USA, 2011; pp. 1–18. [CrossRef]
- Tao, J.; Man, R.; Dang, Q.L. Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming. Trees, Forests and People. 2021, 6, 100127. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Korzeniewski, B.; McNeal, S.; Thomas, K.; Yin, X.; Anthony, S.; Ray, R.; Vose, R.S.; Gleason, B.E. Global Historical Climatology Network—Daily (GHCN-Daily), Version 3—Subset US Collection. Available online: https://climate.usu.edu/swco/ (accessed on 9 January 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on 9 March 2023).
- Vermote, E. MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid V061. Available online: https://appeears.earthdatacloud.nasa.gov/ (accessed on 8 January 2023).
- Vermote, E.; Wolfe, R. MOD09GQ MODIS/Terra Surface Reflectance Daily L2G Global 250m SIN Grid V006 [Data Set]. Available online: https://appeears.earthdatacloud.nasa.gov/ (accessed on 7 January 2023).
- Vargas, M.; Miura, T.; Shabanov, N.; Kato, A. An Initial Assessment of Suomi NPP VIIRS Vegetation Index EDR. J. Geophys. Res. Atmos. 2013, 118, 12301–12316. [Google Scholar] [CrossRef]
- Skakun, S.; Justice, C.O.; Vermote, E.; Roger, J.C. Transitioning from MODIS to VIIRS: An Analysis of Inter-Consistency of NDVI Data Sets for Agricultural Monitoring. Int. J. Remote Sens. 2018, 39, 971–992. [Google Scholar] [CrossRef]
- Agency, E.S. Copernicus Sentinel-2 (Processed by ESA) MSI Level-2A BOA Reflectance Product. Collection 1. Available online: https://console.cloud.google.com/storage/browser/gcp-public-data-sentinel-2 (accessed on 8 January 2023).
- Vermote, E.R.W. MODIS/Terra Surface Reflectance Daily L2G Global 250m SIN Grid V061; ASA EOSDIS Land Processes DAAC: Missoula, MT, USA, 2021. [Google Scholar]
- Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the VIIRS BRDF, Albedo and NBAR Products Suite and an Assessment of Continuity with the Long Term MODIS Record. Remote Sens. Environ. 2017, 201, 256–274. [Google Scholar] [CrossRef]
- Li, Z.; Erb, A.; Sun, Q.; Liu, Y.; Shuai, Y.; Wang, Z.; Boucher, P.; Schaaf, C. Preliminary Assessment of 20-m Surface Albedo Retrievals from Sentinel-2A Surface Reflectance and MODIS/VIIRS Surface Anisotropy Measures. Remote Sens. Environ. 2018, 217, 352–365. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Falkner, K. Wasting Petabytes: A Survey of the Sentinel-2 UTM Tiling Grid and Its Spatial Overhead. ISPRS J. Photogramm. Remote Sens. 2023, 202, 682–690. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User ’s Guide (Collection 6). Univ. Ariz. 2015, 2015, 31. [Google Scholar]
- Ulsig, L.; Nichol, C.J.; Huemmrich, K.F.; Landis, D.R.; Middleton, E.M.; Lyapustin, A.I.; Mammarella, I.; Levula, J.; Porcar-Castell, A. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series. Remote Sens. 2017, 9, 49. [Google Scholar] [CrossRef]
- Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 Data for Estimation of Leaf Area Index in Temperate Forests. Remote Sens. 2019, 11, 1160. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER—Version 2.0; European Space Agency: Paris, France, 2020; pp. 60p. Available online: https://step.esa.int/docs/extra/ATBD_S2ToolBox_V2.0.pdf (accessed on 8 January 2024).
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Lykhovyd, P.; Averchev, O.; Fedorchuk, M.; Fedorchuk, V. The Relationship between Spatial Vegetation Indices: A Case Study for the South of Ukraine. Environ. Ecol. Res. 2023, 11, 740–746. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic Accuracy Assessment of the NLCD 2016 Land Cover for the Conterminous United States. Remote Sens. Environ. 2021, 257, 112357. [Google Scholar] [CrossRef]
- Jin, S.; Homer, C.; Yang, L.; Danielson, P.; Dewitz, J.; Li, C.; Zhu, Z.; Xian, G.; Howard, D. Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sens. 2019, 11, 2971. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic Accuracy Assessment of the NLCD 2019 Land Cover for the Conterminous United States. GIsci Remote Sens 2023, 60. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Li, Z.; Zhang, H.K.; Huang, H. Sentinel-2A Multi-Temporal Misregistration Characterization and an Orbit-Based Sub-Pixel Registration Methodology. Remote Sens. Environ. 2018, 215, 495–506. [Google Scholar] [CrossRef]
- Lin, G.; Wolfe, R.E.; Zhang, P.; Tilton, J.C.; Dellomo, J.J.; Tan, B. Thirty-Six Combined Years of MODIS Geolocation Trending. In Proceedings of the SPIE 11127, Earth Observing Systems XXIV, San Diego, CA, USA, 9 September 2019; Volume 1112715, pp. 219–230. [Google Scholar] [CrossRef]
- Lin, G.; Wolfe, R.E.; Zhang, P.; Dellomo, J.J.; Tan, B. Ten Years of VIIRS On-Orbit Geolocation Calibration and Performance. Remote Sens. 2022, 14, 4212. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Barcza, Z. Spring Vegetation Green-up Dynamics in Central Europe Based on 20-Year Long MODIS NDVI Data. Agric. For. Meteorol. 2020, 287, 107969. [Google Scholar] [CrossRef]
- Hassan, Q.K.; Rahman, K.M. Applicability of Remote Sensing-Based Surface Temperature Regimes in Determining Deciduous Phenology over Boreal Forest. J. Plant Ecol. 2013, 6, 84–91. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. Front. Plant Sci. 2021, 12, 689220. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W.; Root, R.R. The Use of Multi-Temporal Landsat Normalized Difference Vegetation Index (NDVI) Data for Mapping Fuel Models in Yosemite National Park, USA. Int. J. Remote Sens. 2003, 24, 1639–1651. [Google Scholar] [CrossRef]
- Furniss, T.J.; Larson, A.J.; Lutz, J.A. Reconciling Niches and Neutrality in a Subalpine Temperate Forest. Ecosphere 2017, 8, e01847. [Google Scholar] [CrossRef]
- Harniss, R.O.; Nelson, D.L. A Severe Epidemic of Marssonina Leaf Blight on Quaking Aspen in Northern Utah; USDA Forest Service: Ogden, UT, USA, 1984; pp. 8p. [Google Scholar]
Site | Latitude | Longitude | Elevation | Daily Minimum Temperature (°C) | |||||
---|---|---|---|---|---|---|---|---|---|
(°N) | (°W) | (m) | 6-Jun | 7-Jun | 8-Jun | 9-Jun | 10-Jun | 11-Jun | |
Black Flat-U.M. CK | 38.68 | 111.60 | 2884 | 2.2 | −2.2 | −3.3 | −3.3 | −0.6 | 1.1 |
Brian Head | 37.68 | 112.86 | 3040 | 2.8 | −3.3 | −5.0 | −3.3 | 3.3 | 8.3 |
Clayton Springs | 37.97 | 111.83 | 3063 | 1.7 | −1.7 | −3.3 | −3.3 | −1.7 | 1.7 |
Fish Lake Utah | 38.50 | 111.77 | 2681 | 3.3 | −1.1 | −2.8 | −4.4 | 5.6 | 3.9 |
Kolob | 37.53 | 113.05 | 2806 | 3.9 | −2.2 | −3.3 | 0.0 | 6.1 | 6.1 |
Widtsoe #3 | 37.84 | 111.88 | 2938 | 3.3 | −1.7 | −3.3 | −2.2 | 3.3 | 7.2 |
Satellite (Sensor) | Observation Start | Revisit Frequency | NDVI/EVI Spectral Bands (Wavelength in nm) | Resolution (m) |
---|---|---|---|---|
Suomi (VIIRS) | Mar 2012 | Daily | Blue (478–488), Red (600–680), NIR (850–880) | 375 (Red, NIR), 750 (Blue) |
Terra (MODIS) | Feb 2000 | Daily | Blue (459–479), Red (620–670), NIR (841–876) | 250 (Red, NIR), 500 (Blue) |
Sentinel 2a/2b (MSI) | Oct 2015 | 10 Days (5 since 2017) | Blue (425–555), Red (650–680), NIR (780–885) | 10 (Blue, Red, NIR) |
Focus Region | Station ID | Station Name | Latitude (°N) | Longitude (°W) | Elevation (m) | Coverage (%) |
---|---|---|---|---|---|---|
Boulder Mountain | USS0012L20S | Jones Corral | 38.07 | 112.17 | 2972 | 99.13 |
USS0011M06S | Clayton Springs | 37.97 | 111.83 | 3063 | 98.96 | |
USS0011M03S | Widtsoe #3 | 37.84 | 111.88 | 2938 | 98.17 | |
USS0011M01S | Sunflower Flat | 38.05 | 111.34 | 3035 | 97.99 | |
USS0011L05S | Donkey Reservoir | 38.21 | 111.48 | 2987 | 97.58 | |
Fish Lake | USS0012L04S | Box Creek | 38.51 | 112.02 | 2996 | 98.67 |
USS0011L04S | Black Flat-U.M. CK | 38.68 | 111.60 | 2884 | 97.11 | |
USS0011L01S | Farnsworth Lake | 38.77 | 111.68 | 2951 | 99.14 | |
USS0011K39S | Pickle Keg | 39.01 | 111.58 | 2926 | 98.77 | |
USS0011K31S | Buck Flat | 39.13 | 111.44 | 2874 | 98.27 | |
Cedar Mountain | USS0012M14S | Brian Head | 37.68 | 112.86 | 3040 | 98.27 |
USS0012M13S | Castle Valley | 37.66 | 112.74 | 2920 | 97.96 | |
USS0012M03S | Webster Flat | 37.58 | 112.90 | 2805 | 98.87 | |
USS0013M05S | Kolob | 37.53 | 113.05 | 2806 | 99.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, T.E.; Chikamoto, Y.; Birch, J.D.; Lutz, J.A. Remote Sensing Detection of Growing Season Freeze-Induced Defoliation of Montane Quaking Aspen (Populus tremuloides) in Southern Utah, USA. Remote Sens. 2024, 16, 3477. https://doi.org/10.3390/rs16183477
Wright TE, Chikamoto Y, Birch JD, Lutz JA. Remote Sensing Detection of Growing Season Freeze-Induced Defoliation of Montane Quaking Aspen (Populus tremuloides) in Southern Utah, USA. Remote Sensing. 2024; 16(18):3477. https://doi.org/10.3390/rs16183477
Chicago/Turabian StyleWright, Timothy E., Yoshimitsu Chikamoto, Joseph D. Birch, and James A. Lutz. 2024. "Remote Sensing Detection of Growing Season Freeze-Induced Defoliation of Montane Quaking Aspen (Populus tremuloides) in Southern Utah, USA" Remote Sensing 16, no. 18: 3477. https://doi.org/10.3390/rs16183477
APA StyleWright, T. E., Chikamoto, Y., Birch, J. D., & Lutz, J. A. (2024). Remote Sensing Detection of Growing Season Freeze-Induced Defoliation of Montane Quaking Aspen (Populus tremuloides) in Southern Utah, USA. Remote Sensing, 16(18), 3477. https://doi.org/10.3390/rs16183477