Identifying Habitat Productivity Thresholds to Assess the Effects of Drought on a Specialist Folivore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Species
2.3. NDVI of Koala Observations Compared to Landscapes
2.3.1. NDVI at Locations of Koala Observations
2.3.2. Vegetation Group Assignment for Observations
2.3.3. Comparing Koala Observation NDVI with Mean NDVI for Each Vegetation Group
2.4. NDVI Thresholds for Suitable Vegetation
2.4.1. Landscape NDVI in Drought and Non-Drought Periods
2.4.2. Vegetation Group Assignment for Landscapes
2.4.3. Applying Koala NDVI Thresholds across the Landscape
2.5. Proximity of Suitable Vegetation to Water
3. Results
3.1. NDVI of Koala Observations Compared to Landscapes
3.2. NDVI Thresholds for Suitable Vegetation
3.3. Proximity of Suitable Vegetation to Water
4. Discussion
4.1. NDVI of Koala Observations Compared to Landscapes
4.2. NDVI Thresholds for Suitable Vegetation
4.3. Proximity of Suitable Vegetation to Water
4.4. Further Applications in Other Systems and in Management
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe, C., Berger, S., Caud, N., Goldfarb, M.I., Gomis, M., Huang, K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NJ, USA, 2021. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 14 February 2024).
- Wagner, B.; Baker, P.J.; Stewart, S.B.; Lumsden, L.F.; Nelson, J.L.; Cripps, J.K.; Durkin, L.K.; Scroggie, M.P.; Nitschke, C.R. Climate change drives habitat contraction of a nocturnal arboreal marsupial at its physiological limits. Ecosphere 2020, 11, 18401–18421. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Dublin, H.T.; Ogutu, J.O. Population regulation of African buffalo in the Mara–Serengeti ecosystem. Wildl. Res. 2015, 42, 382–393. [Google Scholar] [CrossRef]
- Gedir, J.V.; Cain, J.W., III; Harris, G.; Turnbull, T.T. Effects of climate change on long-term population growth of pronghorn in an arid environment. Ecosphere 2015, 6, 1–20. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Peiman, K.S.; Raubenheimer, D.; Cooke, S.J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 2017, 5, cox030. [Google Scholar] [CrossRef]
- Fuller, A.; Mitchell, D.; Maloney, S.K.; Hetem, R.S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Chang. Responses 2016, 3, 10. [Google Scholar] [CrossRef]
- Smith, A.G.; McAlpine, C.A.; Rhodes, J.R.; Lunney, D.; Seabrook, L.; Baxter, G. Out on a limb: Habitat use of a specialist folivore, the koala, at the edge of its range in a modified semi-arid landscape. Landsc. Ecol. 2013, 28, 415–426. [Google Scholar] [CrossRef]
- Crowther, M.S.; Lunney, D.; Lemon, J.; Stalenberg, E.; Wheeler, R.; Madani, G.; Ross, K.A.; Ellis, M. Climate-mediated habitat selection in an arboreal folivore. Ecography 2014, 37, 336–343. [Google Scholar] [CrossRef]
- Davies, N.; Gramotnev, G.; Seabrook, L.; McAlpine, C.; Baxter, G.; Lunney, D.; Bradley, A. Climate-driven changes in diet composition and physiological stress in an arboreal folivore at the semi-arid edge of its distribution. Biol. Conserv. 2014, 172, 80–88. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Scanlon, B.R.; Ren, T.; Fernando, D.N. A comparative study of historical droughts over Texas, USA and Murray-Darling Basin, Australia: Factors influencing initialization and cessation. Glob. Planet. Chang. 2017, 149, 123–138. [Google Scholar] [CrossRef]
- Mysterud, A.; Yoccoz, N.G.; Langvatn, R.; Pettorelli, N.; Stenseth, N.C. Hierarchical path analysis of deer responses to direct and indirect effects of climate in northern forest. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2357–2366. [Google Scholar] [CrossRef]
- Seabrook, L.; McAlpine, C.; Baxter, G.; Rhodes, J.; Bradley, A.; Lunney, D. Drought-driven change in wildlife distribution and numbers: A case study of koalas in south west Queensland. Wildl. Res. 2011, 38, 509–524. [Google Scholar] [CrossRef]
- Lovari, S.; Franceschi, S.; Chiatante, G.; Fattorini, L.; Fattorini, N.; Ferretti, F. Climatic changes and the fate of mountain herbivores. Clim. Chang. 2020, 162, 2319–2337. [Google Scholar] [CrossRef]
- Parida, M.; Hoffmann, A.A.; Hill, M.P. Climate change expected to drive habitat loss for two key herbivore species in an alpine environment. J. Biogeogr. 2015, 42, 1210–1221. [Google Scholar] [CrossRef]
- Trewin, B. The Australian Climate Observations Reference Network—Surface Air Temperature ACORN. J. Appl. Met. Climatol. 2016, 48, 2160–2168. [Google Scholar]
- BOM. Mean Monthly and Mean Annual Maximum, Minimum and Mean Temperature Data (Base Climatological Data Sets); Bureau of Meteorology: Melbourne, Australia, 2020. [Google Scholar]
- Youngentob, K.N.; Marsh, K.J.; Skewes, J. A Review of Koala Habitat Assessment Criteria and Methods, Canberra. 2021. Available online: https://www.agriculture.gov.au/sites/default/files/documents/review-koala-habitat-assessment-criteria-and-methods-2021.pdf (accessed on 12 March 2024).
- Predavec, M.; Lunney, D.; Shannon, I.; Lemon, J.; Sonawane, I.; Crowther, M. Using repeat citizen science surveys of koalas to assess their population trend in the north-west of New South Wales: Scale matters. Aust. Mammal. 2017, 40, 47–57. [Google Scholar] [CrossRef]
- Lunney, D.; Predavec, M.; Sonawane, I.; Kavanagh, R.; Barrott-Brown, G.; Phillips, S.; Callaghan, J.; Mitchell, D.; Parnaby, H.; Paull, D.C.; et al. The remaining koalas (Phascolarctos cinereus) of the Pilliga forests, north-west New South Wales: Refugial persistence or a population on the road to extinction? Pac. Conserv. Biol. 2017, 23, 277–294. [Google Scholar] [CrossRef]
- DAWE. Conservation Advice for Phascolarctos cinereus (Koala) combined populations of Queensland, New South Wales and the Australian Capital Territory, Canberra; The Australian Department of Agriculture, Water and the Environment (DAWE): Canberra, Australia, 2022. [Google Scholar]
- Beale, P.K.; Marsh, K.J.; Foley, W.J.; Moore, B.D. A hot lunch for herbivores: Physiological effects of elevated temperatures on mammalian feeding ecology. Biol. Rev. 2018, 93, 674–692. [Google Scholar] [CrossRef]
- Adam, D.; Johnston, S.D.; Beard, L.; Nicolson, V.; Gaughan, J.B.; Lisle, A.T.; FitzGibbon, S.; Barth, B.J.; Gillett, A.; Grigg, G.; et al. Body temperature of free-ranging koalas (Phascolarctos cinereus) in south-east Queensland. Int. J. Biometeorol. 2020, 64, 1305–1318. [Google Scholar] [CrossRef]
- Youngentob, K.N.; Lindenmayer, D.B.; Marsh, K.J.; Krockenberger, A.K.; Foley, W.J. Food intake: An overlooked driver of climate change casualties? Trends Ecol. Evol. 2021, 36, 676–678. [Google Scholar] [CrossRef]
- Reside, A.E.; Beher, J.; Cosgrove, A.J.; Evans, M.C.; Seabrook, L.; Silcock, J.L.; Wenger, A.S.; Maron, M. Ecological consequences of land clearing and policy reform in Queensland. Pac. Conserv. Biol. 2017, 23, 219–230. [Google Scholar] [CrossRef]
- Taylor, M.F.J. Destruction of Koala Habitat Increased after Listing as Vulnerable in 2012; WWF-Australia Technical Briefing; WWF-Australia: Canberra, Australia, 2020. [Google Scholar]
- Gordon, G.; Brown, A.S.; Pulsford, T. A koala (Phascolarctos cinereus Goldfuss) population crash during drought and heatwave conditions in south-western Queensland. Aust. J. Ecol. 1988, 13, 451–461. [Google Scholar] [CrossRef]
- DOEE, Department of Environment and Energy. Species Profile and Threats Database (SPRAT). 2015. Available online: https://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl (accessed on 7 October 2021).
- Department of Environment, Land, Water and Planning. Victorian Biodiversity Atlas. 2021. Available online: https://vba.biodiversity.vic.gov.au/ (accessed on 7 October 2021).
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Asrar, G.; Fuchs, M.; Kanemasu, E.T.; Hatfield, J.L. Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat. Agron. J. 1984, 76, 300–306. [Google Scholar] [CrossRef]
- Sebastiani, A.; Salvati, R.; Manes, F. Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data. Ecol. Process. 2023, 12, 28. [Google Scholar] [CrossRef]
- Krause, C.; Dunn, B.; Bishop-Taylor, R.; Adams, C.; Burton, C.; Alger, M.; Chua, S.; Phillips, C.; Newey, C.; Kouzoubov, K.; et al. Digital Earth Australia Notebooks and Tools Repository. Geoscience Australia. 2021. Available online: https://knowledge.dea.ga.gov.au/notebooks/ (accessed on 7 October 2021).
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote. Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Hoyer, S.; Hamman, J. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef]
- Jordahl, K.; Van Den Bossche, J.; Wasserman, J.; McBride, J.; Gerard, J.; Fleischmann, M.; Tratner, J.; Perry, M.; Farmer, C.; Hjelle, G.A.; et al. Geopandas/geopandas: v0.6.1. 2019. Available online: https://zenodo.org/records/3483425 (accessed on 7 October 2021).
- DAWE. National Vegetation Information System V6.0; The Australian Department of Agriculture, Water and the Environment (DAWE): Canberra, Australia, 2020. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. 2022. Available online: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (accessed on 3 September 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 92–96. [Google Scholar]
- Van Dijk, A.I.J.M.; Beck, H.E.; Crosbie, R.S.; de Jeu, R.A.M.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Jiao, T.; Williams, C.A.; Rogan, J.; De Kauwe, M.G.; Medlyn, B.E. Drought impacts on Australian vegetation during the millennium drought measured with multisource spaceborne remote sensing. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005145. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. 2021. Available online: https://www.qgis.org/ (accessed on 10 November 2023).
- Crossman, S.; Li, O. Surface Hydrology Lines (Regional). 2015. Available online: http://pid.geoscience.gov.au/dataset/ga/83107 (accessed on 3 February 2023).
- Rouault, E.; Warmerdam, F.; Schwehr, K.; Kiselev, A.; Butler, H.; Łoskot, M.; Szekeres, T.; Tourigny, E.; Landa, M.; Miara, I.; et al. GDAL. 2022. Available online: https://gdal.org (accessed on 22 March 2022).
- Briscoe, N.J.; Kearney, M.R.; Taylor, C.A.; Wintle, B.A. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Glob. Chang. Biol. 2016, 22, 2425–2439. [Google Scholar] [CrossRef]
- Youngentob, K.N.; Yoon, H.; Stein, J.; Lindenmayer, D.B.; Held, A.A. Where the wild things are: Using remotely sensed forest productivity to assess arboreal marsupial species richness and abundance. Divers. Distrib. 2015, 21, 977–990. [Google Scholar] [CrossRef]
- Pettorelli, N.; Bro-Jørgensen, J.; Durant, S.M.; Blackburn, T.; Carbone, C. Energy availability and density estimates in African ungulates. Am. Nat. 2009, 173, 698–704. [Google Scholar] [CrossRef]
- Law, B.S.; Brassil, T.; Gonsalves, L.; Roe, P.; Truskinger, A.; McConville, A. Passive acoustics and sound recognition provide new insights on status and resilience of an iconic endangered marsupial (koala Phascolarctos cinereus) to timber harvesting. PLoS ONE 2018, 13, e0205075. [Google Scholar] [CrossRef]
- Law, B.; Caccamo, G.; Roe, P.; Truskinger, A.; Brassil, T.; Gonsalves, L.; McConville, A.; Stanton, M. Development and field validation of a regional, management-scale habitat model: A koala Phascolarctos cinereus case study. Ecol. Evol. 2017, 7, 7475–7489. [Google Scholar] [CrossRef]
- McArt, S.H.; Spalinger, D.E.; Collins, W.B.; Schoen, E.R.; Stevenson, T.; Bucho, M. Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central Alaska. Ecology 2009, 90, 1400–1411. [Google Scholar] [CrossRef]
- Pyke, G.H. Optimal foraging theory: An introduction. In Encyclopedia of Animal Behaviour; Elsevier Academic Press: Amsterdam, The Netherlands, 2019; pp. 111–117. [Google Scholar]
- Stephens, D.W.; Krebs, J.R. Foraging Theory; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Moore, B.D.; Foley, W.J. Tree use by koalas in a chemically complex landscape. Nature 2005, 435, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, T.T.; Pallardy, S.G. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 2002, 68, 270–334. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Ellis, W.; Melzer, A.; Clifton, I.; Carrick, F. Climate change and the koala Phascolarctos cinereus: Water and energy. Aust. Zool. 2010, 35, 369–377. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Deriving consistent long-term vegetation information from AVHRR reflectance data using a cover-triangle-based framework. Remote Sens. Environ. 2008, 112, 2938–2949. [Google Scholar] [CrossRef]
- Davies, N.; Gramotnev, G.; Seabrook, L.; Bradley, A.; Baxter, G.; Rhodes, J.; Lunney, D.; McAlpine, C. Movement patterns of an arboreal marsupial at the edge of its range: A case study of the koala. Mov. Ecol. 2013, 1, 8. [Google Scholar] [CrossRef]
- Doody, T.M.; Benger, S.N.; Pritchard, J.L.; Overton, I.C. Ecological response of Eucalyptus camaldulensis (river red gum) to extended drought and flooding along the River Murray, South Australia (1997–2011) and implications for environmental flow management. Mar. Freshw. Res. 2014, 65, 1082–1093. [Google Scholar] [CrossRef]
- DeGabriel, J.L.; Moore, B.D.; Felton, A.M.; Ganzhorn, J.U.; Stolter, C.; Wallis, I.R.; Johnson, C.N.; Foley, W.J. Translating nutritional ecology from the laboratory to the field: Milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 2014, 123, 298–308. [Google Scholar] [CrossRef]
- Crowther, M.S.; Rus, A.I.; Mella, V.S.A.; Krockenberger, M.B.; Lindsay, J.; Moore, B.D.; McArthur, C. Patch quality and habitat fragmentation shape the foraging patterns of a specialist folivore. Behav. Ecol. 2022, 33, 1007–1017. [Google Scholar] [CrossRef]
- CSIRO; BoM. State of the Climate 2022. 2023. Available online: https://www.csiro.au/en/research/environmental-impacts/climate-change/state-of-the-climate (accessed on 14 May 2024).
- Santika, T.; McAlpine, C.A.; Lunney, D.; Wilson, K.A.; Rhodes, J.R. Modelling species distributional shifts across broad spatial extents by linking dynamic occupancy models with public-based surveys. Divers. Distrib. 2014, 20, 786–796. [Google Scholar] [CrossRef]
- Adams-Hosking, C.; Grantham, H.S.; Rhodes, J.R.; McAlpine, C.; Moss, P.T. Modelling climate-change-induced shifts in the distribution of the koala. Wildl. Res. 2011, 38, 122–130. [Google Scholar] [CrossRef]
- Fitzpatrick, M.C.; Hargrove, W.W. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 2009, 18, 2255–2261. [Google Scholar] [CrossRef]
- Nolan, R.H.; Lane, P.N.; Benyon, R.G.; Bradstock, R.A.; Mitchell, P.J. Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. J. Hydrol. 2015, 524, 614–624. [Google Scholar] [CrossRef]
- Caccamo, G.; Bradstock, R.; Collins, L.; Penman, T.; Watson, P. Using MODIS data to analyse post-fire vegetation recovery in Australian eucalypt forests. J. Spat. Sci. 2015, 60, 341–352. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; van Dijk, A.I.; Cary, G.J. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote. Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Johnson, D.C.; Shapcott, A. Koala forest habitat recovery varies with fire severity. For. Ecol. Manag. 2024, 556, 121704. [Google Scholar] [CrossRef]
- Lane, M.R.; Youngentob, K.N.; Clark, R.G.; Marsh, K.J. The nutritional quality of post-fire eucalypt regrowth and its consumption by koalas in the New South Wales Southern Tablelands. Aust. J. Zool. 2024, 71, ZO23024. [Google Scholar] [CrossRef]
- Rifai, S.W.; De Kauwe, M.G.; Gallagher, R.V.; Cernusak, L.A.; Meir, P.; Pitman, A.J. Burn severity and post-fire weather are key to predicting time-to-recover from Australian forest fires. Earth’s Future 2024, 12, e2023EF003780. [Google Scholar] [CrossRef]
- Losso, A.; Challis, A.; Gauthey, A.; Nolan, R.H.; Hislop, S.; Roff, A.; Boer, M.M.; Jiang, M.; Medlyn, B.E.; Choat, B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci. Rep. 2022, 12, 21608. [Google Scholar] [CrossRef]
- Mella, V.S.A.; McArthur, C.; Krockenberger, M.B.; Frend, R.; Crowther, M.S. Needing a drink: Rainfall and temperature drive the use of free water by a threatened arboreal folivore. PLoS ONE 2019, 14, e0216964. [Google Scholar] [CrossRef] [PubMed]
- Kirono, D.G.; Round, V.; Heady, C.; Chiew, F.H.; Osbrough, S. Drought projections for Australia: Updated results and analysis of model simulations. Weather. Clim. Extremes 2020, 30, 100280. [Google Scholar] [CrossRef]
- Donaldson, J.E.; Parr, C.L.; Mangena, E.H.; Archibald, S. Droughts decouple African savanna grazers from their preferred forage with consequences for grassland productivity. Ecosystems 2020, 23, 689–701. [Google Scholar] [CrossRef]
- Guo, W.; Huang, S.; Huang, Q.; Leng, G.; Mu, Z.; Han, Z.; Wei, X.; She, D.; Wang, H.; Wang, Z.; et al. Drought trigger thresholds for different levels of vegetation loss in China and their dynamics. Agric. For. Meteorol. 2023, 331, 109349. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Mitchell, D.L.; Soto-Berelov, M.; Langford, W.T.; Jones, S.D. Factors confounding koala habitat mapping at multiple decision-making scales. Ecol. Manag. Restor. 2021, 22, 171–182. [Google Scholar] [CrossRef]
Source | Variable | Study Use | Native Resolution | Source Website |
---|---|---|---|---|
Landsat satellite datacube hosted by Geoscience Aus. and NCI | Normalised difference vegetation index [NDVI] (from corrected reflectance rasters) | Landscape vegetation condition and koala site vegetation condition | 25 × 25 m | http://pid.geoscience.gov.au/dataset/ga/144643 (accessed 4 August 2023) |
Species Profile and Threats Database (SPRAT) | Koala presence | Identify associated vegetation condition | Vector points | https://www.environment.gov.au/sprat (accessed 7 October 2021) |
National Vegetation Information System (NVIS v6.0) | Vegetation group (based on NVIS major vegetation groups [MVG]) raster | Assign NDVI and koala presence observations into vegetation groups | 100 × 100 m | https://www.environment.gov.au/fed (accessed 7 October 2021) |
Surface Hydrology Lines (Regional) | Perennial water courses and bodies | Calculate distance of observations and potential habitat to water | Vector lines and polygons | http://pid.geoscience.gov.au/dataset/ga/83107 (accessed 17 November 2021) |
Area of Vegetation above the NDVI Thresholds (km2) | Difference between Periods (%) | ||
---|---|---|---|
Vegetation Group | Pre-Drought 1995–1999 | Drought 2005–2009 | |
Woodlands | 100,305 | 84,370 | −15.8% |
Open Forests | 54,904 | 51,180 | −6.8% |
Tall Open Forests | 35,017 | 31,195 | −10.9% |
All groups | 190,227 | 166,746 | −12.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotzur, I.; Moore, B.D.; Meakin, C.; Evans, M.J.; Youngentob, K.N. Identifying Habitat Productivity Thresholds to Assess the Effects of Drought on a Specialist Folivore. Remote Sens. 2024, 16, 3279. https://doi.org/10.3390/rs16173279
Kotzur I, Moore BD, Meakin C, Evans MJ, Youngentob KN. Identifying Habitat Productivity Thresholds to Assess the Effects of Drought on a Specialist Folivore. Remote Sensing. 2024; 16(17):3279. https://doi.org/10.3390/rs16173279
Chicago/Turabian StyleKotzur, Ivan, Ben D. Moore, Chris Meakin, Maldwyn J. Evans, and Kara N. Youngentob. 2024. "Identifying Habitat Productivity Thresholds to Assess the Effects of Drought on a Specialist Folivore" Remote Sensing 16, no. 17: 3279. https://doi.org/10.3390/rs16173279