Clustering Hyperspectral Imagery via Sparse Representation Features of the Generalized Orthogonal Matching Pursuit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. Pavia University Dataset
2.1.2. Salinas Dataset
2.2. GOMP for Sparse Representation of HSI
2.2.1. Online Dictionary Learning
- Sparse Coding: For a fixed D, the sparse representation for each data sample is computed by solving
- Dictionary Update: With a fixed A, dictionary D is updated by minimizing the reconstruction error over the batch:
2.2.2. Generalized Orthogonal Matching Pursuit (GOMP)
Algorithm 1 Generalized Orthogonal Matching Pursuit (GOMP) |
Require: The dataset ; Dictionary ; Sparsity level L. Ensure: Sparse coefficient matrix .
|
2.2.3. Clustering Methods
- a.
- K-means Clustering
- b.
- Hierarchical Clustering
- c.
- Spectral Clustering
2.3. Cluster Evaluation Metrics
- Normalized Mutual Information (NMI): NMI is an extension of the mutual information metric, normalized to compare the amount of information shared between two clusters relative to a chance alignment. It is particularly valuable in scenarios where the cluster sizes vary significantly. The metric normalizes the mutual information score to a range between 0 and 1, where 0 indicates no mutual information and 1 denotes perfect correlation between the clusters. NMI is calculated with the following formula:U and V represent the true labels and the clustering results, respectively. is the mutual information between the two clusterings, and and are their respective entropies.
- Rand Index (RI): The RI quantifies the accuracy of a clustering result by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true labels. RI values range from 0 to 1, where 0 signifies no agreement between the two clusterings beyond what would be expected by chance, and 1 indicates complete agreement. The RI is particularly useful for measuring the performance of a clustering algorithm without the influence of the number of clusters. It is defined as follows:
2.4. Experimental Design
- Original Data: Clustering was performed on the standardized original data without additional feature extraction or dimensionality reduction. All three clustering methods were implemented in their most conventional form. This experiment was programmatically executed using the sklearn library to ensure robust and reproducible clustering results.
- PCA: Dimensionality reduction via Principal Component Analysis (PCA) precedes clustering:
- GOMP: Key parameters for the GOMP algorithm included a dictionary size of , a regularization parameter , 200 iterations, and a batch size of 128. The number of selected atoms L was also set to 5. Depending on the dataset and clustering method used, adjustments to the value and the number of iterations may be necessary to optimize performance. After feature extraction via the GOMP, the data underwent clustering analysis using K-means, hierarchical, and spectral clustering methods. This approach allowed us to evaluate and compare the performance enhancements attributed to the sparse representation provided by the GOMP, thus facilitating a thorough assessment of its impact on clustering efficiency and effectiveness.
3. Result and Analysis
3.1. T-SNE Feature Analysis
3.2. Cluster Evaluation Metrics Analysis
3.3. Clustering Map Analysis
3.4. The Clustering Map of Salinas Dataset
3.5. The Clustering Map of Pavia University Dataset
4. Discussion
4.1. Time Efficiency Analysis of GOMP
4.2. Evaluation of GOMP on the Botswana Dataset for Supervised and Unsupervised Tasks
4.2.1. Clustering Performance Evaluation
4.2.2. Supervised Classification Evaluation and Analysis of Classification Results
4.3. Prospects of GOMP in Clustering HSI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lassalle, G. Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review. Sci. Total Environ. 2021, 788, 147758. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Mayra, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T.; et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- Pour, A.B.; Guha, A.; Crispini, L.; Chatterjee, S. Editorial for the Special Issue Entitled Hyperspectral Remote Sensing from Spaceborne and Low-Altitude Aerial/Drone-Based Platforms—Differences in Approaches, Data Processing Methods, and Applications. Remote Sens. 2023, 15, 5119. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5518615. [Google Scholar] [CrossRef]
- Vaddi, R.; Kumar, B.L.N.P.; Manoharan, P.; Agilandeeswari, L.; Sangeetha, V. Strategies for dimensionality reduction in hyperspectral remote sensing: A comprehensive overview. Egypt. J. Remote Sens. Space Sci. 2024, 27, 82–92. [Google Scholar] [CrossRef]
- Sun, W.; Peng, J.; Yang, G.; Du, Q. Correntropy-Based Sparse Spectral Clustering for Hyperspectral Band Selection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 484–488. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B.; You, J.; Tao, D. Hyperspectral image unsupervised classification by robust manifold matrix factorization. Inf. Sci. 2019, 485, 154–169. [Google Scholar] [CrossRef]
- Kong, X.; Fu, M.; Zhao, X.; Wang, J.; Jiang, P. Ecological effects of land-use change on two sides of the Hu Huanyong Line in China. Land Use Policy 2021. [Google Scholar] [CrossRef]
- Li, Q.; Mu, T.; Gong, H.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al. A Superpixel-by-Superpixel Clustering Framework for Hyperspectral Change Detection. Remote Sens. 2022, 14, 2838. [Google Scholar] [CrossRef]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Q.; Ding, Z. Multilayer graph spectral analysis for hyperspectral images. EURASIP J. Adv. Signal Process. 2022, 2022, 92. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Marginalized Graph Self-Representation for Unsupervised Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5516712. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, D.; Tang, Y.; Zhao, Y.; Ren, J.; Sun, H. PSSA: PCA-Domain Superpixelwise Singular Spectral Analysis for Unsupervised Hyperspectral Image Classification. Remote Sens. 2023, 15, 890. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, J.; Zhang, L. EMS-GCN: An End-to-End Mixhop Superpixel-Based Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5526116. [Google Scholar] [CrossRef]
- Shi, C.; Liao, Q.; Li, X.; Zhao, L.; Li, W. Graph Guided Transformer: An Image-Based Global Learning Framework for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3509105. [Google Scholar] [CrossRef]
- Wu, K.; Zhan, Y.; An, Y.; Li, S. Multiscale Feature Search-Based Graph Convolutional Network for Hyperspectral Image Classification. Remote Sens. 2024, 16, 2328. [Google Scholar] [CrossRef]
- Kotzagiannidis, M.S.; Schonlieb, C.-B. Semi-Supervised Superpixel-Based Multi-Feature Graph Learning for Hyperspectral Image Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4703612. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Zong, Z.; Fu, T.; Yin, X. High-Dimensional Generalized Orthogonal Matching Pursuit With Singular Value Decomposition. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7502205. [Google Scholar] [CrossRef]
- Justo, J.A.; Orlandić, M. Study of the gOMP Algorithm for Recovery of Compressed Sensed Hyperspectral Images. In Proceedings of the 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Rome, Italy, 13–16 September 2022; pp. 1–5. [Google Scholar]
- Fu, T.; Zong, Z.; Yin, X. Generalized Orthogonal Matching Pursuit With Singular Value Decomposition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8013405. [Google Scholar] [CrossRef]
- Zhu, M.; Fan, J.; Yang, Q.; Chen, T. SC-EADNet: A Self-Supervised Contrastive Efficient Asymmetric Dilated Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Alkhatib, M.Q.; Al-Saad, M.; Aburaed, N.; Almansoori, S.; Zabalza, J.; Marshall, S.; Al-Ahmad, H. Tri-CNN: A Three Branch Model for Hyperspectral Image Classification. Remote Sens. 2023, 15, 316. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Johnson, J.; Douze, M.; Jégou, H. Billion-Scale Similarity Search with GPUs. IEEE Trans. Big Data 2021, 7, 535–547. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q.; Zhang, L. Few-Shot Hyperspectral Image Classification With Unknown Classes Using Multitask Deep Learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5085–5102. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Xu, X.; Zhang, L.; Li, P. Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation. Remote Sens. 2017, 9, 335. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef]
- Vaddi, R.; Manoharan, P. Hyperspectral image classification using CNN with spectral and spatial features integration. Infrared Phys. Technol. 2020, 107, 103296. [Google Scholar] [CrossRef]
- Sun, R.; Yang, Z.; Zhai, Z.; Chen, X. Sparse representation based on parametric impulsive dictionary design for bearing fault diagnosis. Mech. Syst. Signal Process. 2019, 122, 737–753. [Google Scholar] [CrossRef]
- Qin, Y.; Zou, J.; Tang, B.; Wang, Y.; Chen, H. Transient Feature Extraction by the Improved Orthogonal Matching Pursuit and K-SVD Algorithm With Adaptive Transient Dictionary. IEEE Trans. Ind. Informa. 2020, 16, 215–227. [Google Scholar] [CrossRef]
- Celebi, M.E.; Kingravi, H.A.; Vela, P.A. A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm. ArXiv 2012, arXiv:1209.1960. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal density profile from hierarchical clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Elhamifar, E.; Vidal, R. Sparse Subspace Clustering: Algorithm, Theory, and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2765–2781. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Estevez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized Mutual Information Feature Selection. IEEE Trans. Neural Netw. 2009, 20, 189–201. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; Van Wesemael, B. Soil Organic Carbon Estimation in Croplands by Hyperspectral Remote APEX Data Using the LUCAS Topsoil Database. Remote Sens. 2018, 10, 153. [Google Scholar] [CrossRef]
- Gomez, S.; Van Der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D. Scikit-image: Image Processing in Python. PeerJ 2014, 2, e453. [Google Scholar]
- Van der Maaten, L.; Hinton, G.E. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Linderman, G.C.; Rachh, M.; Hoskins, J.G.; Steinerberger, S.; Kluger, Y. Fast Interpolation-based t-SNE for Improved Visualization of Single-Cell RNA-Seq Data. Nat. Methods 2017, 16, 243–245. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, W.; Zhang, Z.; Tang, P.; Gao, S. Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis. Remote Sens. 2022, 14, 3635. [Google Scholar] [CrossRef]
No. | Pavia University Dataset | Salinas Dataset | ||
---|---|---|---|---|
Class Name | Samples | Class Name | Samples | |
1 | Asphalt | 6631 | Brocoli_green_weeds_1 | 2009 |
2 | Meadows | 18,649 | Brocoli_green_weeds_22 | 3726 |
3 | Gravel | 2099 | Fallow | 1976 |
4 | Trees | 3064 | Fallow_rough_plow | 1394 |
5 | Painted metal sheets | 1345 | Fallow_smooth | 2678 |
6 | Bare Soil | 5029 | Stubblc | 3959 |
7 | Bitumen | 1330 | Celery | 3579 |
8 | Self-Blocking Bricks | 3682 | Grapes_untrained | 11,271 |
9 | Shadows | 947 | Soil_vinyard_develop | 6203 |
10 | Corn_senesced_green_weeds | 3278 | ||
11 | Lettuce_romaine_4wk | 1068 | ||
12 | Lettuce_romaine_5wk | 1927 | ||
13 | Lettuce_romaine_6wk | 916 | ||
14 | Lettuce_romaine_7wk | 1070 | ||
15 | Vinyard_untrained | 7268 | ||
16 | Vinyard _vertical trellis | 1807 | ||
Total | 42,776 | 54,129 |
Methods | Pavia University | Salinas | |||
---|---|---|---|---|---|
RI | NMI | RI | NMI | ||
K-means Clustering | Original features | 0.774 | 0.541 | 0.921 | 0.757 |
PCA-processed features | 0.774 | 0.539 | 0.906 | 0.729 | |
GOMP-processed features | 0.801 | 0.584 | 0.924 | 0.794 | |
Hierarchical Clustering | Original features | 0.785 | 0.543 | 0.908 | 0.748 |
PCA-processed features | 0.778 | 0.566 | 0.905 | 0.731 | |
GOMP-processed features | 0.808 | 0.611 | 0.926 | 0.813 | |
Spectral Clustering | Original features | 0.787 | 0.592 | 0.929 | 0.861 |
PCA-processed features | 0.786 | 0.578 | 0.922 | 0.804 | |
GOMP-processed features | 0.823 | 0.648 | 0.931 | 0.859 |
Methods | Pavia University Dataset | Salinas Dataset | |
---|---|---|---|
K-means clustering | Original features | 21.52 s | 25.95 s |
PCA-processed features | 16.09 s | 22.69 s | |
GOMP-processed features | 14.97s | 34.31s | |
Hierarchical clustering | Original features | 103.26 s | 251.31 s |
PCA-processed features | 63.61 s | 108.95 s | |
GOMP-processed features | 64.63 s | 83.87 s | |
Spectral clustering | Original features | 80.41 s | 251.31 s |
PCA-processed features | 55.02 s | 108.95 s | |
GOMP-processed features | 94.81 s | 83.87 s |
Methods | Original Features | PCA-Processed Features | GOMP-Processed Features | |||
---|---|---|---|---|---|---|
NMI | RI | NMI | RI | NMI | RI | |
K-means Clustering | 0.692 | 0.924 | 0.691 | 0.924 | 0.766 | 0.936 |
Hierarchical Clustering | 0.696 | 0.918 | 0.691 | 0.918 | 0.772 | 0.931 |
Spectral Clustering | 0.708 | 0.908 | 0.760 | 0.930 | 0.812 | 0.937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Xu, X.; Xu, X.; Gao, S.; Wu, Z. Clustering Hyperspectral Imagery via Sparse Representation Features of the Generalized Orthogonal Matching Pursuit. Remote Sens. 2024, 16, 3230. https://doi.org/10.3390/rs16173230
Guo W, Xu X, Xu X, Gao S, Wu Z. Clustering Hyperspectral Imagery via Sparse Representation Features of the Generalized Orthogonal Matching Pursuit. Remote Sensing. 2024; 16(17):3230. https://doi.org/10.3390/rs16173230
Chicago/Turabian StyleGuo, Wenqi, Xu Xu, Xiaoqiang Xu, Shichen Gao, and Zibu Wu. 2024. "Clustering Hyperspectral Imagery via Sparse Representation Features of the Generalized Orthogonal Matching Pursuit" Remote Sensing 16, no. 17: 3230. https://doi.org/10.3390/rs16173230
APA StyleGuo, W., Xu, X., Xu, X., Gao, S., & Wu, Z. (2024). Clustering Hyperspectral Imagery via Sparse Representation Features of the Generalized Orthogonal Matching Pursuit. Remote Sensing, 16(17), 3230. https://doi.org/10.3390/rs16173230