Predicting Abiotic Soil Characteristics Using Sentinel-2 at Nature-Management-Relevant Spatial Scales and Extents
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetation Data
2.2. Remote Sensing Data
2.3. Preprocessing
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Soil Fertility and pH
4.2. Soil Moisture
4.3. Limitations and Uncertainties
4.4. Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Ejrnæs, R.; Bruun, H.H. Gradient Analysis of Dry Grassland Vegetation in Denmark. J. Veg. Sci. 2000, 11, 573–584. [Google Scholar] [CrossRef]
- Brunbjerg, A.K.; Bruun, H.H.; Brøndum, L.; Classen, A.T.; Fog, K.; Frøslev, T.G.; Goldberg, I.; Hansen, M.D.D.; Høye, T.T.; Læssøe, T.; et al. A Systematic Survey of Regional Multitaxon Biodiversity: Evaluating Strategies and Coverage. BMC Ecol. 2019, 19, 43. [Google Scholar] [CrossRef] [PubMed]
- Moeslund, J.E.; Clausen, K.K.; Dalby, L.; Fløjgaard, C.; Pärtel, M.; Pfeifer, N.; Hollaus, M.; Brunbjerg, A.K. Using Airborne Lidar to Characterize North European Terrestrial High-Dark-Diversity Habitats. Remote Sens. Ecol. Conserv. 2023, 9, 354–369. [Google Scholar] [CrossRef]
- Chytrý, M.; Hennekens, S.M.; Jiménez-Alfaro, B.; Knollová, I.; Dengler, J.; Jansen, F.; Landucci, F.; Schaminée, J.H.J.; Aćić, S.; Agrillo, E.; et al. European Vegetation Archive (EVA): An Integrated Database of European Vegetation Plots. Appl. Veg. Sci. 2016, 19, 173–180. [Google Scholar] [CrossRef]
- Kambach, S.; Sabatini, F.M.; Attorre, F.; Biurrun, I.; Boenisch, G.; Bonari, G.; Čarni, A.; Carranza, M.L.; Chiarucci, A.; Chytrý, M.; et al. Climate-Trait Relationships Exhibit Strong Habitat Specificity in Plant Communities Across Europe. Nat. Commun. 2023, 14, 712. [Google Scholar] [CrossRef]
- Midolo, G.; Herben, T.; Axmanová, I.; Marcenò, C.; Pätsch, R.; Bruelheide, H.; Karger, D.N.; Aćić, S.; Bergamini, A.; Bergmeier, E.; et al. Disturbance Indicator Values for European Plants. Glob. Ecol. Biogeogr. 2023, 32, 24–34. [Google Scholar] [CrossRef]
- Diekmann, M. Species Indicator Values as an Important Tool in Applied Plant Ecology—A Review. Basic Appl. Ecol. 2003, 4, 493–506. [Google Scholar] [CrossRef]
- Nielsen, K.E.; Bak, J.L.; Bruus, M.; Damgaard, C.; Ejrnæs, R.; Fredshavn, J.R.; Nygaard, B.; Skov, F.; Strandberg, B.; Strandberg, M. NATURDATA.DK—Danish Monitoring Program of Vegetation and Chemical Plant and Soil Data from Non-Forested Terrestrial Habitat Types. Biodivers. Ecol. 2012, 4, 375. [Google Scholar] [CrossRef]
- Fredshavn, J.R.; Ejrnæs, R.; Nygaard, B. Teknisk Anvisning for Kortlægning af Terrestriske Naturtyper. TA-N3, Version 1.04; Danish Centre for Environment and Energy: Aarhus, Denmark, 2010; 18p. [Google Scholar]
- Fredshavn, J.R.; Nielsen, K.E.; Ejrnæs, R.; Nygaard, B. Overvågning af Terrestriske Naturtyper. Version 4.1; Danish Centre for Environment and Energy: Aarhus, Denmark, 2018; 26p. [Google Scholar]
- Dronova, I.; Taddeo, S. Remote Sensing of Phenology: Towards the Comprehensive Indicators of Plant Community Dynamics from Species to Regional Scales. J. Ecol. 2022, 110, 1460–1484. [Google Scholar] [CrossRef]
- Rossi, C.; Gholizadeh, H. Uncovering the Hidden: Leveraging Sub-Pixel Spectral Diversity to Estimate Plant Diversity from Space. Remote Sens. Environ. 2023, 296, 113734. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015. [Google Scholar]
- Hauser, L.T.; Timmermans, J.; van der Windt, N.; Sil, Â.F.; César de Sá, N.; Soudzilovskaia, N.A.; van Bodegom, P.M. Explaining Discrepancies between Spectral and in-Situ Plant Diversity in Multispectral Satellite Earth Observation. Remote Sens. Environ. 2021, 265, 112684. [Google Scholar] [CrossRef]
- Wang, Z.; Townsend, P.A.; Schweiger, A.K.; Couture, J.J.; Singh, A.; Hobbie, S.E.; Cavender-Bares, J. Mapping Foliar Functional Traits and Their Uncertainties Across Three Years in a Grassland Experiment. Remote Sens. Environ. 2019, 221, 405–416. [Google Scholar] [CrossRef]
- Roe, N.A.; Ducey, M.J.; Lee, T.D.; Fraser, O.L.; Colter, R.A.; Hallett, R.A. Soil Chemical Variables Improve Models of Understorey Plant Species Distributions. J. Biogeogr. 2022, 49, 753–766. [Google Scholar] [CrossRef]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. Chapter Three—GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 125, pp. 93–134. [Google Scholar]
- Bartels, S.F.; Caners, R.T.; Ogilvie, J.; White, B.; Macdonald, S.E. Relating bryophyte assemblages to a remotely sensed depth-to-water index in boreal forests. Front. Plant Sci. 2018, 9, 858. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Knapp, D.E.; Tupayachi, R.; Anderson, C.; Carranza, L.; Martinez, P.; Houcheime, M.; Sinca, F.; Weiss, P. Spectroscopy of Canopy Chemicals in Humid Tropical Forests. Remote Sens. Environ. 2011, 115, 3587–3598. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W. Zeigerwerte von Planzen in Mitteleuropa, 3rd ed.; Erich Goltze GmbH & Co KG: Göttingen, Germany, 2001; Volume 18, p. 262. [Google Scholar]
- Schmidtlein, S. Imaging Spectroscopy as a Tool for Mapping Ellenberg Indicator Values. J. Appl. Ecol. 2005, 42, 966–974. [Google Scholar] [CrossRef]
- Möckel, T.; Löfgren, O.; Prentice, H.C.; Eklundh, L.; Hall, K. Airborne Hyperspectral Data Predict Ellenberg Indicator Values for Nutrient and Moisture Availability in Dry Grazed Grasslands within a Local Agricultural Landscape. Ecol. Indic. 2016, 66, 503–516. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, A.; Yin, S.; Zhang, J.; Dong, G.; He, N.; Qin, W.; Wei, D. Estimating Carbon, Nitrogen, and Phosphorus Contents of West–East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data. Remote Sens. 2022, 14, 242. [Google Scholar] [CrossRef]
- Council of the European Communities. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora; Council of the European Communities: Brussels, Belgium, 1992; pp. 7–50. [Google Scholar]
- Schaffers, A.P.; Sýkora, K.V. Reliability of Ellenberg Indicator Values for Moisture, Nitrogen and Soil Reaction: A Comparison with Field Measurements. J. Veg. Sci. 2000, 11, 225–244. [Google Scholar] [CrossRef]
- Andersen, D.K.; Nygaard, B.; Fredshavn, J.R.; Ejrnæs, R. Cost-Effective Assessment of Conservation Status of Fens. Appl. Veg. Sci. 2013, 16, 491–501. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Desjardins, C.; Auer, S.; Richter, R. MAJA ATBD—Algorithm Theoretical Basis Document; Centre National d’Études Spatiales: Paris, France, 2017; 40p. [Google Scholar]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- Colin, J.; Hagolle, O.; Landier, L.; Coustance, S.; Kettig, P.; Meygret, A.; Osman, J.; Vermote, E. Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates. Remote Sens. 2023, 15, 2665. [Google Scholar] [CrossRef]
- Löfgren, O.; Prentice, H.C.; Moeckel, T.; Schmid, B.C.; Hall, K. Landscape History Confounds the Ability of the NDVI to Detect Fine-Scale Variation in Grassland Communities. Methods Ecol. Evol. 2018, 9, 2009–2018. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Weber, D.; Schaepman-Strub, G.; Ecker, K. Predicting Habitat Quality of Protected Dry Grasslands Using Landsat NDVI Phenology. Ecol. Indic. 2018, 91, 447–460. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Zlinszky, A.; Ejrnæs, R.; Brunbjerg, A.K.; Bøcher, P.K.; Svenning, J.-C.; Normand, S. Light Detection and Ranging Explains Diversity of Plants, Fungi, Lichens, and Bryophytes Across Multiple Habitats and Large Geographic Extent. Ecol. Appl. 2019, 29, e01907. [Google Scholar] [CrossRef]
- Wamelink, G.W.W.; Joosten, V.; van Dobben, H.F.; Berendse, F. Validity of Ellenberg Indicator Values Judged from Physico-chemical Field Measurements. J. Veg. Sci. 2002, 13, 269–278. [Google Scholar] [CrossRef]
- Wamelink, G.W.W.; Goedhart, P.W.; Dobben, H.F.v. Measurement Errors and Regression to the Mean Cannot Explain Bias in Average Ellenberg Indicator Values. J. Veg. Sci. 2004, 15, 847–851. [Google Scholar] [CrossRef]
- Smart, S.M.; Scott, W.A. Bias in Ellenberg Indicator Values? Problems with Detection of the Effect of Vegetation Type. J. Veg. Sci. 2004, 15, 843–846. [Google Scholar] [CrossRef]
- Amani, M.; Foroughnia, F.; Moghimi, A.; Mahdavi, S.; Jin, S. Three-Dimensional Mapping of Habitats Using Remote-Sensing Data and Machine-Learning Algorithms. Remote Sens. 2023, 15, 4135. [Google Scholar] [CrossRef]
- Gaffney, R.; Augustine, D.J.; Kearney, S.P.; Porensky, L.M. Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales. Remote Sens. 2021, 13, 4603. [Google Scholar] [CrossRef]
- Gillan, J.K.; Karl, J.W.; van Leeuwen, W.J.D. Integrating Drone Imagery with Existing Rangeland Monitoring Programs. Environ. Monit. Assess. 2020, 192, 269. [Google Scholar] [CrossRef] [PubMed]
- Kattenborn, T.; Eichel, J.; Wiser, S.; Burrows, L.; Fassnacht, F.E.; Schmidtlein, S. Convolutional Neural Networks Accurately Predict Cover Fractions of Plant Species and Communities in Unmanned Aerial Vehicle imagery. Remote Sens. Ecol. Conserv. 2020, 6, 472–486. [Google Scholar] [CrossRef]
- The Danish Environmental Protection Agency. New Technology Can Map Nature Areas. Available online: https://mst.dk/nyheder/2022/marts/ny-teknologi-kan-kortlaegge-naturomraader (accessed on 19 April 2024).
- Marcinkowska-Ochtyra, A.; Ochtyra, A.; Raczko, E.; Kopeć, D. Natura 2000 Grassland Habitats Mapping Based on Spectro-temporal Dimension of Sentinel-2 Images with Machine Learning. Remote Sens. 2023, 15, 1388. [Google Scholar] [CrossRef]
- Pérez-Carabaza, S.; Boydell, O.; O’Connell, J. Habitat Classification Using Convolutional Neural Networks and Multitemporal Multispectral Aerial Imagery. J. Appl. Remote Sens. 2021, 15, 042406. [Google Scholar] [CrossRef]
Type | Res. | Source | Period | Processing | Quant. | Link | |
---|---|---|---|---|---|---|---|
Vegetation plot data | Field-based 5 m radius circular plots with plant species and habitat data | Point data | The Danish monitoring program for habitats in Annex 1 of the EU Habitats Directive | 2004–2015 | For each plot: calculation of mean Ellenberg indicator values based on the plant species | 58,071 plots | https://naturdata.miljoeportal.dk/, accessed on 16 September 2016 |
Sentinel-2 data | Satellite-based remote sensing | 10–60 m | European Space Agency | Summer 2016 | Atmospheric correction (see main text) | 38 scenes | https://scihub.copernicus.eu/, accessed on 7–18 May 2018 |
F | N | R | N/R | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Std. | R2 | Model | Std. | R2 | Model | Std. | R2 | Model | Std. | R2 | Model | |
Satellite | 1.34 | 0.26 | GBT | 1.09 | 0.59 | RF | 0.93 | 0.54 | RF | 0.16 | 0.29 | RF |
Habitat | 1.23 | 0.36 | GBT | 1.40 | 0.05 | DT | 1.29 | - | NN | 0.18 | - | LR |
Satellite + habitat | 0.81 | 0.73 | RF | 0.92 | 0.70 | DT | 0.71 | 0.73 | RF | 0.16 | 0.23 | GBT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moeslund, J.E.; Damgaard, C.F. Predicting Abiotic Soil Characteristics Using Sentinel-2 at Nature-Management-Relevant Spatial Scales and Extents. Remote Sens. 2024, 16, 3094. https://doi.org/10.3390/rs16163094
Moeslund JE, Damgaard CF. Predicting Abiotic Soil Characteristics Using Sentinel-2 at Nature-Management-Relevant Spatial Scales and Extents. Remote Sensing. 2024; 16(16):3094. https://doi.org/10.3390/rs16163094
Chicago/Turabian StyleMoeslund, Jesper Erenskjold, and Christian Frølund Damgaard. 2024. "Predicting Abiotic Soil Characteristics Using Sentinel-2 at Nature-Management-Relevant Spatial Scales and Extents" Remote Sensing 16, no. 16: 3094. https://doi.org/10.3390/rs16163094
APA StyleMoeslund, J. E., & Damgaard, C. F. (2024). Predicting Abiotic Soil Characteristics Using Sentinel-2 at Nature-Management-Relevant Spatial Scales and Extents. Remote Sensing, 16(16), 3094. https://doi.org/10.3390/rs16163094