Monitoring the Nitrogen Nutrition Index Using Leaf-Based Hyperspectral Reflectance in Cut Chrysanthemums
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Hyperspectral Reflectance Measurements
2.3. Establishment of the Critical N Dilution Curve
2.4. Hyperspectral Modeling Methods
2.5. Model Validation
3. Results
3.1. Dynamic Changes in the AGB and PNC of Cut Chrysanthemums under Different N Treatments
3.2. Development of the Critical N Dilution Curve of Cut Chrysanthemums
3.3. Dynamic Changes in the Cut Chrysanthemum NNI under Different N Treatments
3.4. Variation Patterns of Leaf Reflectance in Different Leaf Layers under Various N Treatments
3.5. Estimation of the NNI in Cut Chrysanthemums from the Spectral Indices of Diverse Leaf Layers
3.6. Estimation of the Cut Chrysanthemum NNI with PLSR Modeling in Diverse Leaf Layers
4. Discussion
4.1. Construction of the Nc Dilution Curve and Determination of Optimal N Fertilization
4.2. Variation in the Response of Leaf-Based Hyperspectral Reflectance to Different N Levels
4.3. Determining the Optimal Leaf Layer for Estimating the NNI in Cut Chrysanthemums
4.4. Evaluating the Performance of Different Hyperspectral Modeling Approaches for Estimating the NNI
4.5. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Yang, G.; Pu, R.; Li, Z.; Li, H.; Xu, X.; Song, X.; Yang, X.; Zhao, C. An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives. Eur. J. Agron. 2021, 124, 126241. [Google Scholar] [CrossRef]
- Wang, Y.; Suarez, L.; Poblete, T.; Gonzalez-Dugo, V.; Ryu, D.; Zarco-Tejada, P.J. Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery. Remote Sens. Environ. 2022, 279, 113141. [Google Scholar] [CrossRef]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Ali, A.; Naher, U.A.; Memon, M.Y. Chapter 2—Fertilizer Management Strategies for Enhancing Nutrient Use Efficiency and Sustainable Wheat Production. In Organic Farming; Chandran, S., Unni, M.R., Thomas, S., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 17–39. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.-H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Rodríguez, A.; Peña-Fleitas, M.T.; Gallardo, M.; de Souza, R.; Padilla, F.M.; Thompson, R.B. Sweet pepper and nitrogen supply in greenhouse production: Critical nitrogen curve, agronomic responses and risk of nitrogen loss. Eur. J. Agron. 2020, 117, 126046. [Google Scholar] [CrossRef]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Elia, A. Growth, N uptake and N critical dilution curve in broccoli cultivars grown under Mediterranean conditions. Sci. Hortic. 2019, 244, 109–121. [Google Scholar] [CrossRef]
- Shlevin, E.; Zilberman, A.; Ben-Asher, J. Theoretical Determination of a Critical Nitrogen Dilution Curve Based on the Carrot Case Study. Agric. Res. 2018, 7, 239–244. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in lettuce. Acta Hortic. 2003, 627, 187–194. [Google Scholar] [CrossRef]
- Makowski, D.; Zhao, B.; Ata-Ul-Karim, S.T.; Lemaire, G. Analyzing uncertainty in critical nitrogen dilution curves. Eur. J. Agron. 2020, 118, 126076. [Google Scholar] [CrossRef]
- Soratto, R.P.; Sandaña, P.; Fernandes, F.M.; Fernandes, A.M.; Makowski, D.; Ciampitti, I.A. Establishing a critical nitrogen dilution curve for estimating nitrogen nutrition index of potato crop in tropical environments. Field Crops Res. 2022, 286, 108605. [Google Scholar] [CrossRef]
- Cheng, M.; He, J.; Wang, H.; Fan, J.; Xiang, Y.; Liu, X.; Liao, Z.; Tang, Z.; Abdelghany, A.E.; Zhang, F. Establishing critical nitrogen dilution curves based on leaf area index and aboveground biomass for greenhouse cherry tomato: A Bayesian analysis. Eur. J. Agron. 2022, 141, 126615. [Google Scholar] [CrossRef]
- Lu, J.; Nie, W.; Song, J.; Zhan, Q.; Wang, M.; Chen, F.; Fang, W.; Chen, S.; Zhang, F.; Zhao, S.; et al. Estimation of nitrogen nutrition index in chrysanthemum using chlorophyll meter readings. Ind. Crops Prod. 2022, 187, 115459. [Google Scholar] [CrossRef]
- Li, X.; Ata-Ui-Karim, S.T.; Li, Y.; Yuan, F.; Miao, Y.; Yoichiro, K.; Cheng, T.; Tang, L.; Tian, X.; Liu, X.; et al. Advances in the estimations and applications of critical nitrogen dilution curve and nitrogen nutrition index of major cereal crops. A review. Comput. Electron. Agric. 2022, 197, 106998. [Google Scholar] [CrossRef]
- Cao, Q.; Cui, Z.; Chen, X.; Khosla, R.; Dao, T.H.; Miao, Y. Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precis. Agric. 2012, 13, 45–61. [Google Scholar] [CrossRef]
- Zhao, B.; Ata-Ui-Karim, S.T.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y.; Liu, X. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China. PLoS ONE 2016, 11, e0164545. [Google Scholar] [CrossRef]
- Pancorbo, J.L.; Camino, C.; Alonso-Ayuso, M.; Raya-Sereno, M.D.; Gonzalez-Fernandez, I.; Gabriel, J.L.; Zarco-Tejada, P.J.; Quemada, M. Simultaneous assessment of nitrogen and water status in winter wheat using hyperspectral and thermal sensors. Eur. J. Agron. 2021, 127, 126287. [Google Scholar] [CrossRef]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active Optical Sensing of Spring Maize for In-Season Diagnosis of Nitrogen Status Based on Nitrogen Nutrition Index. Remote Sens. 2016, 8, 605. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.-w.; Chen, L.-p.; Fu, Y.-y.; Zhu, H.-c.; Feng, H.-k.; Xu, X.-g.; Li, Z.-h. An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat. J. Integr. Agric. 2021, 20, 2535–2551. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Huang, W.; Yang, G. Non-uniform vertical nitrogen distribution within plant canopy and its estimation by remote sensing: A review. Field Crops Res. 2013, 142, 75–84. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.; De Baardemaaker, J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2006, 27, 4159–4179. [Google Scholar] [CrossRef]
- Lu, J.; Dai, E.; Miao, Y.; Kusnierek, K. Improving active canopy sensor-based in-season rice nitrogen status diagnosis and recommendation using multi-source data fusion with machine learning. J. Clean. Prod. 2022, 380, 134926. [Google Scholar] [CrossRef]
- Jiang, J.; Atkinson, P.M.; Zhang, J.; Lu, R.; Zhou, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. Eur. J. Agron. 2022, 138, 126537. [Google Scholar] [CrossRef]
- Qiu, Z.; Ma, F.; Li, Z.; Xu, X.; Ge, H.; Du, C. Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms. Comput. Electron. Agric. 2021, 189, 106421. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, W.; He, Y.; Wanger, T.C.; Cen, H. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sens. Environ. 2022, 269, 112826. [Google Scholar] [CrossRef]
- Song, X.; Xu, D.; Huang, C.; Zhang, K.; Huang, S.; Guo, D.; Zhang, S.; Yue, K.; Guo, T.; Wang, S.; et al. Monitoring of nitrogen accumulation in wheat plants based on hyperspectral data. Remote Sens. Appl. Soc. Environ. 2021, 23, 100598. [Google Scholar] [CrossRef]
- Mahieu, B.; Qannari, E.M.; Jaillais, B. Extension and significance testing of Variable Importance in Projection (VIP) indices in Partial Least Squares regression and Principal Components Analysis. Chemom. Intell. Lab. Syst. 2023, 242, 104986. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Y.; Tian, Y.; Feng, W.; Cao, W. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Lloret, P.; Munoz, F.; Vilajeliu, M. Reflectance Assessment of Mite Effects on Apple-Trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Kim, Y.; Glenn, D.M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral image analysis for water stress detection of apple trees. Comput. Electron. Agric. 2011, 77, 155–160. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Tian, Y.C.; Yao, X.; Yang, J.; Cao, W.X.; Hannaway, D.B.; Zhu, Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Res. 2011, 120, 299–310. [Google Scholar] [CrossRef]
- le Maire, G.; François, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.L. Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground Based Multispectral Data. 2000, pp. 1–15. Available online: https://api.semanticscholar.org/CorpusID:128773162 (accessed on 23 November 2022).
- He, J.; Ma, J.; Cao, Q.; Wang, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Development of critical nitrogen dilution curves for different leaf layers within the rice canopy. Eur. J. Agron. 2022, 132, 126414. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Neeteson, J.J.; Draycott, A. Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment. Plant Soil 1986, 91, 281–301. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, J.; Wang, Y.; Cao, W.; Zhu, Y.; Cao, Q.; Liu, X.; Tian, Y. Key variable for simulating critical nitrogen dilution curve of wheat: Leaf area ratio-driven approach. Pedosphere 2022, 32, 463–474. [Google Scholar] [CrossRef]
- Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; Boschetti, M.; Picchi, V.; Colombo, R. Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery. Remote Sens. 2014, 6, 6549–6565. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Ravier, C.; Quemada, M.; Jeuffroy, M.-H. Use of a chlorophyll meter to assess nitrogen nutrition index during the growth cycle in winter wheat. Field Crops Res. 2017, 214, 73–82. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zhang, E.; Cai, L.; Wang, H. Fertilization effect on Chrysanthemum morifolium based on ‘3414’ project. Acta Agric. Jiangxi 2013, 4, 88–90. [Google Scholar] [CrossRef]
- Qiu, D.; Yang, X.; Dong, N.; Li, Q.; Dai, S. Effect of nitrogen mass concentration on dry matter and nutrient uptake of potted chrysanthemum ‘Dong Li Qiu Xin’. J. China Agric. Univ. 2021, 26, 84–91. [Google Scholar] [CrossRef]
- Corti, M.; Marino Gallina, P.; Cavalli, D.; Cabassi, G. Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. Biosyst. Eng. 2017, 158, 38–50. [Google Scholar] [CrossRef]
- Feng, W.; Guo, B.-B.; Zhang, H.-Y.; He, L.; Zhang, Y.-S.; Wang, Y.-H.; Zhu, Y.-J.; Guo, T.-C. Remote estimation of above ground nitrogen uptake during vegetative growth in winter wheat using hyperspectral red-edge ratio data. Field Crops Res. 2015, 180, 197–206. [Google Scholar] [CrossRef]
- Li, L.; Jákli, B.; Lu, P.; Ren, T.; Ming, J.; Liu, S.; Wang, S.; Lu, J. Assessing leaf nitrogen concentration of winter oilseed rape with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution. Ind. Crops Prod. 2018, 116, 1–14. [Google Scholar] [CrossRef]
- Liu, S.; Bai, X.; Zhu, G.; Zhang, Y.; Li, L.; Ren, T.; Lu, J. Remote estimation of leaf nitrogen concentration in winter oilseed rape across growth stages and seasons by correcting for the canopy structural effect. Remote Sens. Environ. 2023, 284, 113348. [Google Scholar] [CrossRef]
- Wen, P.-F.; He, J.; Ning, F.; Wang, R.; Zhang, Y.-H.; Li, J. Estimating leaf nitrogen concentration considering unsynchronized maize growth stages with canopy hyperspectral technique. Ecol. Indic. 2019, 107, 105590. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Wang, J.; Huang, W. Relationships of leaf nitrogen concentration and canopy nitrogen density with spectral features parameters and narrow-band spectral indices calculated from field winter wheat (Triticum aestivum L.) spectra. Int. J. Remote Sens. 2012, 33, 3472–3491. [Google Scholar] [CrossRef]
- Winterhalter, L.; Mistele, B.; Schmidhalter, U. Assessing the vertical footprint of reflectance measurements to characterize nitrogen uptake and biomass distribution in maize canopies. Field Crops Res. 2012, 129, 14–20. [Google Scholar] [CrossRef]
- Li, X.; Luo, L.; He, Y.; Xu, N. Determination of dry matter content of tea by near and middle infrared spectroscopy coupled with wavelet-based data mining algorithms. Comput. Electron. Agric. 2013, 98, 46–53. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Zhao, B.; Duan, A.; Ata-Ul-Karim, S.T.; Liu, Z.; Chen, Z.; Gong, Z.; Zhang, J.; Xiao, J.; Liu, Z.; Qin, A.; et al. Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur. J. Agron. 2018, 93, 113–125. [Google Scholar] [CrossRef]
- Nigon, T.J.; Yang, C.; Dias Paiao, G.; Mulla, D.J.; Knight, J.F.; Fernández, F.G. Prediction of Early Season Nitrogen Uptake in Maize Using High-Resolution Aerial Hyperspectral Imagery. Remote Sens. 2020, 12, 1234. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelson, A.; Schepers, J.s.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. 2013, 25, 47–54. [Google Scholar] [CrossRef]
- Yamashita, H.; Sonobe, R.; Hirono, Y.; Morita, A.; Ikka, T. Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms. Sci. Rep. 2020, 10, 17360. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Q.; Pu, R.; Yang, S. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat. Sensors 2014, 14, 20347–20359. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ma, R.; Feng, H.; Li, X. Estimating the Total Nitrogen Concentration of Reed Canopy with Hyperspectral Measurements Considering a Non-Uniform Vertical Nitrogen Distribution. Remote Sens. 2016, 8, 789. [Google Scholar] [CrossRef]
- Li, L.; Chang, L.; Ji, Y.; Qin, D.; Fu, S.; Fan, X.; Guo, Y.; Shi, W.; Geng, S.; Wang, Y. Quantification and dynamic monitoring of nitrogen utilization efficiency in summer maize with hyperspectral technique considering a non-uniform vertical distribution at whole growth stage. Field Crops Res. 2022, 281, 108490. [Google Scholar] [CrossRef]
- Lu, J.; Wu, Y.; Liu, H.; Gou, T.; Zhao, S.; Chen, F.; Jiang, J.; Chen, S.; Fang, W.; Guan, Z. Estimation of plant water content in cut chrysanthemum using leaf-based hyperspectral reflectance. Sci. Hortic. 2024, 323, 112517. [Google Scholar] [CrossRef]
- Katsoulas, N.; Elvanidi, A.; Ferentinos, K.P.; Kacira, M.; Bartzanas, T.; Kittas, C. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. Biosyst. Eng. 2016, 151, 374–398. [Google Scholar] [CrossRef]
- Andries, J.P.M.; Vander Heyden, Y.; Buydens, L.M.C. Improved variable reduction in partial least squares modelling by Global-Minimum Error Uninformative-Variable Elimination. Anal. Chim. Acta 2017, 982, 37–47. [Google Scholar] [CrossRef]
- Kawamura, K.; Ikeura, H.; Phongchanmaixay, S.; Khanthavong, P. Canopy Hyperspectral Sensing of Paddy Fields at the Booting Stage and PLS Regression can Assess Grain Yield. Remote Sens. 2018, 10, 1249. [Google Scholar] [CrossRef]
- Lu, Y.; Saeys, W.; Kim, M.; Peng, Y.; Lu, R. Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress. Postharvest Biol. Technol. 2020, 170, 111318. [Google Scholar] [CrossRef]
- Patel, M.K.; Padarian, J.; Western, A.W.; Fitzgerald, G.J.; McBratney, A.B.; Perry, E.M.; Suter, H.; Ryu, D. Retrieving canopy nitrogen concentration and aboveground biomass with deep learning for ryegrass and barley: Comparing models and determining waveband contribution. Field Crops Res. 2023, 294, 108859. [Google Scholar] [CrossRef]
- Rubio-Delgado, J.; Pérez, C.J.; Vega-Rodríguez, M.A. Predicting leaf nitrogen content in olive trees using hyperspectral data for precision agriculture. Precis. Agric. 2020, 22, 1–21. [Google Scholar] [CrossRef]
- Rubo, S.; Zinkernagel, J. Exploring hyperspectral reflectance indices for the estimation of water and nitrogen status of spinach. Biosyst. Eng. 2022, 214, 58–71. [Google Scholar] [CrossRef]
- Ulissi, V.; Antonucci, F.; Benincasa, P.; Farneselli, M.; Tosti, G.; Guiducci, M.; Tei, F.; Costa, C.; Pallottino, F.; Pari, L.; et al. Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy. Sensors 2011, 11, 6411–6424. [Google Scholar] [CrossRef] [PubMed]
Weeks for Cultivation | Stage | N Level (g/m2/Week) | P and K Level (g/m2/Week) | Moisture Gradient (Lower Limit of Flow of Water/Kpa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N4 | N5 | N6 | P2O5 | K2O | W | ||
Cumulative fertilization per square meter (g/m2) | 1.40 | 6.16 | 17.92 | 31.08 | 44.24 | 57.40 | 50.84 | 54.56 | −20 | |
Cumulative fertilization per plant (mg/plant) | 14.00 | 61.60 | 179.20 | 310.80 | 442.40 | 574.00 | 508.4 | 545.60 | −20 |
Weeks for Cultivation | Stage | N Level (g/m2/Week) | P and K Level (g/m2/Week) | Moisture Gradient (Lower Limit of Flow of Water/Kpa) | |||
---|---|---|---|---|---|---|---|
N7 | N8 | N9 | P2O5 | K2O | W | ||
Cumulative fertilization per square meter (g/m2) | 1.40 | 25.48 | 37.24 | 35.50 | 38.40 | −20 | |
Cumulative fertilization per plant (mg/plant) | 20.00 | 364.00 | 532.00 | 507.14 | 548.57 | −20 |
Experiment | Season | Site | Sampling Date | Number of Samples | Dataset |
---|---|---|---|---|---|
EXP.1 | September 2021–December 2022 | YunNan | 10 September 2021–12 December 2021 | 270 | Calibration |
EXP.2 | November 2021–January 2022 | YunNan | 15 November 2021–11 January 2022 | 81 | Validation |
Spectral Index | Calculation Formula | References |
---|---|---|
Normalized Difference Vegetation Index, NDVI (R759, R730) | (R759 − R730)/(R759 + R730) | [29] |
Ratio Spectral Index, RSI (R990, R720) | R990/R720 | [30] |
Normalized Difference Spectral Index, NDSI (R860, R720) | (R860 − R720)/(R860 + R720) | [30] |
Simple Ratio Pigment Index, SRPI | R430/R680 | [31] |
Modified red Normalized Difference Vegetation Index, mrNDVI | (R750 − R705)/(R750 + R705 − 2 × R445) | [32] |
Transformed Chlorophyll Absorption in Reflectance Index, TCARI | 3 × [(R700 − R670) − 0.2 × (R700 − R550) ×(R700/R670)] | [33] |
Renormalized Difference Vegetation Index, RDVI | (R880 − R670)/ | [34] |
Datt1 | (R850 − R710)/(R850 + R680) | [35] |
Nitrogen Index_Tian, NI_Tian | R705/(R717 + R491) | [36] |
Modified Normalized Difference Index, mNDI | (R734 − R747)/(R715 + R726) | [37] |
Modified Simple Ratio, mSR705 | (R750 − R445)/(R705 + R445) | [38] |
Modified Chlorophyll Absorption Ratio Index, MCARI [705,750] | [(R750 − R705) − 0.2 × (R750 − R550)](R750/R705) | [39] |
Normalized Difference Red Edge, NDRE | (R790 − R720)/(R790 + R720) | [40] |
Spectral Index | Layers | R2 (Cali.) | RMSE (Cali.) | R2 (Vali.) | RMSE (Vali.) | nRMSE (Vali.) | Modeling Equations | Test Equations |
---|---|---|---|---|---|---|---|---|
NDVI (R759, R730) | L1 | 0.2413 | 0.4082 | 0.3473 | 0.2149 | 0.2302 | y = 8.0352x + 0.0232 | y = 0.5527x + 0.5077 |
L2 | 0.3351 | 0.3822 | 0.3418 | 1.0251 | 1.0982 | y = 12.495x − 0.4054 | y = 0.9873x + 0.9909 | |
L3 | 0.3966 | 0.3641 | 0.2144 | 0.3803 | 0.4074 | y = 13.973x − 0.3724 | y = 0.5007x + 0.7614 | |
RSI (R990, R720) | L1 | 0.2711 | 0.4001 | 0.3226 | 0.2393 | 0.2563 | y = 1.248x − 1.0862 | y = 0.6053x + 0.477 |
L2 | 0.3517 | 0.3774 | 0.3000 | 0.3255 | 0.3487 | y = 1.8758x − 2.0061 | y = 0.6673x + 0.533 | |
L3 | 0.4042 | 0.3618 | 0.2089 | 0.5184 | 0.5554 | y = 2.1725x − 2.2827 | y = 0.1971x + 0.27 | |
NDSI (R860, R720) | L1 | 0.2642 | 0.4020 | 0.3613 | 0.2170 | 0.2325 | y = 4.4299x − 0.1956 | y = 0.5836x + 0.4835 |
L2 | 0.3543 | 0.3766 | 0.3150 | 0.2899 | 0.3106 | y = 6.6214x − 0.678 | y = 0.5679x + 0.6044 | |
L3 | 0.4170 | 0.3579 | 0.1957 | 0.3817 | 0.4089 | y = 7.1837x − 0.6229 | y = 0.486x + 0.7713 | |
SRPI | L1 | 0.0185 | 0.4643 | 0.0423 | 0.2237 | 0.2397 | y = 1.2325x − 0.3428 | y = 0.0655x + 0.9209 |
L2 | 0.0304 | 0.4615 | 0.0240 | 0.2396 | 0.2567 | y = 1.6953x − 0.801 | y = 0.0603x + 0.9594 | |
L3 | 0.1143 | 0.4411 | 0.0041 | 0.3264 | 0.3497 | y = 3.1613x − 2.2788 | y = 0.0539x + 1.0512 | |
mrNDVI | L1 | 0.0021 | 0.4682 | 0.1948 | 0.2091 | 0.2240 | y = −3.1467x + 1.1188 | y = 0.0733x + 0.8857 |
L2 | 0.0549 | 0.456 | 0.2914 | 0.221 | 0.2422 | y = −18.231x + 1.8351 | y = 0.5674x + 0.4626 | |
L3 | 0.0274 | 0.4622 | 0.3014 | 0.2141 | 0.2294 | y = −15.375x + 1.6569 | y = 0.5282x + 0.4965 | |
TCARI | L1 | 0.2471 | 0.4067 | 0.4468 | 0.2143 | 0.2296 | y = 2.9375x − 0.9216 | y = 0.6686x + 0.4248 |
L2 | 0.3556 | 0.3762 | 0.4456 | 0.3280 | 0.3514 | y = 4.4878x − 1.8582 | y = 0.7526x + 0.4954 | |
L3 | 0.4205 | 0.3568 | 0.2836 | 0.3606 | 0.3863 | y = 4.3971x − 1.6265 | y = 0.5533x + 0.7037 | |
RDVI | L1 | 0.2190 | 0.4142 | 0.4197 | 0.2033 | 0.2178 | y = −3.0483x + 1.5819 | y = 0.6365x + 0.4249 |
L2 | 0.3018 | 0.3916 | 0.4302 | 0.2637 | 0.2825 | y = −4.5174x + 1.8904 | y = 0.6803x + 0.4839 | |
L3 | 0.4285 | 0.3543 | 0.4685 | 0.3530 | 0.3781 | y = −5.4287x + 2.2055 | y = 0.8437x + 0.4352 | |
Datt1 | L1 | 0.1012 | 0.4443 | 0.2030 | 0.3745 | 0.4012 | y = 10.196x − 5.6079 | y = −0.442x + 1.3662 |
L2 | 0.0243 | 0.4630 | 0.2379 | 0.2977 | 0.3190 | y = 4.1178x − 1.6552 | y = −0.2584x + 1.1933 | |
L3 | 0.0785 | 0.4499 | 0.2349 | 0.4000 | 0.4285 | y = 5.9762x − 2.7496 | y = −0.5251x + 1.4637 | |
NI_Tian | L1 | 0.2469 | 0.4067 | 0.4200 | 0.2105 | 0.2256 | y = 3.2498x − 1.2544 | y = 0.6355x + 0.4422 |
L2 | 0.3454 | 0.3792 | 0.4318 | 0.2879 | 0.3084 | y = 4.8128x − 2.2691 | y = 0.6663x + 0.5322 | |
L3 | 0.4286 | 0.3543 | 0.3877 | 0.3769 | 0.4038 | y = 5.0051x − 2.2196 | y = 0.6491x + 0.649 | |
mNDI | L1 | 0.0980 | 0.4452 | 0.2081 | 0.2226 | 0.2385 | y = 0.0011x + 0.0702 | y = 0.3891x + 0.5163 |
L2 | 0.0013 | 0.4670 | 0.2358 | 0.2380 | 0.2549 | y = 0.0001x + 0.8663 | y = −0.0669x + 0.9973 | |
L3 | 0.0204 | 0.4643 | 0.2724 | 0.3637 | 0.3897 | y = 0.0005x + 0.6745 | y = −0.4438x + 1.4113 | |
mSR705 | L1 | 0.2816 | 0.3972 | 0.4731 | 0.2172 | 0.2327 | y = −7.3274x + 4.3452 | y = 0.6994x + 0.407 |
L2 | 0.3717 | 0.3715 | 0.4129 | 0.3441 | 0.3687 | y = −10.947x + 6.0834 | y = 0.6884x + 0.5747 | |
L3 | 0.4053 | 0.3614 | 0.3016 | 0.3985 | 0.4270 | y = −9.7387x + 5.6861 | y = 0.5409x + 0.7679 | |
MCARI [705,750] | L1 | 0.3293 | 0.3838 | 0.1476 | 0.2260 | 0.2421 | y = 1.1311x − 0.1649 | y = 0.2552x + 0.7683 |
L2 | 0.3713 | 0.3716 | 0.1476 | 0.3266 | 0.3499 | y = 1.5991x − 0.4998 | y = 0.3608x + 0.8196 | |
L3 | 0.3761 | 0.3702 | 0.0113 | 0.4309 | 0.4616 | y = 1.506x − 0.2096 | y = 0.1265x + 1.0966 | |
NDRE | L1 | 0.2151 | 0.4152 | 0.3620 | 0.2221 | 0.2379 | y = 0.1544x + 0.2078 | y = 0.5841x + 0.4944 |
L2 | 0.3315 | 0.3832 | 0.3685 | 0.3682 | 0.3945 | y = 0.2709x − 0.2702 | y = 0.8313x + 0.4331 | |
L3 | 0.3731 | 0.3711 | 0.3244 | 0.4344 | 0.4654 | y = 0.3065x − 0.2699 | y = 0.7854x + 0.5514 |
Spectral Index | Layers | R1 | R2 | R2 (Cali.) | RMSE (Cali.) | R2 (Vali.) | RMSE (Vali.) | nRMSE (Vali.) | Modeling Equations | Test Equations |
---|---|---|---|---|---|---|---|---|---|---|
NDVI | L1 | 1155 | 695 | 0.4139 | 0.3588 | 0.4230 | 0.2849 | 0.3052 | y = 7.4947x − 4.3799 | y = 0.3441x + 0.7604 |
L2 | 1115 | 705 | 0.3833 | 0.3680 | 0.4629 | 0.3215 | 0.3445 | y = 5.2525x − 1.828 | y = 0.4371x + 0.749 | |
L3 | 1090 | 720 | 0.4403 | 0.3507 | 0.5306 | 0.4025 | 0.4312 | y = 7.1031x − 0.6057 | y = 0.5798x + 0.6972 | |
RVI | L1 | 1155 | 695 | 0.4225 | 0.3562 | 0.4330 | 0.3171 | 0.3398 | y = 0.3207x − 0.992 | y = 0.3732x + 0.7295 |
L2 | 710 | 1115 | 0.3834 | 0.3680 | 0.4274 | 0.3057 | 0.3275 | y = −5.2268x + 3.0709 | y = 0.5194x + 0.6678 | |
L3 | 720 | 1090 | 0.4030 | 0.3486 | 0.5282 | 0.3949 | 0.4230 | y = −9.9127x − 0.965 | y = 0.5743x + 0.7247 | |
DVI | L1 | 1105 | 700 | 0.5309 | 0.3210 | 0.4870 | 0.2976 | 0.3189 | y = 14.77x − 5.3384 | y = 0.6369x + 0.5457 |
L2 | 1095 | 705 | 0.4703 | 0.3411 | 0.5187 | 0.3697 | 0.3961 | y = 11.862x − 3.4857 | y = 0.4751x + 0.7854 | |
L3 | 1090 | 550 | 0.4825 | 0.3372 | 0.6036 | 0.3892 | 0.4169 | y = 11.418x − 3.6764 | y = 0.2004x + 1.0068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Lu, J.; Liu, H.; Gou, T.; Chen, F.; Fang, W.; Chen, S.; Zhao, S.; Jiang, J.; Guan, Z. Monitoring the Nitrogen Nutrition Index Using Leaf-Based Hyperspectral Reflectance in Cut Chrysanthemums. Remote Sens. 2024, 16, 3062. https://doi.org/10.3390/rs16163062
Wu Y, Lu J, Liu H, Gou T, Chen F, Fang W, Chen S, Zhao S, Jiang J, Guan Z. Monitoring the Nitrogen Nutrition Index Using Leaf-Based Hyperspectral Reflectance in Cut Chrysanthemums. Remote Sensing. 2024; 16(16):3062. https://doi.org/10.3390/rs16163062
Chicago/Turabian StyleWu, Yin, Jingshan Lu, Huahao Liu, Tingyu Gou, Fadi Chen, Weimin Fang, Sumei Chen, Shuang Zhao, Jiafu Jiang, and Zhiyong Guan. 2024. "Monitoring the Nitrogen Nutrition Index Using Leaf-Based Hyperspectral Reflectance in Cut Chrysanthemums" Remote Sensing 16, no. 16: 3062. https://doi.org/10.3390/rs16163062
APA StyleWu, Y., Lu, J., Liu, H., Gou, T., Chen, F., Fang, W., Chen, S., Zhao, S., Jiang, J., & Guan, Z. (2024). Monitoring the Nitrogen Nutrition Index Using Leaf-Based Hyperspectral Reflectance in Cut Chrysanthemums. Remote Sensing, 16(16), 3062. https://doi.org/10.3390/rs16163062