Photometric Characteristics of Lunar Soils: Results from Spectral Analysis of Chang’E-5 In Situ Data Using Legendre Phase Function
Abstract
1. Introduction
2. Instruments, Data, and Methods
2.1. LMS Instrument and Data
2.2. Methods
3. Results
3.1. Parameters of Hapke Model
3.2. Implication for FeO Content of CE-5 Landing Area
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warren, P.H.; Isa, J.; Zhang, B.; Korotev, R.L. Plagioclase iron content variance: A complication for efforts to identify lunar terrains of extremely high plagioclase abundance. Icarus 2024, 418, 116144. [Google Scholar] [CrossRef]
- Jia, Z.; Chen, J.; Kong, J.; Qiao, L.; Fu, X.; Ling, Z. Geologic context of Chang’e-6 candidate landing regions and potential non-mare materials in the returned samples. Icarus 2024, 416, 116107. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Xu, R.; Liu, Y.; Wu, X.; Yang, W.; Wei, Y.; Lin, Y.; He, Z.; Hui, H.; et al. In situ detection of water on the Moon by the Chang’E-5 lander. Sci. Adv. 2022, 8, eabl9174. [Google Scholar] [CrossRef] [PubMed]
- Kereszturi, A. Polar Ice on the Moon. In Encyclopedia of Lunar Science; Cudnik, B., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 971–980. [Google Scholar] [CrossRef]
- Colaprete, A.; Elphic, R.C.; Shirley, M.; Ennico-Smith, K.; Lim, D.S.S.; Zacny, K.; J., C.; Seigler, M.; Balaban, E.; Beyer, R.; et al. Key Science Questions to be Addressed by the Volatiles Investigating Polar Exploration Rover (VIPER). In Proceedings of the 54th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2023; Volume 2806, p. 2910. [Google Scholar]
- Trautner, R.; Barber, S.J.; Fisackerly, R.; Heather, D.; Houdou, B.; Howe, C.; Iacobellis, S.; Leese, M.; Mariani, A.; Meogrossi, G.; et al. PROSPECT: A comprehensive sample acquisition and analysis package for lunar science and exploration. Front. Space Technol. 2024, 5, 1331828. [Google Scholar] [CrossRef]
- Boazman, S.; Kereszturi, A.; Heather, D.; Sefton-Nash, E.; Orgel, C.; Tomka, R.; Houdou, B.; Lefort, X. Analysis of the Lunar South Polar Region for PROSPECT, NASA/CLPS. In Proceedings of the European Planetary Science Congress, Palacio de Congresos de Granada, Granada, Spain, 18–23 September 2022; p. EPSC2022-530. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. Solid Earth 1981, 86, 3039–3054. [Google Scholar] [CrossRef]
- Denevi, B.W.; Lucey, P.G.; Sherman, S.B. Radiative transfer modeling of near-infrared spectra of lunar mare soils: Theory and measurement. J. Geophys. Res. 2008, 113, E02003. [Google Scholar] [CrossRef]
- Li, S.; Milliken, R.E. Estimating the modal mineralogy of eucrite and diogenite meteorites using visible-near infrared reflectance spectroscopy. Meteorit. Planet. Sci. 2015, 50, 1821–1850. [Google Scholar] [CrossRef]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Yang, Y.; Li, S.; Milliken, R.E.; Zhang, H.; Robertson, K.; Hiroi, T. Phase functions of typical lunar surface minerals derived for the Hapke model and implications for visible to near-infrared spectral unmixing. J. Geophys. Res. Planets 2019, 124, 31–60. [Google Scholar] [CrossRef]
- Mustard, J.F.; Pieters, C.M. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. Solid Earth 1989, 94, 13619–13634. [Google Scholar] [CrossRef]
- Lucey, P.G. Model near-infrared optical constants of olivine and pyroxene as a function of iron content. J. Geophys. Res. Planets 1998, 103, 1703–1713. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, H.; Liu, Y.; Lin, Y.; Wei, Y.; Hu, S.; Yang, W.; Xu, R.; He, Z.; Zou, Y. The Effects of Viewing Geometry on the Spectral Analysis of Lunar Regolith as Inferred by in situ Spectrophotometric Measurements of Chang’E-4. Geophys. Res. Lett. 2020, 47, e2020GL087080. [Google Scholar] [CrossRef]
- Li, Q.L.; Zhou, Q.; Liu, Y.; Xiao, Z.; Lin, Y.; Li, J.H.; Ma, H.X.; Tang, G.Q.; Guo, S.; Tang, X.; et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 2021, 600, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Nemchin, A.; Liu, D.; Long, T.; Wang, C.; Norman, M.D.; Joy, K.H.; Tartese, R.; Head, J.; Jolliff, B.; et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 2021, 374, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Shepard, M. Initial results from the Bloomsburg University Goniometer laboratory. In Proceedings of the Solar System Remote Sensing Symposium, Pittsburgh, PA, USA, 20–21 September 2002; Volume 4004. [Google Scholar]
- Foote, E.J.; Paige, D.A.; Shepard, M.K.; Johnson, J.R.; Biggar, S. The bidirectional and directional hemispheric reflectance of Apollo 11 and 16 soils: Laboratory and Diviner measurements. Icarus 2020, 336, 113456. [Google Scholar] [CrossRef]
- Nagori, R.; Dagar, A.K.; Arya, A. Comparative analysis of photometric parameters over Apollo landing sites from Terrain Mapping Camera (Chandrayaan-1/2) and lab measured data. Planet. Space Sci. 2023, 226, 105635. [Google Scholar] [CrossRef]
- Shepard, M.K.; Helfenstein, P. A laboratory study of the bidirectional reflectance from particulate samples. Icarus 2011, 215, 526–533. [Google Scholar] [CrossRef]
- Xu, R.; Li, C.; Yuan, L.; Lv, G.; Xu, S.; Li, F.; Jin, J.; Wang, Z.; Pan, W.; Wang, R.; et al. Lunar Mineralogical Spectrometer on Chang’E-5 Mission. Space Sci. Rev. 2022, 218, 41. [Google Scholar] [CrossRef]
- Qian, Y.Q.; Xiao, L.; Zhao, S.Y.; Zhao, J.N.; Huang, J.; Flahaut, J.; Martinot, M.; Head, J.W.; Hiesinger, H.; Wang, G.X. Geology and Scientific Significance of the Rümker Region in Northern Oceanus Procellarum: China’s Chang’E-5 Landing Region. J. Geophys. Res. Planets 2018, 123, 1407–1430. [Google Scholar] [CrossRef]
- Qian, Y.; Xiao, L.; Head, J.W.; Van Der Bogert, C.H.; Hiesinger, H.; Wilson, L. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 2021, 555, 116702. [Google Scholar] [CrossRef]
- Johnson, T.V.; Witteborn, F.C. Photometric Corrections for the Surface Reflectance of the Moon: The Legendre Phase Function. Icarus 1977, 31, 24–36. [Google Scholar] [CrossRef]
- Xu, R.; Lin, H.; Wang, M.; Liu, B.; Yan, W.; Liu, C.; Lv, G.; Yuan, L.; Li, C.; Wang, R.; et al. In-Flight Calibration of Visible and Near-Infrared Imaging Spectrometer (VNIS) Onboard Chang’E-4 Unmanned Lunar Rover. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5542311. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Cai, W.; Lu, Y. The Absolute Reflectance and New Calibration Site of the Moon. Astron. J. 2018, 155, 213. [Google Scholar] [CrossRef]
- Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Lin, H.; Wang, R.; Feng, Q.; Xu, X. Effect of Lunar Complex Illumination on In Situ Measurements Obtained Using Visible and Near-Infrared Imaging Spectrometer of Chang’E-4. Remote Sens. 2021, 13, 2359. [Google Scholar] [CrossRef]
- Jiang, T.; Hu, X.; Zhang, H.; Ma, P.; Li, C.; Ren, X.; Liu, B.; Liu, D.; Yang, J.; Xue, B.; et al. In situ lunar phase curves measured by Chang’E-4 in the Von Kármán Crater, South Pole-Aitken basin. Astron. Astrophys. 2021, 646, A2. [Google Scholar] [CrossRef]
- Lin, H.; Yang, Y.; Lin, Y.; Liu, Y.; Wei, Y.; Li, S.; Hu, S.; Yang, W.; Wan, W.; Xu, R.; et al. Photometric properties of lunar regolith revealed by the Yutu-2 rover. Astron. Astrophys. 2020, 638, A35. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Lin, H.; Xu, X.; Liu, B.; Yan, W.; Yang, Y.; Wang, R.; Liu, C.; Xu, R.; et al. In-Situ Photometric Properties of Lunar Regolith Revealed by Lunar Mineralogical Spectrometer on Board Chang’E-5 Lander. Geophys. Res. Lett. 2022, 49, e2021GL096876. [Google Scholar] [CrossRef]
- Lucey, P.G.; Taylor, G.J.; Malaret, E. Abundance and Distribution of Iron on the Moon. Science 1995, 268, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Lucey, P.G.; Blewett, D.T.; Jolliff, B.L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. Planets 2000, 105, 20297–20305. [Google Scholar] [CrossRef]
- Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res. 2011, 116, E00G19. [Google Scholar] [CrossRef]
- Li, C.L.; Xu, R.; Lv, G.; Yuan, L.Y.; Wang, J.Y. Detection and calibration characteristics of the visible and near-infrared imaging spectrometer in the Chang’e-4. Rev. Sci. Instruments 2019, 90, 103106. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, S.; Zhang, Y.; Mu, Y.; Dai, R.; Yang, C.; Li, A.; Lu, P. Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission. Sci. Rep. 2021, 11, 15435. [Google Scholar] [CrossRef]
- Li, C.; Hu, H.; Yang, M.F.; Pei, Z.Y.; Zhou, Q.; Ren, X.; Liu, B.; Liu, D.; Zeng, X.; Zhang, G.; et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 2022, 9, nwab188. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Liu, D.; Xu, R.; He, Z. Photometric Characteristics of Lunar Soils: Results from Spectral Analysis of Chang’E-5 In Situ Data Using Legendre Phase Function. Remote Sens. 2024, 16, 3053. https://doi.org/10.3390/rs16163053
Wang M, Liu D, Xu R, He Z. Photometric Characteristics of Lunar Soils: Results from Spectral Analysis of Chang’E-5 In Situ Data Using Legendre Phase Function. Remote Sensing. 2024; 16(16):3053. https://doi.org/10.3390/rs16163053
Chicago/Turabian StyleWang, Meizhu, Dawei Liu, Rui Xu, and Zhiping He. 2024. "Photometric Characteristics of Lunar Soils: Results from Spectral Analysis of Chang’E-5 In Situ Data Using Legendre Phase Function" Remote Sensing 16, no. 16: 3053. https://doi.org/10.3390/rs16163053
APA StyleWang, M., Liu, D., Xu, R., & He, Z. (2024). Photometric Characteristics of Lunar Soils: Results from Spectral Analysis of Chang’E-5 In Situ Data Using Legendre Phase Function. Remote Sensing, 16(16), 3053. https://doi.org/10.3390/rs16163053