Estimating Aboveground Biomass of Wetland Plant Communities from Hyperspectral Data Based on Fractional-Order Derivatives and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Hyperspectral Data Acquisition and Pre-Processing
2.2.2. AGB Data Acquisition
2.3. Fractional-Order Derivative
2.4. Selection of Vegetation Indices
2.5. Pearson Correlation Analysis
2.6. Optimal Feature Band Selection
2.7. Regression-Model Construction and Evaluation
2.8. Machine Learning Interpretability—Shapley Additive Explanations
3. Results
3.1. Spectral-Curve Characteristics of AGB
3.2. Spectral Characteristics after Fractional-Order Differentiation
3.3. Feature Extraction from Hyperspectral Data
3.3.1. Pearson Correlation Analysis between Classical Vegetation Indices and Biomass
3.3.2. Feature Importance in RF and XGBoost
3.4. Prediction Accuracy of Three Machine-Learning Models
3.4.1. Accuracy Evaluation Based on Vegetation Indices
3.4.2. Model-Accuracy Evaluation Based on Feature Bands
3.4.3. Model-Accuracy Evaluation Integrating Feature Bands and Vegetation Indices
3.5. Interpretability of the Optimal Regression Model Using SHAP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, C.; Xu, M. Achieving Carbon Neutrality Through Ecological Carbon Sinks: A Systems Perspective. Green Carbon 2023, 1, 43–46. [Google Scholar] [CrossRef]
- Yu, G.; Zhu, J.; Xu, L.; He, N. Technological Approaches to Enhance Ecosystem Carbon Sink in China: Nature-Based Solutions. Bull. Chin. Acad. Sci. (Chin. Version) 2022, 37, 490–501. [Google Scholar]
- Sharma, B.; Rasul, G.; Chettri, N. The Economic Value of Wetland Ecosystem Services: Evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosyst. Serv. 2015, 12, 84–93. [Google Scholar] [CrossRef]
- Na, X.; Zang, S.; Zhan, N.; Cui, J. Impact of Land Use and Land Cover Dynamics on Zhalong Wetland Reserve Ecosystem, Heilongjiang Province, China. Int. J. Environ. Sci. Technol. 2015, 12, 445–454. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Gill, L.; Regan, S.; Naughton, O.; Johnaton, P.; Waldren, S.; Ghosh, B. Mapping Vegetation Communities inside Wetlands Using Sentinel-2 Imagery in Ireland. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102083. [Google Scholar] [CrossRef]
- Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Liu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland Carbon Storage Controlled by Millennial-Scale Variation in Relative Sea-Level Rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef]
- Mendonça, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic Carbon Burial in Global Lakes and Reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef]
- Naidoo, L.; Van Deventer, H.; Ramoelo, A.; Mathieu, R.; Nondlazi, B.; Gangat, R. Estimating above Ground Biomass as an Indicator of Carbon Storage in Vegetated Wetlands of the Grassland Biome of South Africa. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 118–129. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, M. Progress and Prospect of Wetland Research in China. J. Geogr. Sci. 2004, S1, 45–51. [Google Scholar]
- Mutanga, O.; Adam, E.; Cho, M.A. High Density Biomass Estimation for Wetland Vegetation Using Worldview-2 Imagery and Random Forest Regression Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Shen, G.; Liao, J.; Guo, H.; Liu, J. Poyang Lake Wetland Vegetation Biomass Inversion Using Polarimetric RADARSAT-2 Synthetic Aperture Radar Data. J. Appl. Remote Sens. 2015, 9, 096077. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Xu, W. Estimating Aboveground Biomass Using Sentinel-2 MSI Data and Ensemble Algorithms for Grassland in the Shengjin Lake Wetland, China. Remote Sens. 2021, 13, 1595. [Google Scholar] [CrossRef]
- Pacini, N.; Hesslerová, P.; Pokorný, J.; Mwinami, T.; Morrison, E.H.J.; Cook, A.A.; Zhang, S.; Harper, D.M. Papyrus as an Ecohydrological Tool for Restoring Ecosystem Services in Afro-Tropical Wetlands. Ecohydrol. Hydrobiol. 2018, 18, 142–154. [Google Scholar] [CrossRef]
- Wang, Y.; Yésou, H. Remote Sensing of Floodpath Lakes and Wetlands: A Challenging Frontier In the Monitoring of Changing Environments. Remote Sens. 2018, 10, 1955. [Google Scholar] [CrossRef]
- Hestir, E.L.; Brando, V.E.; Bresciani, M.; Giardino, C.; Matta, E.; Villa, P.; Dekker, A.G. Measuring Freshwater Aquatic Ecosystems: The Need for a Hyperspectral Global Mapping Satellite Mission. Remote Sens. Environ. 2015, 167, 181–195. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, D.; Zhang, D.; Wang, Z.; Du, B.; Yan, H.; Qiu, Z.; Feng, K.; Wang, J.; Jia, M. Mapping Phragmites australis Aboveground Biomass in the Momoge Wetland Ramsar Site Based on Sentinel-1/2 Images. Remote Sens. 2022, 14, 694. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, C.; Li, E.; Cai, X.; Wang, X. Aboveground Biomass Estimation of Wetland Vegetation at the Species Level Using Unoccupied Aerial Vehicle RGB Imagery. Front. Plant Sci. 2023, 14, 1181887. [Google Scholar] [CrossRef]
- Doughty, C.L.; Ambrose, R.F.; Okin, G.S.; Cavanaugh, K.C. Characterizing Spatial Variability in Coastal Wetland Biomass across Multiple Scales Using UAV and Satellite Imagery. Remote Sens. Ecol. Conserv. 2021, 7, 411–429. [Google Scholar] [CrossRef]
- Khaliq, A.; Comba, L.; Biglia, A.; Aimonino, D.R.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef]
- Transon, J.; d’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [Google Scholar] [CrossRef]
- Baresel, J.P.; Rischbeck, P.; Hu, Y.C.; Kipp, S.; Hu, Y.C.; Barmeier, G.; Mistele, B.; Schmidhalter, U. Use of a Digital Camera as Alternative Method for Non-Destructive Detection of the Leaf Chlorophyll Content and the Nitrogen Nutrition Status in Wheat. Comput. Electron. Agric. 2017, 140, 25–33. [Google Scholar] [CrossRef]
- Tong, X.; Duan, L.; Liu, T.; Yang, Z.; Wang, Y.; Singh, V.P. Estimation of Grassland Aboveground Biomass Combining Optimal Derivative and Raw Reflectance Vegetation Indices at Peak Productive Growth Stage. Geocarto Int. 2023, 38, 2186497. [Google Scholar] [CrossRef]
- Bhadra, S.; Sagan, V.; Maimaitijiang, M.; Maimaitiyiming, M.; Newcomb, M.; Shakoor, N.; Mockler, T.C. Quantifying Leaf Chlorophyll Concentration of Sorghum from Hyperspectral Data using Derivative Calculus and Machine Learning. Remote Sens. 2020, 12, 2082. [Google Scholar] [CrossRef]
- Li, H.Z.; Cui, L.J.; Dou, Z.G.; Wang, J.J.; Zhai, X.J.; Li, J.; Zhao, X.S.; Lei, Y.R.; Wang, J.Z.; Li, W. Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species. Forests 2023, 14, 1566. [Google Scholar] [CrossRef]
- Li, W.; Dou, Z.G.; Cui, L.J.; Wang, R.M.; Zhao, Z.J.; Cui, S.F.; Lei, Y.R.; Li, J.; Zhao, X.S.; Zhai, X.J. Suitability of Hyperspectral Data for Monitoring Nitrogen and Phosphorus Contents in Constructed Wetlands. Remote Sens. Lett. 2020, 11, 495–504. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Wu, G. The Integration of Species Information and Soil Properties for Hyperspectral Estimation of Leaf Biochemical Parameters in Mangrove Forest. Ecol. Indic. 2020, 115, 106467. [Google Scholar] [CrossRef]
- Nie, L.; Dou, Z.; Cui, L.; Tang, X.; Zhai, X.; Zhao, X.; Lei, Y.; Li, J.; Wang, Z.; Li, W. Hyperspectral Inversion of Soil Carbon and Nutrient Contents in the Yellow River Delta Wetland. Diversity 2022, 14, 862. [Google Scholar] [CrossRef]
- Jacon, A.D.; Galvão, L.S.; Dalagnol, R.; dos Santos, J.R. Aboveground Biomass Estimates over Brazilian Savannas Using Hyperspectral Metrics and Machine Learning Models: Experiences with Hyperion/EO-1. GIScience Remote Sens. 2021, 58, 1112–1129. [Google Scholar] [CrossRef]
- Huang, W.; Li, W.; Xu, J.; Ma, X.; Li, C.; Liu, C. Hyperspectral Monitoring Driven by Machine Learning Methods for Grassland Above-Ground Biomass. Remote Sens. 2022, 14, 2086. [Google Scholar] [CrossRef]
- Assiri, M.; Sartori, A.; Persichetti, A.; Miele, C.; Faelga, R.A.; Blount, T.; Silvestri, S. Leaf Area Index and Aboveground Biomass Estimation of an Alpine Peatland with a UAV Multi-Sensor Approach. GIScience Remote Sens. 2023, 60, 2270791. [Google Scholar] [CrossRef]
- Brocks, S.; Bareth, G. Estimating Barley Biomass with Crop Surface Models from Oblique RGB Imagery. Remote Sens. 2018, 10, 268. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Zhao, Y.; Song, X.; Long, H.; Yang, G. Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral Images and Machine-Learning Regression. Remote Sens. 2022, 14, 5449. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Jin, X.; Fan, Y.; Chen, R.; Bian, M.; Ma, Y.; Song, X.; Yang, G. Improved Potato AGB Estimates Based on UAV RGB and Hyperspectral Images. Comput. Electron. Agric. 2023, 214, 108260. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral Indices. Remote Sens. 2021, 13, 2339. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat Above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Deep Neural Network Algorithm for Estimating Maize Biomass Based on Simulated Sentinel 2A Vegetation Indices and Leaf Area Index. Crop J. 2020, 8, 87–97. [Google Scholar] [CrossRef]
- Guo, R.; Gao, J.; Fu, S.; Xiu, Y.; Zhang, S.; Huang, X.; Feng, Q.; Liang, T. Estimating Aboveground Biomass of Alpine Grassland During the Wilting Period Using In Situ Hyperspectral, Sentinel-2, and Sentinel-1 Data. IEEE Trans. Geosci. Electron. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Eon, R.S.; Goldsmith, S.; Bachmann, C.M.; Tyler, A.C.; Lapszynski, C.S.; Badura, G.P.; Osgood, D.T.; Bret, R. Retieval of Salt Marsh Above-Ground Biomass from High-Spatial Resolution Hyperspectral Imagery Using Prosall. Remote Sens. 2019, 11, 1385. [Google Scholar] [CrossRef]
- Pandey, P.C.; Anand, A.; Srivastava, P.K. Spatial Distribution of Mangrove Forest Species and Biomass Assessment Using Field Inventory and Earth Observation Hyperspectral Data. Biodivers. Conserv. 2019, 28, 2143–2162. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zheng, S.; Gao, W.; Zhang, Y.; Cao, B.; Cui, B.; Shao, D. Estimating Biomass and Carbon Sequestration Capacity of Phragmites Australis Using Remote Sensing and Growth Dynamics Modeling: A Case Study in Beijing Hanshiqiao Wetland Nature Reserve, China. Sensors 2022, 22, 3141. [Google Scholar] [CrossRef]
- Hemati, M.; Mahdianpari, M.; Shiri, H.; Mohammadimanesh, F. Integrating SAR and Optical Data for Aboveground Biomass Estimation of Coastal Wetlands Using Machine Learning: Multi-Scale Approach. Remote Sens. 2024, 16, 831. [Google Scholar] [CrossRef]
- Li, W.; Dou, Z.; Wang, Y.; Wu, G.; Zhang, M.; Lei, Y.; Ping, Y.; Wang, J.; Cui, L.; Ma, W. Estimation of Above-Ground Biomass of Reed (Phragmites Communis) Based on in Situ Hyperspectral Data in Beijing Hanshiqiao Wetland, China. Wetl. Ecol. Manag. 2019, 27, 87–102. [Google Scholar] [CrossRef]
- Dou, Z.; Li, Y.; Cui, L.; Pan, X.; Ma, Q.; Huang, Y.; Lei, Y.; Li, J.; Zhao, X.; Li, W. Hyperspectral Inversion of Suaeda Salsa Biomass Under Different Types of Human Activity in Liaohe Estuary Wetland in North-Eastern China. Mar. Freshw. Res. 2020, 71, 482–492. [Google Scholar] [CrossRef]
- Chen, C.; Ma, Y.; Ren, G.; Wang, J. Aboveground Biomass of Salt-Marsh Vegetation in Coastal Wetlands: Sample Expansion of in Situ Hyperspectral and Sentinel-2 Data Using a Generative Adversarial Network. Remote Sens. Environ. 2022, 270, 112885. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Xi, X.; Pan, F.; Qian, M.; Peng, D.; Nie, S.; Qin, H.; Lin, Y. Retrieving Aboveground Biomass of Wetland Phragmites Australis (Common Reed) Using a Combination of Airborne Discrete-Return Lidar and Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 107–117. [Google Scholar] [CrossRef]
- Jensen, D.; Cavanaugh, K.C.; Simard, M.; Okin, G.S.; Castañeda-Moya, E.; McCall, A.; Twilley, R.R. Integrating Imaging Spectrometer and Synthetic Aperture Radar Data for Estimating Wetland Vegetation Aboveground Biomass in Coastal Louisiana. Remote Sens. 2019, 11, 2533. [Google Scholar] [CrossRef]
- Chen, K.; Li, C.; Tang, R. Estimation of The Nitrogen Concentration of Rubber Tree Using Fractional Calculus Augmented NIR Spectra. Ind. Crops Prod. 2017, 108, 831–839. [Google Scholar] [CrossRef]
- Wang, J.; Cui, L.; Gao, W.; Shi, T.; Chen, Y.; Gao, Y. Prediction of Low Heavy Metal Concentrations in Agricultural Soils Using Visible and Near-Infrared Reflectance Spectroscopy. Geoderma 2014, 216, 1–9. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Zhang, A.; Yin, S.; Wang, J.; He, N.; Chai, S.; Pang, H. Grassland Chlorophyll Content Estimation from Drone Hyperspectral Images Combined with Fractional-Order Derivative. Remote Sens. 2023, 15, 5623. [Google Scholar] [CrossRef]
- Wang, J.; Tiyip, T.; Ding, J.; Zhang, D.; Liu, W.; Wang, F.; Tashpolat, N. Desert Soil Clay Content Estimation Using Reflectance Spectroscopy Preprocessed by Fractional Derivative. PLoS ONE 2017, 12, e0184836. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, S.; Li, J.; Guo, X.; Wang, S.; Lu, J. Estimating Biomass of Winter Oilseed rape Using Vegetation Indices and Texture Metrics Derived from UAV Multispectral Images. Comput. Electron. Agric. 2019, 166, 105026–105036. [Google Scholar] [CrossRef]
- Angela, K.; Heather, M.; David, L.; Mark, S.; Catherine, C. Assessment of RapidEye Vegetation Indices for Estimation of Leaf Area Index and Biomass in Corn and Soybean Crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar]
- Zhang, Y.; Xia, C.; Zhang, X.; Cheng, X.; Feng, G.; Wang, Y.; Gao, Q. Estimating the Maize Biomass by Crop Height and Narrowband Vegetation Indices Derived from UAV-Based Hyperspectral Images. Ecol. Indic. 2021, 129, 107985. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Fan, Y.; Yue, J.; Chen, R.; Ma, Y.; Bian, M.; Yang, G. Improving Potato Above Ground Biomass Estimation Combining Hyperspectral Data and Harmonic Decomposition Techniques. Comput. Electron. Agric. 2024, 218, 108699. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less Is More: Optimizing Classification Performance Through Feature Selection in A Very-High-Resolution Remote Sensing Object-Based Urban Application. GIScience Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Nicodemus, K.K. On the Stability and Ranking of Predictors from Random Forest Variable Importance Measures. Briefings Bioinform. 2011, 12, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5. [Google Scholar] [CrossRef]
- Wan, R.; Wang, P.; Wang, X.; Yao, X.; Dai, X. Mapping Aboveground Biomass of Four Typical Vegetation Types in the Poyang Lake Wetlands Based on Random Forest Modelling and Landsat Images. Front. Plant Sci. 2019, 10, 1281. [Google Scholar] [CrossRef]
- Jing, X.; Zou, Q.; Yan, J.; Dong, Y.; Li, B. Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm. Remote Sens. 2022, 14, 756. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Fu, B.; Zuo, P.; Liu, M.; Lan, G.; He, H.; Lao, Z.; Zhang, Y.; Fan, D.; Gao, E. Classifying Vegetation Communities Karst Wetland Synergistic Use of Image Fusion and Object-Based Machine Learning Algorithm with Jilin-1 and UAV Multispectral Images. Ecol. Indic. 2022, 140, 108989. [Google Scholar] [CrossRef]
- Samat, A.; Li, E.; Du, P.; Liu, S.; Xia, J. GPU-Accelerated CatBoost-Forest for Hyperspectral Image Classification Via Parallelized mRMR Ensemble Subspace Feature Selection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3200–3214. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, Q.; Chen, Y.; Liu, Y.; Jiang, D.; Zhang, Z. Hyperspectral Estimation of Chlorophyll Content in Apple Tree Leaf Based on Feature Band Selection and the CatBoost Model. Agronomy 2023, 13, 2075. [Google Scholar] [CrossRef]
- Song, G.; Wang, Q. Species Classification from Hyperspectral Leaf Information Using Machine Learning Approaches. Ecol. Inform. 2023, 76, 102141. [Google Scholar] [CrossRef]
- Bannari, A.; Pacheco, A.; Staenz, K.; McNairn, H.; Omari, K. Estimating and Mapping Crop Residues Cover on Agricultural Lands Using Hyperspectral and IKONOS Data. Remote Sens. Environ. 2006, 104, 447–459. [Google Scholar] [CrossRef]
- Sharma, P.; Mirzan, S.R.; Bhandari, A.; Pimpley, A.; Eswaran, A.; Srinivasan, S.; Shao, L.Q. Evaluating Tree Explanation Methods for Anomaly Reasoning: A Case Study of SHAP TreeExplainer and TreeInterpreter. In Proceedings of the 39th International Conference on Conceptual Modeling (ER), Vienna, Austria, 3–6 November 2020; pp. 35–45. [Google Scholar]
- Li, F.; Zeng, Y.; Luo, J.; Ma, R.; Wu, B. Modeling Grassland Aboveground Bio-Mass Using A Pure Vegetation Index. Ecol. Indic. 2016, 62, 279–288. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, Y.; Wang, X.; Wang, R.; Wu, W.; Dong, J. Inversion Study of The Meadow Steppe Above-Ground Biomass Based on Ground and Airborne Hyperspectral Data. Geocarto Int. 2024, 39, 2370304. [Google Scholar] [CrossRef]
- Yang, C.; Xu, J.; Feng, M.; Bai, J.; Sun, H.; Song, L.; Wang, C.; Yang, W.; Xiao, L.; Zhang, M.; et al. Evaluation of Hyperspectral Monitoring Model for Aboveground Dry Biomass of Winter Wheat by Using Multiple Factors. Agronomy 2023, 13, 983. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Liu, Z.; Yu, H.; Li, Z.; Cheng, H. Evaluation on Spaceborne Multispectral Images, Airborne Hyperspectral, and LiDAR Data for Extracting Spatial Distribution and Estimating Aboveground Biomass of Wetland Vegetation Suaeda salsa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 200–209. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Hyperspectral Canopy Sensing of Paddy Rice Aboveground Biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Cui, L.; Dou, Z.; Liu, Z.; Zuo, X.; Lei, Y.; Li, J.; Zhao, X.; Zhai, X.; Pan, X.; Li, W. Hyperspectral Inversion of Phragmites communis Carbon, Nitrogen, and Phosphorus Stoichiometry Using Three Models. Remote Sens. 2020, 12, 1998. [Google Scholar] [CrossRef]
- Cui, S.C.; Zhou, K.F. Acomparison of the Predictive Potential of Various Vegetation Indices for Leaf Chlorophyll Content. Earth Sci. Inform. 2017, 10, 169–181. [Google Scholar] [CrossRef]
- Caturegli, L.; Gaetani, M.; Volterrani, M.; Magni, S.; Minelli, A.; Baldi, A.; Brandani, G.; Mancini, M.; Lenzi, A.; Orlandini, S.; et al. Normalized Difference Vegetation Index Versus Dark Green Colour Index to Estimate Nitrogen Status on Bermudagrass Hybrid and Tall Fescue. Int. J. Remote Sens. 2020, 41, 455–470. [Google Scholar] [CrossRef]
- Jiang, X.; Zhen, J.; Miao, J.; Zhao, D.; Shen, Z.; Jiang, J.; Gao, C.; Wu, G.; Wang, J. Newly-Developed Three-Band Hyperspectral Vegetation Index for Estimating Leaf Relative Chlorophyll Content of Mangrove under Different Severities of Pest and Disease. Ecol. Indic. 2022, 140, 108978. [Google Scholar] [CrossRef]
- Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using A Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by A Drone. Agriculture 2018, 8, 70. [Google Scholar] [CrossRef]
- Li, C.; Ma, C.; Pei, H.; Feng, H.; Shi, J.; Wang, Y.; Chen, W.; Li, Y.; Feng, X.; Shi, Y. Estimation of Potato Biomass and Yield Based on Machine Learning from Hyperspectral Remote Sensing Data. J. Agric. Sci. Technol. B 2020, 10, 195–213. [Google Scholar]
- Li, W.; Zuo, X.; Liu, Z.; Nie, L.; Li, H.; Wang, J.; Dou, Z.; Cai, Y.; Zhai, X.; Cui, L. Predictions of Spartina alterniflora Leaf Functional Traits Based on Hyperspectral Data and Machine Learning Models. Eur. J. Remote Sens. 2024, 57, 2294951. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Abdel-Rahman, E.M.; Ismail, R. Estimating Standing Biomass in Papyrus (Cyperus papyrus L.) Swamp: Exploratory of In Situ Hyperspectral Indices and Random Forest Regression. Int. J. Remote Sens. 2014, 35, 693–714. [Google Scholar] [CrossRef]
- Tang, X.; Dou, Z.; Cui, L.; Liu, Z.; Gao, C.; Wang, J.; Li, J.; Lei, Y.; Zhao, X.; Zhai, X.; et al. Hyperspectral Prediction of Mangrove Leaf Stoichiometries in Different Restoration Areas Based on Machine Learning Models. J. Appl. Remote Sens. 2022, 16, 034525. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m Landsat-Derived Cropland Extent Product of Australia and China Using Random Forest Machine Learning Algorithm on Google Earth Engine Cloud Computing Platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Gasela, M.; Kganyago, M.; De Jager, G. Using Resampled nSight-2 Hyperspectral Data and Various Machine Learning Classifiers for Discriminating Wetland Plant Species in A Ramsar Wetland Site, South Africa. Appl. Geomat. 2024, 16, 429–440. [Google Scholar] [CrossRef]
- Byrd, K.B.; Ballanti, L.; Thomas, N.; Nguyen, D.; Holmquist, J.R.; Simard, M.; Windham-Myers, L. A Remote Sensing-Based Model of Tidal Marsh Aboveground Carbon Stocks for The Conterminous United States. ISPRS J. Photogramm. Remote Sens. 2018, 139, 255–271. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
Site | Number of Samples | Maximum | Minimum | Average | Standard Deviation | Significant Difference |
---|---|---|---|---|---|---|
Site 1 | 20 | 219.06 | 108.56 | 157.26 | 32.84 | a |
Site 2 | 49 | 252.04 | 81.35 | 150.19 | 41.72 | a |
Site 3 | 33 | 280.02 | 96.71 | 167.87 | 41.32 | a |
Vegetation Indices | Equation | Reference |
---|---|---|
VARI | (R550 − R660)/(R550 + R660 − R470) | [32] |
OSAVI | 1.16 × (R800 − R670)/(R800 + R670 + 0.16) | [32] |
MCARI | ((R700 − R670) − 0.2 × (R700 − R550)) × (R700/R670) | [32] |
TVI | 0.5 × (520 × (R750 − R550) − 200 × (R670 − R550)) | [32] |
EVI | 2.5 × [(R800 − R270)/(R800 + 6 × R270 − 7.5 × R475 + 1)] | [52] |
SAVI | (1 + 0.5) × (R800 − R670)/(R800 + R670 + 0.5) | [52] |
RVI | R790/R670 | [53] |
CI green | R780/R550 − 1 | [54] |
TCARI | 3 × (R700 − R670) − 0.2 × (R700 − R550) × (R700/R670) | [54] |
PRI | (R531 − R570)/(R531 + R570) | [54] |
CI red edge | R800/R740 − 1 | [54] |
RSI | R825/R735 | [54] |
NDVI | (R850 − R675)/(R850 + R675) | [55] |
NDRE | (R790 − R720)/(R790 + R720) | [55] |
GNDVI | (R750 − R550)/(R750 + R550) | [55] |
Model | Hyperparameter | Range |
---|---|---|
XGBoost | max_depth | (3, 10) |
learning_rate | (0.01, 0.1) | |
n_estimators | (50, 500) | |
gamma | (0, 0.5) | |
min_child_weight | (1, 10) | |
subsample | (0.6, 1.0) | |
colsample_bytree | (0.6, 1.0) | |
RF | n_estimators | (50, 500) |
max_depth | (3, 10) | |
min_samples_split | (0.01, 0.1) | |
min_samples_leaf | (1, 10) | |
max_features | (0.1, 1.0) | |
CatBoost | iterations | (10, 100) |
learning_rate | (0.01, 0.35) | |
depth | (1, 11) | |
l2_leaf_reg | (1, 11) |
Order | Feature VIs |
---|---|
0.0 | EVI, RVI, NDVI, GNDVI, VARI, TVI, SAVI, OSAVI, TCARI, MCARI |
0.2 | EVI, RVI, RSI, CI red edge, NDVI, GNDVI, PRI, VARI, TVI, SAVI, OSAVI, TCARI, MCARI |
0.4 | EVI, RSI, CI red edge, NDVI, PRI, VARI, TVI, SAVI, OSAVI |
0.6 | EVI, RSI, CI red edge, NDVI, PRI, VARI, TVI, SAVI, OSAVI |
0.8 | EVI, RSI, CI red edge, NDVI, PRI, NDRE, TVI, SAVI, OSAVI |
1.0 | EVI, RVI, RSI, CI red edge, NDRE, VARI, TVI, SAVI, OSAVI, TCARI, MCARI |
1.2 | EVI, NDRE, VARI, SAVI, OSAVI |
1.4 | EVI, RVI, VARI, TVI, SAVI, OSAVI, TCARI, MCARI |
1.6 | EVI, PRI, VARI, TVI, SAVI, OSAVI, TCARI, MCARI |
1.8 | EVI, PRI, VARI, TVI, SAVI, OSAVI, TCARI, MCARI |
2.0 | EVI, RSI, PRI, VARI, TVI, SAVI, OSAVI, TCARI, MCARI |
Order | Model | R2 | IOA | RMSE (g/m2) | RPD |
---|---|---|---|---|---|
0.0 | XGBoost | 0.567 | 0.858 | 27.613 | 1.458 |
RF | 0.557 | 0.803 | 27.604 | 1.459 | |
CatBoost | 0.568 | 0.847 | 28.298 | 1.423 | |
0.2 | XGBoost | 0.577 | 0.841 | 28.883 | 1.394 |
RF | 0.593 | 0.848 | 27.479 | 1.465 | |
CatBoost | 0.585 | 0.867 | 27.260 | 1.477 | |
0.4 | XGBoost | 0.533 | 0.821 | 30.817 | 1.307 |
RF | 0.577 | 0.854 | 27.078 | 1.487 | |
CatBoost | 0.520 | 0.832 | 29.992 | 1.343 | |
0.6 | XGBoost | 0.504 | 0.822 | 30.592 | 1.316 |
RF | 0.540 | 0.842 | 28.371 | 1.419 | |
CatBoost | 0.488 | 0.817 | 29.604 | 1.360 | |
0.8 | XGBoost | 0.562 | 0.854 | 27.707 | 1.453 |
RF | 0.603 | 0.859 | 25.472 | 1.581 | |
CatBoost | 0.576 | 0.859 | 26.590 | 1.514 | |
1.0 | XGBoost | 0.505 | 0.834 | 28.837 | 1.396 |
RF | 0.579 | 0.825 | 27.376 | 1.471 | |
CatBoost | 0.564 | 0.830 | 27.380 | 1.471 | |
1.2 | XGBoost | 0.197 | 0.584 | 35.726 | 1.127 |
RF | 0.234 | 0.599 | 35.067 | 1.148 | |
CatBoost | 0.196 | 0.534 | 35.799 | 1.125 | |
1.4 | XGBoost | 0.472 | 0.772 | 29.454 | 1.367 |
RF | 0.418 | 0.736 | 31.302 | 1.286 | |
CatBoost | 0.435 | 0.765 | 30.591 | 1.316 | |
1.6 | XGBoost | 0.328 | 0.709 | 35.116 | 1.147 |
RF | 0.408 | 0.737 | 32.102 | 1.254 | |
CatBoost | 0.357 | 0.708 | 33.632 | 1.197 | |
1.8 | XGBoost | 0.439 | 0.772 | 31.337 | 1.285 |
RF | 0.507 | 0.794 | 29.605 | 1.360 | |
CatBoost | 0.439 | 0.772 | 31.805 | 1.266 | |
2.0 | XGBoost | 0.572 | 0.840 | 28.064 | 1.435 |
RF | 0.527 | 0.813 | 28.262 | 1.425 | |
CatBoost | 0.488 | 0.805 | 29.529 | 1.364 |
Dataset | Number of Total Samples | Dominant Wetland Vegetation | AGB Range (g/cm2) | Regression Model | Accuracy Performance | Reference |
---|---|---|---|---|---|---|
ASD hyperspectral | 180 | Phragmites australis | 5.50–9.00 kg/m2 | PLS | R2 = 0.87 | [42] |
ASD hyperspectral | 90 | Suaeda salsa | 0.12–0.81 kg/m2 | PLS | R2 = 0.95 | [43] |
UAV hyperspectral and LiDAR | 75 | Phragmites australis | 330.13–1351.78 g/m2 | AGB = 207.098 × ln(H_p99) + 736.278 × MSAVI + 765.635 | R2 = 0.648 | [45] |
Multi-Temporal Images | 182 | / | / | RF | R2 = 0.65 | [41] |
ASD hyperspectral | 102 | Echinochloa crus-galli, Equisetum hyemale, Polygonum hydropiper | 81.35–280.02 g/m2 | XGBoost | R2 = 0.614 | Our Study |
RF | R2 = 0.673 | |||||
CatBoost | R2 = 0.635 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Tang, X.; Cui, L.; Zhai, X.; Wang, J.; Zhao, X.; Li, J.; Lei, Y.; Wang, J.; Wang, R.; et al. Estimating Aboveground Biomass of Wetland Plant Communities from Hyperspectral Data Based on Fractional-Order Derivatives and Machine Learning. Remote Sens. 2024, 16, 3011. https://doi.org/10.3390/rs16163011
Li H, Tang X, Cui L, Zhai X, Wang J, Zhao X, Li J, Lei Y, Wang J, Wang R, et al. Estimating Aboveground Biomass of Wetland Plant Communities from Hyperspectral Data Based on Fractional-Order Derivatives and Machine Learning. Remote Sensing. 2024; 16(16):3011. https://doi.org/10.3390/rs16163011
Chicago/Turabian StyleLi, Huazhe, Xiying Tang, Lijuan Cui, Xiajie Zhai, Junjie Wang, Xinsheng Zhao, Jing Li, Yinru Lei, Jinzhi Wang, Rumiao Wang, and et al. 2024. "Estimating Aboveground Biomass of Wetland Plant Communities from Hyperspectral Data Based on Fractional-Order Derivatives and Machine Learning" Remote Sensing 16, no. 16: 3011. https://doi.org/10.3390/rs16163011
APA StyleLi, H., Tang, X., Cui, L., Zhai, X., Wang, J., Zhao, X., Li, J., Lei, Y., Wang, J., Wang, R., & Li, W. (2024). Estimating Aboveground Biomass of Wetland Plant Communities from Hyperspectral Data Based on Fractional-Order Derivatives and Machine Learning. Remote Sensing, 16(16), 3011. https://doi.org/10.3390/rs16163011