Refined Modeling of Heterogeneous Medium for Ground-Penetrating Radar Simulation
Abstract
:1. Introduction
2. Methods
2.1. DEM–CFS for Heterogeneous Model Generation
2.2. Workflow of the RSA Method
- (1)
- Define the particle size of the coarse aggregate at each grade as the median of the upper and lower sieve sizes.
- (2)
- Calculate the quantity of coarse aggregates according to the proportion of the corresponding gradation and the specifically defined particle size.
- (3)
- Place non-overlapping circular particles of varying sizes randomly within the modeling domain, in line with predefined statistical quantities.
- (4)
- The circles representing coarse aggregates are discretized, and the interstitial spaces are filled with fine aggregates, represented as unit squares.
- (5)
- Upon the completion of aggregate placement, the areas not occupied by aggregates are designated as asphalt binder. Air voids are finally introduced by randomly removing squares identified as asphalt binder to achieve a pre-defined porosity.
2.3. Methods for Dielectric Constant Estimation
3. Numerical Simulation and Lab Experiment Verification
3.1. Numerical Experiments
3.2. Laboratory Experiments
3.3. Results of Relative Permittivity
3.4. Sensitivity Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Yang, Z.; Yue, Y.; Meng, X.; Liu, C.; Cui, J. Asphalt pavement characterization by GPR using an air-coupled antenna array. NDT&E Int. 2023, 133, 102726. [Google Scholar] [CrossRef]
- Zou, L.; Yi, L.; Sato, M. On the use of lateral wave for the interlayer debonding detecting in an asphalt airport pavement using a multistatic GPR system. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4215–4224. [Google Scholar] [CrossRef]
- Benedetto, A.; Tosti, F.; Bianchini Ciampoli, L.; D’Amico, F. An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Process. 2017, 132, 201–209. [Google Scholar] [CrossRef]
- Bianchini Ciampoli, L.; Tosti, F.; Economou, N.; Benedetto, F. Signal processing of GPR data for road surveys. Geoscience 2019, 9, 96. [Google Scholar] [CrossRef]
- Solla, M.; Pérez-Gracia, V.; Fontul, S. A review of GPR application on transport infrastructures: Troubleshooting and best practices. Remote Sens. 2021, 13, 672–726. [Google Scholar] [CrossRef]
- Xiong, X.; Xiao, S.; Tan, Y.; Zhang, X.; Zhang, D.; Han, M.; Wang, W. Estimation of density and moisture content in asphalt mixture based on dielectric property. Constr. Build. Mater. 2021, 298, 123518. [Google Scholar] [CrossRef]
- Alsharahi, G.; Filali Bouami, M.; Faize, A.; Louzazni, M.; Khamlichi, A.; Atounti, M. Contribution of analysis and detection the risks appearing in roads using GPR method: A case study in Morocco. Ain Shams Eng. J. 2021, 12, 1435–1450. [Google Scholar] [CrossRef]
- Diamanti, N.; Redman, D. Field observations and numerical models of GPR response from vertical pavement cracks. J. Appl. Geophys. 2012, 81, 106–116. [Google Scholar] [CrossRef]
- Benedetto, A.; Benedetto, F.; De Blasiis, M.R.; Giunta, G. Reliability of signal processing technique for pavement damages detection and classification using ground penetrating radar. IEEE Sens. J. 2005, 5, 471–480. [Google Scholar] [CrossRef]
- Alsharahi, G.; Faize, A.; Louzazni, M.; Mostapha, A.M.M.; Bayjja, M.; Driouach, A. Detection of cavities and fragile areas by numerical methods and GPR application. J. Appl. Geophys. 2019, 164, 225–236. [Google Scholar] [CrossRef]
- Zou, L.; Liu, H.; Alani, A.M.; Fang, G. Surface Permittivity Estimation of Southern Utopia Planitia by High-Frequency RoPeR in Tianwen-1 Mars Exploration. IEEE Trans. Geosci. Remote Sens. 2024, 62, 2002809. [Google Scholar] [CrossRef]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef]
- Di, Q.; Wang, M. Migration of ground-penetrating radar data with a finite-element method that considers attenuation and dispersion. Geophysics 2004, 69, 472–477. [Google Scholar] [CrossRef]
- Liu, Q.; Fan, G. Simulations of GPR in dispersive media using a frequency-dependent PSTD algorithm. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2317–2324. [Google Scholar] [CrossRef]
- Zarei, S.; Oskooi, B.; Amini, N.; Dalkhani, A.R. 2D spectral element modeling of GPR wave propagation in inhomogeneous media. J. Appl. Geophys. 2016, 133, 92–97. [Google Scholar] [CrossRef]
- Bano, M. Modelling of GPR waves for lossy media obeying a complex power law of frequency for dielectric permittivity. Geophys. Prospect. 2004, 52, 11–26. [Google Scholar] [CrossRef]
- Sihvola, A. Mixing rules with complex dielectric coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
- Shivola, A.H. Self-consistency aspects of dielectric mixing theories. IEEE Trans. Geosci. Remote Sens. 1989, 27, 403–415. [Google Scholar] [CrossRef]
- Sen, P.; Scala, C.; Cohen, M. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 1981, 46, 781–795. [Google Scholar] [CrossRef]
- Rasol, M.A.; Pérez-Gracia, V.; Fernandes, F.M.; Pais, J.C.; Santos-Assunçao, S.; Santos, C.; Sossa, V. GPR laboratory tests and numerical models to characterize cracks in cement concrete specimens, exemplifying damage in rigid pavement. Meas 2020, 158, 107662. [Google Scholar] [CrossRef]
- Wong, P.T.-W.; Lai, W.W.-L. Characterization of complex dielectric permittivity of concrete by GPR numerical simulation and spectral analysis. J. Nondestr. Eval. 2021, 41, 1–24. [Google Scholar] [CrossRef]
- Jiang, Z.; Zeng, Z.; Li, J.; Liu, F.; Li, W. Simulation and analysis of GPR signal based on stochastic media model with an ellipsoidal autocorrelation function. J. Appl. Geophys. 2013, 99, 91–97. [Google Scholar] [CrossRef]
- Li, B.; Peng, Z.; Wang, S.; Guo, L. Identification of ballast fouling status and mechanized cleaning efficiency using FDTD method. Remote Sens. 2023, 15, 3437. [Google Scholar] [CrossRef]
- Umiliaco, A.; Benedetto, A. Unsteady flow simulation of water drainage in open-graded asphalt mixtures. Procedia Soc. Behav. Sci. 2012, 53, 346–355. [Google Scholar] [CrossRef]
- Benedetto, A.; Bianchini Ciampoli, L.; Brancadoro, M.G.; Alani, A.M.; Tosti, F. A computer-aided model for the simulation of railway ballast by random sequential adsorption process. Comput.-Aided Civ. Infrastruct. Eng. 2017, 33, 243–257. [Google Scholar] [CrossRef]
- Yan, B.; Regueiro, R.A.; Sture, S. Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets. Eng. Comput. 2010, 27, 519–550. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Arcone, S.; Fu, L.; Huang, Q. Radar wave scattering loss in a densely packed discrete random medium: Numerical modeling of a box-of-boulders experiment in the Mie regime. J. Appl. Geophys. 2013, 99, 68–75. [Google Scholar] [CrossRef]
- Özkap, K.; Pekşen, E.; Kaplanvural, İ.; Çaka, D. 3D scanner technology implementation to numerical modeling of GPR. J. Appl. Geophys. 2020, 179, 104086. [Google Scholar] [CrossRef]
- Fan, J.; Ma, T.; Zhu, Y.; Zhang, Y. Ground penetrating radar detection of buried depth of pavement internal crack in asphalt surface: A study based on multiphase heterogeneous model. Meas 2023, 221, 113531. [Google Scholar] [CrossRef]
- Dai, Q.; Lee, Y.H.; Sun, H.-H.; Qian, J.; Ow, G.; Yusof, M.L.M.; Yucel, A.C. A Deep Learning-Based GPR Forward Solver for Predicting B-Scans of Subsurface Objects. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4025805. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y. Ground-penetrating radar wavefield simulation via physics-informed neural network solver. Geophysics 2023, 88, KS47–KS57. [Google Scholar] [CrossRef]
- Piuzzi, G.P.; Scheuermann Filho, H.C.; Villena Del Carpio, J.A.; Consoli, N.C. The effects of porosity, asphalt content and fiberglass incorporation on the tensile strength and resilient modulus of asphalt concrete blends. Geotext. Geomembr. 2021, 49, 864–870. [Google Scholar] [CrossRef]
- Liang, X.; Yu, X.; Jin, Y.; Huang, J. Compactness prediction of asphalt concrete using Ground-Penetrating Radar: A comparative study. Constr. Build. Mater. 2022, 361, 129588. [Google Scholar] [CrossRef]
- Salinas Naval, V.; Santos-Assunçao, S.; Pérez-Gracia, V. GPR clutter amplitude processing to detect shallow geological targets. Remote Sens. 2018, 10, 88. [Google Scholar] [CrossRef]
- Xie, Y.; Yuan, M.; Zhao, Y. Analysis of mechanism and evaluation of asphalt mixtures segregation based on DEM simulation. Constr. Build. Mater. 2023, 398, 132500. [Google Scholar] [CrossRef]
- Al Khateeb, L.; Anupam, K.; Erkens, S.; Scarpas, T. Micromechanical simulation of porous asphalt mixture compaction using discrete element method (DEM). Constr. Build. Mater. 2021, 301, 124305. [Google Scholar] [CrossRef]
- Kunz, K.S.; Luebbers, R.J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press: Boca Raton, FL, USA, 1993; p. 480. [Google Scholar]
- Wang, S.; Zhao, S.; Al-Qadi, I.L. Real-time density and thickness estimation of thin asphalt pavement overlay during compaction using Ground Penetrating Radar data. Surv. Geophys. 2019, 41, 431–445. [Google Scholar] [CrossRef]
- Parkhomenko, E.I. Electrical Properties of Rocks; Keller, G.V., Ed.; Plenum Press: New York, NY, USA, 1967; p. 314. [Google Scholar]
- Cao, Q.; Al-Qadi, I.L. Development of a numerical model to predict the dielectric properties of heterogeneous asphalt concrete. Sensors 2021, 21, 2643–2657. [Google Scholar] [CrossRef]
- Meakin, P.; Jullien, R. Random-sequential adsorption of disks of different sizes. Phys. Rev. A 1992, 46, 2029–2038. [Google Scholar] [CrossRef]
- Cui, L.; Ling, T.; Zhang, Z.; Xin, J.; Li, R. Development of asphalt mixture density estimation model applicable to wide air void content range using ground penetrating radar. Constr. Build. Mater. 2021, 293, 123521–123530. [Google Scholar] [CrossRef]
- Benedetto, A.; Pajewski, L. Civil Engineering Applications of Ground Penetrating Radar; Springer International Publishing: Cham, Switzerland, 2015; p. 371. [Google Scholar]
- Li, J.; Zeng, Z.; Huang, L.; Liu, F. GPR simulation based on complex frequency shifted recursive integration PML boundary of 3D high order FDTD. Comput. Geosci. 2012, 49, 121–130. [Google Scholar] [CrossRef]
Parameter | Description | Value | Unit |
---|---|---|---|
E | Young’s modulus | 55 | GPa |
ν | Poisson’s ratio | 0.35 | - |
ρ | Density | 2.60–3.20 | kg/m3 |
Re | Restitution coefficient | 0.3 | - |
μs | Static friction coefficient | 0.7 | - |
μr | Rolling friction coefficient | 0.01 | - |
γ | Surface energy density | 20 | J/m2 |
Step | Description |
---|---|
1 | Generate a physics-based coarse aggregate model using the discrete element method (DEM), and then discretize it into Yee grids using a voxelization algorithm. |
2 | Calculate the average radius for fine aggregates larger than the grid, and incorporate them into the discretized model by replacing the interstitial spaces with similarly sized clusters. |
3 | Fuse the sub-grid components into aggregate–asphalt and asphalt–void materials. Define their dielectric constant distribution, calculate the voxel counts for each dielectric constant using Equations (6) and (7), and position these voxels adjacent to the coarse aggregate voxels. |
4 | Upon the completion of the component fusion strategy (CFS), coarse aggregate regions are segmented using the watershed algorithm, with a variable dielectric constant assigned to each region to ensure that the overall distribution follows the expected normal curve. |
Sieve Size (mm) | Passing Ratio (%) | |||
---|---|---|---|---|
Type 1-Top | Type 1-Bottom | Type 2 | Type 3 | |
26.5 | 100.0 | 100.0 | 100.0 | 100.0 |
19 | 100.0 | 97.5 | 100.0 | 100.0 |
16 | 100.0 | 90.0 | 100.0 | 100.0 |
13.2 | 87.0 | 80.0 | 100.0 | 87.0 |
9.5 | 63.7 | 64.0 | 97.0 | 63.7 |
4.75 | 22.0 | 22.0 | 29.0 | 22.0 |
2.36 | 16.5 | 15.0 | 19.0 | 16.5 |
1.18 | 14.0 | 13.0 | 16.0 | 14.0 |
0.075 | 4.0 | 4.0 | 7.0 | 4.0 |
Mixture Type | φa | Gmm | Gb | Pb | Gse | |||
---|---|---|---|---|---|---|---|---|
Type 1-top | 20.0% | 2.74 | 1.042 | 4.0% | 2.93 | 6.3 kg | 6.5 | 1.2 |
Type 1-bottom | 25.0% | 2.73 | 4.2% | 9.0 kg | 6.5 | 1.1 | ||
Type 2 | 10.5% | 2.66 | 6.0% | 16.2 kg | 8.5 | 2.1 | ||
Type 3 | 6.0% | 2.69 | 5.0% | 16.4 kg | 8.7 | 2.2 |
Mixture Type | Type 1 | Type 2 | Type 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
Thickness (mm) | 102.29 | 102.52 | 100.48 | 97.30 | 90.70 | 92.90 | 96.87 | 98.12 | 96.99 |
Mixture Type | Theoretical Value | Lab Test | DEM–CFS Model | RSA Model | |||
---|---|---|---|---|---|---|---|
Value | mRE | Value | mRE | Value | mRE | ||
Type 1 | 6.33 | 6.39 ± 0.16 | 1.93% | 6.47 ± 0.2 | 3.38% | 8.02 ± 0.1 | 26.63% |
Type 2 | 7.55 | 7.56 ± 0.11 | 1.07% | 7.53 ± 0.1 | 0.65% | 8.25 ± 0.1 | 9.27% |
Type 3 | 8.34 | 8.21 ± 0.39 | 4.40% | 8.29 ± 0.1 | 1.25% | 8.60 ± 0.1 | 3.10% |
Mixture Type | Modeling Information | Theoretical Value | Simulation Results | |||
---|---|---|---|---|---|---|
φa | μ1 | μ2 | Value | mRE | ||
Mix 1 | 6% | 9.5 | 2.6 | 8.18 | 8.18 ± 0.1 | 0.83% |
Mix 2 | 8% | 9.0 | 2.3 | 7.92 | 7.99 ± 0.1 | 0.96% |
Mix 3 | 10% | 8.5 | 2.1 | 7.67 | 7.74 ± 0.1 | 0.92% |
Mix 4 | 12% | 8.0 | 1.7 | 7.41 | 7.42 ± 0.1 | 0.53% |
Mix 5 | 14% | 7.0 | 1.4 | 7.16 | 7.14 ± 0.1 | 0.43% |
Mix 6 | 16% | 6.7 | 1.3 | 6.92 | 6.93 ± 0.1 | 0.26% |
Mix 7 | 18% | 6.3 | 1.2 | 6.67 | 6.74 ± 0.1 | 1.05% |
Mix 8 | 20% | 6.0 | 1.2 | 6.43 | 6.41 ± 0.1 | 0.31% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Dai, D.; Zou, L.; He, Q.; Meng, X.; Chen, J. Refined Modeling of Heterogeneous Medium for Ground-Penetrating Radar Simulation. Remote Sens. 2024, 16, 3010. https://doi.org/10.3390/rs16163010
Liu H, Dai D, Zou L, He Q, Meng X, Chen J. Refined Modeling of Heterogeneous Medium for Ground-Penetrating Radar Simulation. Remote Sensing. 2024; 16(16):3010. https://doi.org/10.3390/rs16163010
Chicago/Turabian StyleLiu, Hai, Dingwu Dai, Lilong Zou, Qin He, Xu Meng, and Junhong Chen. 2024. "Refined Modeling of Heterogeneous Medium for Ground-Penetrating Radar Simulation" Remote Sensing 16, no. 16: 3010. https://doi.org/10.3390/rs16163010
APA StyleLiu, H., Dai, D., Zou, L., He, Q., Meng, X., & Chen, J. (2024). Refined Modeling of Heterogeneous Medium for Ground-Penetrating Radar Simulation. Remote Sensing, 16(16), 3010. https://doi.org/10.3390/rs16163010