Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data
Abstract
:1. Introduction
2. Study Areas and Dataset
2.1. Study Areas and Fire Events
2.2. Earth Observation Products
3. Methods
4. Results
5. Discussion
- Application of the same methodology using other spectral indices for the detection of burnt areas:
- Improve the use of separability/similarity indices to identify burned/unburned thresholds;
- Deepen the analysis, based on the methodology used, also for the identification of fire severity classes within the burned category.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mouillot, F.; Field, C.B. Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century. Glob. Chang. Biol. 2005, 11, 398–420. [Google Scholar] [CrossRef]
- Kolden, C.A.; Weisberg, P.J. Assessing accuracy of manually mapped wildfire perimeters in topographically dissected areas. Fire Ecol. 2007, 3, 22–31. [Google Scholar] [CrossRef]
- Turco, M.; Llasat, M.C.; Tudela, A.; Castro, X.; Provenzale, A. Decreasing fires in a mediterranean region (1970–2010, NE Spain). Nat. Hazards Earth Syst. Sci. 2013, 13, 649–652. [Google Scholar] [CrossRef]
- Short, K.C. Sources and implications of bias and uncertainty in a century of us wildfire activity data. Int. J. Wildland Fire 2015, 24, 883–891. [Google Scholar] [CrossRef]
- Turco, M.; Herrera, S.; Tourigny, E.; Chuvieco, E.; Provenzale, A. A comparison of remotely-sensed and inventory datasets for burned area in Mediterranean Europe. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101887. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Llorens, R.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. Relationship between soil burn severity in forest fires measured in situ and through spectral indices of remote detection. Forests 2019, 10, 5. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A Remote Sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Chanussot, J. Burnt-Net: Wildfire burned area mapping with single post-fire Sentinel-2 data and deep learning morphological neural network. Ecol. Indic. 2022, 140, 108999. [Google Scholar] [CrossRef]
- Lee, C.; Park, S.; Kim, T.; Liu, S.; Md Reba, M.N.; Oh, J.; Han, Y. Machine Learning-Based Forest Burned Area Detection with Various Input Variables: A Case Study of South Korea. Appl. Sci. 2022, 12, 10077. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martin, M.P.; Palacios, A. Assessment of Different Spectral Indices in the Red-near-Infrared Spectral Domain for Burned Land Discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Filipponi, F. Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy Wildfires. Remote Sens. 2019, 11, 622. [Google Scholar] [CrossRef]
- Pacheco, A.D.P.; da Silva Junior, A.J.; Ruiz-Armenteros, A.M.; Henriques, R.F.F.; de Oliveira Santos, I. Analysis of Spectral Separability for Detecting Burned Areas Using Landsat-8 OLI/TIRS Images under Different Biomes in Brazil and Portugal. Forests 2023, 14, 663. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z.; Mitri, G.H. An object-based approach for fire history reconstruction by using three generations of landsat sensors. Remote Sens. 2014, 6, 5480–5496. [Google Scholar] [CrossRef]
- Liu, J.; Maeda, E.E.; Wang, D.; Heiskanen, J. Sensitivity of Spectral Indices on Burned Area Detection using Landsat Time Series in Savannas of Southern Burkina Faso. Remote Sens. 2021, 13, 2492. [Google Scholar] [CrossRef]
- Farhadi, H.; Mokhtarzade, M.; Ebadi, H.; AsghariBeirami, B. Rapid and automatic burned area detection using sentinel-2 time-series images in google earth engine cloud platform: A case study over the Andika and Behbahan Regions, Iran. Environ. Monit. Assess. 2022, 194, 369. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Dragozi, E.; Gitas, I.Z.; Stavrakoudis, D.G.; Theocharis, J.B. Burned area mapping using support vector machines and the FuzCoC feature selection method on VHR IKONOS imagery. Remote Sens. 2014, 6, 12005–12036. [Google Scholar] [CrossRef]
- Pereira, A.A.; Pereira, J.M.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; De Carvalho, L.M.T. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 2017, 9, 1161. [Google Scholar] [CrossRef]
- Ba, R.; Song, W.; Li, X.; Xie, Z.; Lo, S. Integration of multiple spectral indices and a neural network for burned area mapping based on MODIS data. Remote Sens. 2019, 11, 326. [Google Scholar] [CrossRef]
- Knopp, L.; Wieland, M.; Rättich, M.; Martinis, S. A deep learning approach for burned area segmentation with Sentinel-2 data. Remote Sens. 2020, 12, 2422. [Google Scholar] [CrossRef]
- Sismanis, M.; Chadoulis, R.-T.; Manakos, I.; Drosou, A. An Unsupervised Burned Area Mapping Approach Using Sentinel-2 Images. Land. 2023, 12, 379. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Measuring and remote sensing of burn severity. In Proceedings of the Joint Fire Science Conference and Workshop; Neuenschwander, L.F., Ryan, K.C., Eds.; University of Idaho and the International Association of Wildland Fire: Moscow, ID, USA, 1999; Volume II, p. 284. [Google Scholar]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Van Dijk, D.; Shoaie, S.; van Leeuwen, T.; Veraverbeke, S. Spectral signature analysis of false positive burned area detection from agricultural harvests using Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102296. [Google Scholar] [CrossRef]
- Key, C.; Benson, N.C. The Normalized Burn Ratio (NBR): A Landsat TM Radiometric Measure of Burn Severity. Report, U.S. Geol. Survey. Available online: http://nrmsc.usgs.gov/research/ndbr.htm (accessed on 22 June 2024).
- Fassnacht, F.E.; Schmidt-Riese, E.; Kattenborn, T.; Hernández, J. Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird’s eye (UAS) perspective. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102262. [Google Scholar] [CrossRef]
- He, K.; Shen, X.; Merow, C.; Nikolopoulos, E.; Gallagher, R.V.; Yang, F.; Anagnostou, E.N. Improving fire severity prediction in south-eastern Australia using vegetation specific information. Nat. Hazards Earth Syst. Sci. Discuss. 2023, 2023, 1–26. [Google Scholar]
- Goodwin, N.R.; Collett, L.J. Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia. Remote Sens. Environ. 2014, 148, 206–221. [Google Scholar] [CrossRef]
- Cillis, G.; Nolè, G.; Lanorte, A.; Santarsiero, V.; Tucci, B.; Scorza, F.; Murgante, B. Soil erosion and land degradation in rural environment: A preliminary GIS and remote-sensed approach. Lect. Notes Comput. Sci. 2021, 12954, 682–694. [Google Scholar]
- Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 42–51. [Google Scholar] [CrossRef]
- Kovács, K.D. Evaluation of burned areas with sentinel-2 using snap: The case of Kineta and Mati, Greece, July 2018. Geogr. Tech. 2019, 14, 20–38. [Google Scholar] [CrossRef]
- Copernicus Emergency Management Service–Mapping, Brienza. Available online: https://emergency.copernicus.eu/mapping/ems-product-component/EMSR213_19BRIENZA_02GRADING_MAP/1 (accessed on 2 June 2024).
- Copernicus Emergency Management Service–Mapping, San Fili Rende. Available online: https://emergency.copernicus.eu/mapping/ems-product-component/EMSR213_22SANFILIRENDE_02GRADING_MAP/1 (accessed on 2 June 2024).
- Copernicus Emergency Management Service–Mapping, TancaAltara. Available online: https://emergency.copernicus.eu/mapping/ems-product-component/EMSR374_AOI01_GRA_PRODUCT_r1_RTP01/1 (accessed on 2 June 2024).
- Li, X.; Li, J.; Haghani, M. Application of Remote Sensing Technology in Wildfire Research: Bibliometric Perspective. Fire Technol. 2024, 60, 579–616. [Google Scholar] [CrossRef]
- Copernicus Sentinel-2 Collection 1 MSI Level-2A (L2A). Available online: https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a (accessed on 5 June 2024).
- Copernicus Emergency Management Service. Available online: https://emergency.copernicus.eu/ (accessed on 10 June 2024).
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Soverel, N.O.; Perrakis DD, B.; Coops, N.C. Estimating Burn Severity from Landsat dNBR and RdNBR Indices Across Western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Cansler, C.A.; McKenzie, D. How Robust Are Burn Severity Indices When Applied in a New Region? Evaluation of Alternate Field-Based and Remote Sensing Methods. Remote Sens. 2012, 4, 456–483. [Google Scholar] [CrossRef]
- Harvey, B.J.; Andrus, R.A.; Anderson, S.C. Incorporating Biophysical Gradients and Uncertainty into Burn Severity Maps in a Temperate Fire-Prone Forested Region. Ecosphere 2019, 10, e02600. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of tests for spatial dependence in linear regression models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Haining, R.P. Spatial Autocorrelation. In International Encyclopedia of the Social & Behavioral Sciences; Smelser, N.J., Baltes, P.B., Eds.; Pergamon: Amsterdam, The Netherlands, 2001; pp. 14763–14768. [Google Scholar]
- Goodchild, M.F. Spatial Autocorrelation. Concepts and Techniques in Modern Geography; Geo Books: Norwich, UK, 1986. [Google Scholar]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Geary, R.C. The Contiguity Ratio and Statistical Mapping. Inc. Stat. 1954, 5, 115. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; SpringerLink: Berlin/Heidelberg, Germany, 1988. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L.; Getis, A. Spatial statistical analysis and geographic information systems. Ann. Reg. Sci. 1992, 26, 19–33. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecological association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Sørensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Skr. 1948, 5, 1–34. [Google Scholar]
- Han, A.; Qing, S.; Bao, Y.; Na, L.; Bao, Y.; Liu, X.; Zhang, J.; Wang, C. Short-Term Effects of Fire Severity on Vegetation Based on Sentinel-2 Satellite Data. Sustainability 2021, 13, 432. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data; CRC Press: Lewis Publishers: Boca Raton, FL, USA, 1998. [Google Scholar]
- Liu, P.; Liu, Y.; Guo, X.; Zhao, W.; Wu, H.; Xu, W. Burned area detection and mapping using time series Sentinel-2 multispectral images. Remote Sens. Environ. 2023, 296, 113753. [Google Scholar] [CrossRef]
- Lee, D.; Son, S.; Bae, J.; Park, S.; Seo, J.; Seo, D.; Lee, Y.; Kim, J. Single-Temporal Sentinel-2 for Analyzing Burned Area Detection Methods: A Study of 14 Cases in Republic of Korea Considering Land Cover. Remote Sens. 2024, 16, 884. [Google Scholar] [CrossRef]
- Nguyen Van, L.; Tran, V.N.; Nguyen, G.V.; Yeon, M.; Do, M.T.-T.; Lee, G. Enhancing wildfire mapping accuracy using mono-temporal Sentinel-2 data: A novel approach through qualitative and quantitative feature selection with explainable AI. Ecol. Inform. 2024, 81, 102601. [Google Scholar] [CrossRef]
- Telesca, L.; Lanorte, A.; Lasaponara, R. Investigating dynamical trends in burned and unburned vegetation covers using SPOT-VGT NDVI data. J. Geophys. Eng. 2007, 4, 128–138. [Google Scholar] [CrossRef]
- Lanorte, A.; Lasaponara, R.; Lovallo, M.; Telesca, L. Fisher–Shannon information plane analysis of SPOT/VEGETATION normalized difference vegetation index (NDVI) time series to characterize vegetation recovery after fire disturbance. Int. J. Appl. Earth Obs. 2014, 26, 441–446. [Google Scholar] [CrossRef]
- Li, X.; Lanorte, A.; Lasaponara, R.; Lovallo, M.; Song, W.; Telesca, L. Fisher–Shannon and detrended fluctuation analysis of MODIS normalized difference vegetation index (NDVI) time series of fire-affected and fire-unaffected pixels. Geomat. Nat. Hazards Risk 2017. [Google Scholar] [CrossRef]
Location | Data | Burned Area (ha) 1 | Centroid Coordinates (EPSG: 4326) |
---|---|---|---|
Brienza | 16/21 August 2017 | 229.8 | 40.48925895 N, 15.59848536 E |
San Fili-Rende | 27/31 August 2017 | 582.1 | 39.35448712 N, 16.16220215 E |
Tanca-Altara | 28 July–1 August 2019 | 575.1 | 40.52711014 N, 9.65008056 E |
Location | Pre-Fire Image | Post-Fire Image |
---|---|---|
Brienza | 1 August 2017 | 26 August 2017 |
San Fili-Rende | 29 July 2017 | 2 September 2017 |
Tanca-Altara | 13 July 2019 | 2 August 2019 |
Brienza | San Fili Rende | Tanca Altara | ||||||
---|---|---|---|---|---|---|---|---|
dNBRGi Index | ||||||||
Lag | Threshold | SDS Index | Lag | Threshold | SDS Index | Lag | Threshold | SDS Index |
1 | 31.57 | 0.993 | 1 | 10.73 | 0.983 | 1 | 16.68 | 0.948 |
2 | 51.7 | 0.99 | 2 | 24.46 | 0.979 | 2 | 25.73 | 0.926 |
3 | 64.1 | 0.99 | 3 | 39.13 | 0.974 | 3 | 33.58 | 0.909 |
4 | 74.21 | 0.99 | 4 | 52.19 | 0.971 | |||
5 | 82.5 | 0.99 | 5 | 63.38 | 0.968 | |||
dGiNBR Index | ||||||||
Lag | Threshold | SDS Index | Lag | Threshold | SDS Index | Lag | Threshold | SDS Index |
1 | 3.93 | 0.99 | 1 | 2.97 | 0.984 | 1 | 7.71 | 0.946 |
2 | 6.3 | 0.99 | 2 | 6.2 | 0.978 | 2 | 11.94 | 0.926 |
3 | 8.62 | 0.99 | 3 | 9.29 | 0.973 | 3 | 15.33 | 0.91 |
4 | 9.98 | 0.99 | 4 | 11.99 | 0.97 | |||
5 | 10.67 | 0.99 | 5 | 14.34 | 0.968 |
CEMS VALIDATION | dNBR | dNBRGi | dGiNBR | |||
---|---|---|---|---|---|---|
BRIENZA | Burned pixel | 5825 | 45,333 | 7233 | 7856 | |
Burned pixel without croplands | 3933 | 29,339 | 4940 | 5699 | ||
Total burned/unburned pixels: 220,500 | Total Cropland pixel: 64,834 | |||||
SAN FILI | Burned pixel | 13,365 | 122,975 | 19,125 | 17,620 | |
Burned pixel without croplands | 6137 | 85,565 | 9397 | 8448 | ||
Total burned/unburned pixels: 319,970 | Total Cropland pixel: 105,804 | |||||
TANCA | Burned pixel | 14,406 | 13,847 | 10,466 | 10,399 | |
Burned pixel without croplands | 2593 | 1930 | 1904 | 1824 | ||
Total burned/unburned pixel: 83,678 | Total Cropland pixel: 79,454 |
N. of Pixel | % of Pixel | |||||
---|---|---|---|---|---|---|
BRIENZA | dNBR | dNBRGi | dGiNBR | dNBR | dNBRGi | dGiNBR |
False-positive | 39,521 | 1515 | 2140 | 18.41 | 0.71 | 1.00 |
False-positive without agricultural areas | 25,417 | 1090 | 1793 | 16.75 | 0.72 | 1.18 |
False positive in agricultural areas | 14,104 | 425 | 347 | 22.41 | 0.68 | 0.55 |
False-negative | 13 | 107 | 109 | 0.22 | 1.84 | 1.87 |
SAN FILI-RENDE | dNBR | dNBRGi | dGiNBR | dNBR | dNBRGi | dGiNBR |
False-positive | 110,092 | 6762 | 5280 | 35.91 | 2.21 | 1.72 |
False-positive without agricultural areas | 79,633 | 3579 | 2650 | 38.28 | 2.36 | 1.27 |
False-positive in agricultural areas | 30,459 | 3183 | 2630 | 30.90 | 3.23 | 2.67 |
False-negative | 482 | 1002 | 1025 | 3.61 | 7.50 | 7.67 |
TANCA-ALTARA | dNBR | dNBRGi | dGiNBR | dNBR | dNBRGi | dGiNBR |
False-positive | 3568 | 205 | 144 | 5.15 | 0.30 | 0.21 |
False-positive without agricultural areas | 156 | 97 | 76 | 9.56 | 0.06 | 4.66 |
False-positive in agricultural areas | 3412 | 108 | 68 | 5.04 | 0.16 | 0.10 |
False-negative | 4127 | 4145 | 4151 | 28.65 | 28.77 | 28.81 |
Accuracy Metrics | dNBR | dNBRGi | dGiNBR |
---|---|---|---|
Brienza | |||
User accuracy burned class | 0.128 | 0.791 | 0.728 |
User accuracy unburned class | 1.000 | 0.999 | 0.999 |
Producer accuracy burned class | 0.998 | 0.982 | 0.981 |
Producer accuracy unburned class | 0.816 | 0.993 | 0.990 |
Overall accuracy | 0.821 | 0.993 | 0.990 |
Kappa (k) | 0.189 | 0.872 | 0.830 |
San Fili Rende | |||
User accuracy burned class | 0.105 | 0.646 | 0.700 |
User accuracy unburned class | 0.998 | 0.997 | 0.997 |
Producer accuracy burned class | 0.964 | 0.925 | 0.923 |
Producer accuracy unburned class | 0.641 | 0.978 | 0.983 |
Overall accuracy | 0.654 | 0.976 | 0.980 |
Kappa (k) | 0.123 | 0.749 | 0.786 |
Tanca Altara | |||
User accuracy burned class | 0.742 | 0.980 | 0.986 |
User accuracy unburned class | 0.941 | 0.943 | 0.943 |
Producer accuracy burned class | 0.714 | 0.712 | 0.712 |
Producer accuracy unburned class | 0.948 | 0.997 | 0.998 |
Overall accuracy | 0.908 | 0.948 | 0.949 |
Kappa (k) | 0.672 | 0.795 | 0.798 |
N. of Pixel | % of Pixel | N. of Pixel | % of Pixel | ||||
---|---|---|---|---|---|---|---|
dNBR | dNBRGi | dGiNBR | dNBRGi | dGiNBR | |||
lag 3 | 88 | 97 | 1.51 | 1.67 | |||
Brienza | 13 | 0.22 | lag 4 | 92 | 102 | 1.58 | 1.75 |
lag 5 | 107 | 109 | 1.84 | 1.87 | |||
San Fili Rende | lag 3 | 712 | 780 | 5.33 | 5.84 | ||
482 | 3.61 | lag 4 | 838 | 860 | 6.27 | 6.43 | |
lag 5 | 1002 | 1025 | 7.50 | 7.67 | |||
Tanca Altara | lag 1 | 4129 | 4125 | 28.66 | 28.63 | ||
4127 | 28.65 | lag 2 | 4136 | 4139 | 28.71 | 28.73 | |
lag 3 | 4145 | 4151 | 28.77 | 28.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanorte, A.; Nolè, G.; Cillis, G. Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data. Remote Sens. 2024, 16, 2943. https://doi.org/10.3390/rs16162943
Lanorte A, Nolè G, Cillis G. Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data. Remote Sensing. 2024; 16(16):2943. https://doi.org/10.3390/rs16162943
Chicago/Turabian StyleLanorte, Antonio, Gabriele Nolè, and Giuseppe Cillis. 2024. "Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data" Remote Sensing 16, no. 16: 2943. https://doi.org/10.3390/rs16162943
APA StyleLanorte, A., Nolè, G., & Cillis, G. (2024). Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data. Remote Sensing, 16(16), 2943. https://doi.org/10.3390/rs16162943