Spatial Distribution of Cropping Systems in South Asia Using Time-Series Satellite Data Enriched with Ground Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Reference Data
3. Methodology
3.1. Preparation of Satellite Data and Running Machine Learning Algorithm
3.2. Spectral Matching Techniques for Class Identification and Labeling
3.2.1. Ideal Spectral Signatures (ISS)
3.2.2. Class Spectra Signatures (CSS)
3.2.3. Matching CSS with ISS to Group Classes Using SMTs
3.3. Accuracy Assessment
3.4. Sub-Pixel Areas
4. Results
4.1. Cropping Systems
4.2. Spatial Distribution of Each Cropping System
4.3. Country-Wise Cropping Systems
4.4. Comparison of Remote Sensing-Derived Crop Area Statistics to Survey Based National Statistics
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connor, D.J.; Loomis, R.S.; Cassman, K.G. Crop Ecology: Productivity and Management in Agricultural Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Yang, T.; Siddique, K.H.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.; Balmford, A.; Bateman, I.; Benton, T.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Friedl, M.; Frolking, S.; Ramankutty, N.; Nelson, A.; Gumma, M. Mapping Asian Cropping Intensity with MODIS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3373–3379. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Khan, A.; Hansen, M.C.; Potapov, P.; Stehman, S.V.; Chatta, A.A. Landsat-based wheat mapping in the heterogeneous cropping system of Punjab, Pakistan. Int. J. Remote Sens. 2016, 37, 1391–1410. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.-C.; Becker-Reshef, I.; Justice, C.; Kussul, N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Seinn, S.; Ahmad, M.; Thapa, G.; Shrestha, R. Farmers Adaptation to Rainfall Variability and Salinity through Agronomic Practices in Lower Ayeyarwady Delta, Myanmar. J. Earth Sci. Clim. Chang. 2015, 6, 2157–7617. [Google Scholar]
- Parr, J.; Stewart, B.; Hornick, S.; Singh, R. Improving the sustainability of dryland farming systems: A global perspective. In Advances in Soil Science; Springer: Berlin/Heidelberg, Germany, 1990; pp. 1–8. [Google Scholar]
- Salvati, L.; Kosmas, C.; Kairis, O.; Karavitis, C.; Acikalin, S.; Belgacem, A.; Solé-Benet, A.; Chaker, M.; Fassouli, V.; Gokceoglu, C. Unveiling soil degradation and desertification risk in the Mediterranean basin: A data mining analysis of the relationships between biophysical and socioeconomic factors in agro-forest landscapes. J. Environ. Plan. Manag. 2015, 58, 1789–1803. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Palao, L.K.; Nelson, A.; Gumma, M.K.; Paliwal, A.; Win, K.T.; Nge, K.H.; Johnson, D.E. Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices. Comput. Electron. Agric. 2020, 175, 105595. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Rao, M.N.; Mohammed, I.A.; Whitbread, A.M. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data. Int. J. Digit. Earth 2016, 9, 981–1003. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Hanjra, M.A.; Dheeravath, V.; Gumma, M. A holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches. Remote Sens. 2010, 2, 211–261. [Google Scholar] [CrossRef]
- Mao, Z.-H.; Deng, L.; Duan, F.-Z.; Li, X.-J.; Qiao, D.-Y. Angle effects of vegetation indices and the influence on prediction of SPAD values in soybean and maize. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102198. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Z.; Ali Baig, M.H.; Wang, Y.; Li, Y.; Chen, Y. Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms. Land Use Policy 2019, 88, 104190. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore III, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Biradar, C.M.; Dong, J.; Qin, Y.; Menarguez, M.A.; Zhou, Y.; Zhang, Y.; Jin, C.; Wang, J. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Sci. Total Environ. 2017, 579, 82–92. [Google Scholar] [CrossRef]
- Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of South Asia using MODIS multitemporal data. J. Appl. Remote Sens. 2011, 5, 053547. [Google Scholar] [CrossRef]
- Sun, H.; Xu, A.; Lin, H.; Zhang, L.; Mei, Y. Winter wheat mapping using temporal signatures of MODIS vegetation index data. Int. J. Remote Sens. 2012, 33, 5026–5042. [Google Scholar] [CrossRef]
- Huke, R.E. Rice Area by Type of Culture: South, Southeast, and East Asia; International Rice Research Institute: Los Banos, CA, USA; Laguna, Philippines, 1982. [Google Scholar]
- Huke, R.E.; Huke, E.H. Rice Area by Type of Culture: South, Southeast, and East Asia, A Revised and Updated Data Base; International Rice Research Institute: Los Banos, CA, USA; Laguna, Philippines, 1997. [Google Scholar]
- Aselman, I.; Crutzen, P.J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 1989, 8, 307–358. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore Iii, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Takeuchi, W.; Yasuoka, Y. Sub-pixel mapping of rice paddy fields over Asia using MODIS time series. In Remote Sensing of Global Croplands for Food Security (Remote Sensing Applications Series); Thenkabail, P., Lyon, J.G., Turral, H., Biradar, C., Thenkabail, P., Eds.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Sun, H.; Huang, J.; Huete, A.R.; Peng, D.; Zhang, F. Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. J. Zhejiang Univ. Sci. A 2009, 10, 1509–1522. [Google Scholar] [CrossRef]
- Frolking, S.; Yeluripati, J.B.; Douglas, E. New district-level maps of rice cropping in India: A foundation for scientific input into policy assessment. Field Crops Res. 2006, 98, 164–177. [Google Scholar] [CrossRef]
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 3801–3810. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Badhwar, G.D. Automatic corn-soybean classification using landsat MSS data. I. Near-harvest crop proportion estimation. Remote Sens. Environ. 1984, 14, 15–29. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2003, 94, 205–220. [Google Scholar] [CrossRef]
- Thiruvengadachari, S.; Sakthivadivel, R. Satellite Remote Sensing for Assessment of Irrigation System Performance: A Case Study in India; Research Report 9; International Irrigation Management Institute: Colombo, Sri Lanka, 1997. [Google Scholar]
- Thenkabail, P.S. Global Croplands and their Importance for Water and Food Security in the Twenty-first Century: Towards an Ever Green Revolution that Combines a Second Green Revolution with a Blue Revolution. Remote Sens. 2010, 2, 2305–2312. [Google Scholar] [CrossRef]
- Dheeravath, V.; Thenkabail, P.S.; Chandrakantha, G.; Noojipady, P.; Reddy, G.P.O.; Biradar, C.M.; Gumma, M.K.; Velpuri, M. Irrigated areas of India derived using MODIS 500 m time series for the years 2001–2003. ISPRS J. Photogramm. Remote Sens. 2010, 65, 42–59. [Google Scholar] [CrossRef]
- Goetz, S.J.; Varlyguin, D.; Smith, A.J.; Wright, R.K.; Prince, S.D.; Mazzacato, M.E.; Tringe, J.; Jantz, C.; Melchoir, B. Application of Multitemporal Landsat Data to Map and Monitor Land Cover and Land Use Change in the Chesapeake Bay Watershed. In Analysis of Multi-Temporal Remote Sensing Images; Smits, P., Bruzzone, L., Eds.; World Scientific Publishers: Singapore, 2024; pp. 223–232. [Google Scholar]
- Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ. 2005, 95, 317–341. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.B.; Noojipady, P.; Dheeravath, V.; Yuanjie, L. Influence of Resolution in Irrigated Area Mapping and Area Estimations. Photogramm. Eng. Remote Sens. 2009, 75, 1383–1395. [Google Scholar] [CrossRef]
- Varlyguin, D.; Wright, R.; Goetz, S.J.; Prince, S.D. Advances in Land Cover Classification: A Case Study from the Mid-Atlantic Region. In Proceedings of the American Society for Photogrammetry and Remote Sensing, St. Louis, MO, USA, 23–27 April 2001; Volume 7. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=278fb1793b69fd19ffad89f70f846cf39dfdbf6f (accessed on 11 February 2024).
- Knight, J.F.; Lunetta, R.L.; Ediriwickrema, J.; Khorram, S. Regional Scale Land-Cover Characterization using MODIS-NDVI 250 m Multi-Temporal Imagery: A Phenology Based Approach. GISci. Remote Sens. 2006, 43, 1–23. [Google Scholar] [CrossRef]
- Biggs, T.W.; Thenkabail, P.S.; Gumma, M.K.; Scott, C.A.; Parthasaradhi, G.R.; Turral, H.N. Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int. J. Remote Sens. 2006, 27, 4245–4266. [Google Scholar] [CrossRef]
- Gaur, A.; Biggs, T.W.; Gumma, M.K.; Parthasaradhi, G.; Turral, H. Water scarcity effects on equitable water distribution and land use in Major Irrigation Project—A Case study in India. J. Irrig. Drain. Eng. 2008, 134, 26–35. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Muralikrishna, I.V.; Velpuri, M.N.; Gangadhararao, P.T.; Dheeravath, V.; Biradar, C.M.; Acharya Nalan, S.; Gaur, A. Changes in agricultural cropland areas between a water-surplus year and a water-deficit year impacting food security, determined using MODIS 250 m time-series data and spectral matching techniques, in the Krishna River basin (India). Int. J. Remote Sens. 2011, 32, 3495–3520. [Google Scholar] [CrossRef]
- Sakamoto, T.; Van Nguyen, N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- Ratana, P.; Huete, A.R.; Yin, Y.; Jacobson, A. Interrelationship among among MODIS vegetation products across an Amazon Eco-climatic gradient. In Proceedings of the Geoscience and Remote Sensing Symposium, 2005, IGARSS’05, Proceedings. Seoul, Republic of Korea, 29 July 2005; IEEE International: Piscataway, NJ, USA, 2005; pp. 3009–3012. [Google Scholar]
- Becerra, J.; Alvalá, R.; Berlato, M.; Molion, L.; Berri, G.; Bertossa, G.; Bertagnolli, C.; Peres, R.; Ferreira, N.; Schuch, N. Detection of Tropical Savannah (Cerrado) Physiognomies in the Legal Amazon by the Application of the Vegetation and Moisture Indices with MODIS Time Series Data. In Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography (ICSHMO), Foz de Iguaçu, Brazil, 24–28 April 2006; pp. 861–868. [Google Scholar]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Choice, H. Agroecological Zones. 2009. Available online: http://harvestchoice.org/production/biophysical/agroecology (accessed on 1 May 2010).
- WorldBank. Rural Population (% of Total Population)—South Asia. 2021. Available online: https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=8S (accessed on 25 March 2023).
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Reddy, G.; Cai, X.; Gumma, M.; Turral, H. A Global Irrigated Area Map (GIAM) Using Remote Sensing at the End of the Last Millennium; International Water Management Institute: Colombo, Sri Lanka, 2008. [Google Scholar]
- Gumma, M.K.; Thenkabail, P.S.; Maunahan, A.; Islam, S.; Nelson, A. Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010. ISPRS J. Photogramm. Remote Sens. 2014, 91, 98–113. [Google Scholar] [CrossRef]
- Homayouni, S.; Roux, M. Material Mapping from Hyperspectral Images using Spectral Matching in Urban Area. In Proceedings of the IEEE Workshop in Honour of Prof. Landgrebe, Washington, DC, USA, 6 October 2003. [Google Scholar]
- Thenkabail, P.; GangadharaRao, P.; Biggs, T.; Gumma, M.; Turral, H. Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR Pathfinder datasets. Photogramm. Eng. Remote Sens. 2007, 73, 1029–1040. [Google Scholar]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Cai, X.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Pandey, S. Sub-pixel area calculation methods for estimating irrigated areas. Sensors 2007, 7, 2519–2538. [Google Scholar] [CrossRef]
Country | Total Geographical Area (‘000 ha) | Total Gross Planted Area (‘000 ha) | Major Cropping Systems |
---|---|---|---|
Bangladesh | 14,804 | 15,002 | Rice-rice, rice-pulses-rice, rice-fallow-rice, jute-pulses-rice |
Bhutan | 4365 | 121 | Rice-fallow, mixed crops |
India | 345,623 | 184,443 | Diversified cropping systems (Table 2) |
Nepal | 16,210 | 4208 | Rice-wheat, maize-wheat, maize-rice |
Pakistan | 89,167 | 22,817 | Rice-wheat, rice-rice, rice-pulses, cotton |
Sri Lanka | 6453 | 2076 | Rice-rice, rice-fallow, other crops-fallow |
Total | 476,622 | 228,668 |
Classified Data | Training Samples | Validation Samples | Cropping Systems in India (M ha) |
---|---|---|---|
01. Rice-wheat | 42 | 46 | 14.8 |
02. Rice-rice | 15 | 88 | 2.4 |
03. Rice-pulses | 18 | 51 | 4 |
04. Pulses/rice-rice | 13 | 107 | 4.5 |
05. Soybean-wheat | 18 | 33 | 8.3 |
06. Pulses-wheat | 17 | 22 | 9.2 |
07. Maize-wheat | 35 | 24 | NA |
08. Millet-wheat | 53 | 38 | 10.1 |
09. Maize-wheat | 3 | 13 | 2.5 |
10. Maize-chickpea | 16 | 14 | 4 |
11. Millet-mustard | 10 | 20 | 3.8 |
12. Pulses-maize | 9 | 10 | 2 |
13. Sugarcane | 22 | 17 | 5.1 |
14. Groundnut-pulses | 7 | 15 | 4 |
15. Sorghum-fallow | 9 | 18 | 1.3 |
16. Rice-fallow | 23 | 58 | 12.6 |
17. Pigeonpea-fallow | 28 | 27 | 5.5 |
18. Groundnut/cotton | 9 | 15 | NA |
19. Cotton-fallow | 77 | 43 | 15.3 |
20. Millet-fallow | 18 | 13 | 3.8 |
21. Sorghum-fallow | 19 | 16 | 3.2 |
22. Pulses-fallow | 9 | 11 | 1.3 |
23. Fallow-chickpea | 4 | 16 | 1.4 |
24. Groundnut-fallow | 18 | 14 | 9.7 |
25. Mixed crops | 94 | 55 | NA |
26. Other LULC | 773 | 61 | NA |
27. Rice-fallow/mixed crops | 57 | 38 | NA |
Total samples | 1416 | 883 |
Cropping Systems | Sub-Pixel Area (SPA) Fractions | Full Pixel Area FPA (‘000 ha) | ||||||
---|---|---|---|---|---|---|---|---|
Trees | Shrubs | Water | Grasses | Orchards | Other LULC | Crop Area | ||
01. Rice-wheat | 1.9 | 6.2 | 3.9 | 0.3 | 0.5 | 3.9 | 83.4 | 23,884 |
02. Rice-rice | 1.7 | 2.5 | 1.5 | 0.4 | 0.0 | 2.9 | 91.1 | 5608 |
03. Rice-pulses | 2.1 | 2.2 | 1.7 | 0.1 | 0.0 | 5.6 | 88.4 | 5967 |
04. Pulses/rice-rice | 0.7 | 2.1 | 2.4 | 0.0 | 0.7 | 4.0 | 90.0 | 8537 |
05. Soybean-wheat | 2.0 | 3.1 | 0.2 | 0.0 | 0.0 | 3.1 | 91.7 | 7378 |
06. Pulses-wheat | 1.6 | 2.3 | 0.0 | 0.0 | 0.3 | 4.7 | 91.2 | 5007 |
07. Maize-wheat | 1.6 | 2.8 | 0.6 | 0.0 | 1.1 | 4.4 | 89.4 | 6877 |
08. Millet-wheat | 1.4 | 0.8 | 0.3 | 0.0 | 0.5 | 3.9 | 93.3 | 13,469 |
09. Maize-wheat | 1.6 | 0.8 | 0.9 | 0.0 | 1.9 | 3.9 | 91.0 | 3193 |
10. Maize-chickpea | 1.1 | 8.3 | 0.8 | 0.0 | 0.6 | 3.0 | 86.2 | 6342 |
11. Millet-mustard | 1.7 | 0.6 | 0.0 | 0.0 | 0.4 | 3.8 | 93.4 | 4259 |
12. Pulses-maize | 3.0 | 9.3 | 1.7 | 0.0 | 5.0 | 2.3 | 78.7 | 2740 |
13. Sugarcane | 1.6 | 0.0 | 0.1 | 0.0 | 0.3 | 2.4 | 95.6 | 5509 |
14. Groundnut-pulses | 2.1 | 2.7 | 0.9 | 0.0 | 0.0 | 4.4 | 89.9 | 4699 |
15. Sorghum-fallow | 3.0 | 5.8 | 0.7 | 0.0 | 0.8 | 4.7 | 85.0 | 1667 |
16. Rice-fallow | 4.8 | 1.6 | 0.4 | 0.0 | 0.0 | 1.8 | 91.4 | 13,414 |
17. Pigeon pea-fallow | 3.9 | 10.2 | 0.4 | 0.2 | 4.5 | 11.7 | 69.2 | 10,035 |
18. Groundnut/cotton | 1.4 | 1.0 | 0.4 | 0.2 | 0.6 | 2.4 | 94.0 | 4241 |
19. Cotton-fallow | 1.9 | 3.9 | 1.3 | 0.5 | 0.0 | 5.0 | 87.3 | 19,045 |
20. Millet-fallow | 2.9 | 2.4 | 0.1 | 0.0 | 0.0 | 2.9 | 91.7 | 4284 |
21. Sorghum-fallow | 2.6 | 5.7 | 1.3 | 0.4 | 0.0 | 7.1 | 82.9 | 4991 |
22. Pulses-fallows | 1.8 | 13.4 | 1.1 | 0.1 | 2.0 | 7.2 | 74.5 | 2538 |
23. Fallow-chickpea | 0.7 | 22.3 | 0.1 | 0.0 | 4.0 | 1.7 | 71.3 | 1999 |
24. Groundnut-fallow | 1.2 | 1.9 | 1.0 | 0.0 | 4.0 | 2.3 | 89.6 | 6251 |
25. Mixed crops | 4.0 | 10.8 | 3.4 | 0.5 | 0.0 | 1.3 | 80.0 | 31,596 |
26. Other LULC | 0.5 | 52.4 | 0.5 | 0.0 | 0.0 | 31.0 | 15.6 | 214,625 |
27. Rice-fallows/mixed crops | 0.9 | 22.9 | 2.7 | 0.1 | 3.8 | 9.4 | 60.2 | 24,360 |
Cropping Systems | Net Area (‘000 ha) | |||||
---|---|---|---|---|---|---|
Pakistan | Nepal | Bhutan | Bangladesh | Sri Lanka | India | |
01. Rice-wheat | 4328 | 420 | 0 | 2 | 0 | 15,170 |
02. Rice-rice | 1412 | 4 | 0 | 1126 | 3 | 2564 |
03. Rice-pulses | 50 | 365 | 1 | 399 | 4 | 4456 |
04. Pulses-rice-rice | 30 | 39 | 7 | 3816 | 497 | 3293 |
05. Soybean-wheat | 145 | 0 | 0 | 0 | 0 | 6620 |
06. Pulses-wheat | 610 | 1 | 0 | 0 | 0 | 3955 |
07. Maize-wheat | 826 | 0 | 0 | 0 | 0 | 5324 |
08. Millet-wheat | 3406 | 7 | 0 | 0 | 53 | 9094 |
09. Potato-wheat | 0 | 100 | 0 | 0 | 0 | 2806 |
10. Soybean-chickpea | 123 | 1 | 0 | 0 | 0 | 5341 |
11. Sesamum-mustard | 112 | 10 | 0 | 0 | 2 | 3854 |
12. Pulses-maize | 0 | 0 | 0 | 0 | 0 | 2156 |
13. Sugarcane | 0 | 76 | 0 | 0 | 0 | 5189 |
14. Groundnut-pulses | 0 | 19 | 0 | 0 | 0 | 4204 |
15. Sorghum-fallow | 0 | 0 | 0 | 0 | 0 | 1417 |
16. Rice-fallow | 95 | 125 | 2 | 633 | 1 | 11,403 |
17. Pigeonpea-fallow | 181 | 0 | 0 | 0 | 4 | 6758 |
18. Groundnut/cotton | 13 | 0 | 0 | 1 | 1 | 3971 |
19. Cotton-fallow | 393 | 5 | 1 | 1 | 2 | 16,231 |
20. Millet-fallow | 740 | 6 | 1 | 2 | 6 | 3175 |
21. Sorghum-fallow | 472 | 2 | 1 | 0 | 0 | 3661 |
22. Pulses-fallows | 264 | 0 | 0 | 0 | 1 | 1625 |
23. Fallow-chickpea | 39 | 0 | 0 | 0 | 7 | 1379 |
24. Groundnut-fallow | 0 | 0 | 0 | 0 | 0 | 5601 |
25. Mixed crops | 1619 | 403 | 28 | 864 | 739 | 21,623 |
26. Other LULC | 9605 | 1940 | 611 | 843 | 681 | 19,800 |
27. Rice-fallows/mixed crops | 406 | 258 | 12 | 407 | 239 | 13,349 |
Net cropped area | 24,871 | 3781 | 664 | 8096 | 2240 | 184,020 |
Classified Data | Row Total | Reference Total | Classified Total | Number Correct | Producer Accuracy (%) | User Accuracy (%) | Kappa |
---|---|---|---|---|---|---|---|
01. Rice-wheat | 46 | 46 | 37 | 33 | 72 | 89 | 0.89 |
02. Rice-rice | 88 | 88 | 57 | 50 | 57 | 88 | 0.86 |
03. Rice-pulses | 51 | 51 | 52 | 35 | 69 | 67 | 0.65 |
04. Pulses/rice-rice | 107 | 107 | 106 | 95 | 89 | 90 | 0.88 |
05. Soybean-wheat | 33 | 33 | 35 | 29 | 88 | 83 | 0.82 |
06. Pulses-wheat | 22 | 22 | 24 | 22 | 100 | 92 | 0.91 |
07. Maize-wheat | 24 | 24 | 24 | 22 | 92 | 92 | 0.91 |
08. Millet-wheat | 38 | 38 | 39 | 36 | 95 | 92 | 0.92 |
09. Potato-wheat | 13 | 13 | 14 | 11 | 85 | 79 | 0.75 |
10. Maize-chickpea | 14 | 14 | 15 | 13 | 93 | 87 | 0.86 |
11. Millet-mustard | 20 | 20 | 11 | 11 | 55 | 100 | 1.00 |
12. Pulses-maize | 10 | 10 | 12 | 10 | 100 | 83 | 0.67 |
13. Sugarcane | 17 | 17 | 12 | 11 | 65 | 92 | 0.92 |
14. Groundnut-pulses | 15 | 15 | 20 | 12 | 80 | 60 | 0.59 |
15. Sorghum-fallow | 18 | 18 | 15 | 14 | 78 | 93 | 0.93 |
16. Rice-fallow | 58 | 58 | 41 | 26 | 45 | 63% | 0.61 |
17. Pigeonpea-fallow | 27 | 27 | 38 | 22 | 81 | 58 | 0.57 |
18. Groundnut/cotton | 15 | 15 | 15 | 8 | 53 | 53 | 0.53 |
19. Cotton-fallow | 43 | 43 | 48 | 33 | 77 | 69 | 0.67 |
20. Millet-fallow | 13 | 13 | 13 | 13 | 100 | 100 | 1.00 |
21. Sorghum-fallow | 16 | 16 | 14 | 11 | 69 | 79 | 0.78 |
22. Pulses-fallows | 11 | 11 | 10 | 10 | 91 | 100 | 1.00 |
23. Fallow-chickpea | 16 | 16 | 17 | 16 | 100 | 94 | 0.94 |
24. Groundnut-fallow | 14 | 14 | 18 | 12 | 86 | 67 | 0.66 |
25. Mixed crops | 55 | 55 | 50 | 41 | 75 | 82 | 0.81 |
26. Other LULC | 61 | 61 | 91 | 52 | 85 | 57 | 0.54 |
27. Rice-fallow/mixed crops | 38 | 38 | 55 | 38 | 100 | 69 | 0.68 |
Total | 883 | 883 | 883 | 686 | Overall accuracy = 76.59%; | Kappa = 0.7545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumma, M.K.; Panjala, P.; Dubey, S.K.; Ray, D.K.; Murthy, C.S.; Kadiyala, D.M.; Mohammed, I.; Takashi, Y. Spatial Distribution of Cropping Systems in South Asia Using Time-Series Satellite Data Enriched with Ground Data. Remote Sens. 2024, 16, 2733. https://doi.org/10.3390/rs16152733
Gumma MK, Panjala P, Dubey SK, Ray DK, Murthy CS, Kadiyala DM, Mohammed I, Takashi Y. Spatial Distribution of Cropping Systems in South Asia Using Time-Series Satellite Data Enriched with Ground Data. Remote Sensing. 2024; 16(15):2733. https://doi.org/10.3390/rs16152733
Chicago/Turabian StyleGumma, Murali Krishna, Pranay Panjala, Sunil K. Dubey, Deepak K. Ray, C. S. Murthy, Dakshina Murthy Kadiyala, Ismail Mohammed, and Yamano Takashi. 2024. "Spatial Distribution of Cropping Systems in South Asia Using Time-Series Satellite Data Enriched with Ground Data" Remote Sensing 16, no. 15: 2733. https://doi.org/10.3390/rs16152733
APA StyleGumma, M. K., Panjala, P., Dubey, S. K., Ray, D. K., Murthy, C. S., Kadiyala, D. M., Mohammed, I., & Takashi, Y. (2024). Spatial Distribution of Cropping Systems in South Asia Using Time-Series Satellite Data Enriched with Ground Data. Remote Sensing, 16(15), 2733. https://doi.org/10.3390/rs16152733