Long-Term Evaluation of Aerosol Optical Properties in the Levantine Region: A Comparative Analysis of AERONET and Aqua/MODIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. MODIS
2.2. AERONET
2.3. Study Domain
2.3.1. Erdemli/Mersin (IMS-METU-ERDEMLI)
2.3.2. Limassol/Cyprus (CUT-TEPAK)
2.3.3. Cairo/Egypt (Cairo_EMA_2)
2.3.4. Sede Boker/Israel (SEDE_BOKER)
2.4. Aerosol Classification
2.5. Trend Decomposition Analysis
3. Results and Discussion
3.1. Comparison of AERONET and MODIS Aerosol Measurements
Comparison of MODIS and AERONET AOD across Multiple Stations
3.2. Aerosol Distributions
3.2.1. Erdemli/Mersin
3.2.2. Limassol/Cyprus
3.2.3. Cairo/Egypt
3.2.4. Sede Boker/Israel
3.3. Aerosol Classsification
3.4. Time-Series Analysis
3.4.1. Trend−Seasonality Analysis of MODIS
3.4.2. Comparative Trend Analysis of MODIS and AERONET AOD Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CF (0–0.3) | IMS-METU-ERDEMLI | CUT-TEPAK | Cairo_EMA_2 | SEDE_BOKER |
---|---|---|---|---|
N | 677 | 514 | 1134 | 1758 |
R | 0.8547 | 0.8819 | 0.6585 | 0.4656 |
R2 | 0.7305 | 0.7778 | 0.4336 | 0.2168 |
Regression equation | y = 0.72x + 0.03 | y = 0.90x + 0.06 | y = 0.53x + 0.08 | y = 0.42x + 0.20 |
RMSE | 0.0799 | 0.0749 | 0.1605 | 0.1305 |
%within EE | 94.24 | 86.38 | 81.22 | 60.52 |
%above EE | 3.25 | 8.17 | 10.41 | 18.49 |
%below EE | 2.51 | 5.45 | 8.38 | 20.99 |
References
- Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V.; Kumar, P.; Kottmeier, C.; Blahak, U. Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. 2012, 12, 4045–4063. [Google Scholar] [CrossRef]
- Arfin, T.; Pillai, A.M.; Mathew, N.; Tirpude, A.; Bang, R.; Mondal, P. An overview of atmospheric aerosol and their effects on human health. Environ. Sci. Pollut. Res. 2023, 30, 125347–125369. [Google Scholar] [CrossRef] [PubMed]
- Holben, B.N.; Slutsker, T.I.E.I.; Tar, D.; Buis, J.P.; Setxerj, I.I.A.; Reagan, A.; Kaufman, Y.J.; Nakajima, T.; Lavenu, F.; Vemte, E.; et al. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 16, 1–16. [Google Scholar] [CrossRef]
- Merdji, A.B.; Xu, X.; Lu, C.; Habtemicheal, B.A.; Li, J. Accuracy assessment and climatology of MODIS aerosol optical properties over North Africa. Environ. Sci. Pollut. Res. 2023, 30, 13449–13468. [Google Scholar] [CrossRef]
- Yu, H.; Dickinson, R.E.; Chin, M.; Kaufman, Y.J.; Holben, B.N.; Geogdzhayev, I.V.; Mishchenko, M.I. Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations. J. Geophys. Res. Atmos. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Liu, H.; Pinker, R.T.; Holben, B.N. A global view of aerosols from merged transport models, satellite, and ground observations. J. Geophys. Res. Atmos. 2005, 110, 1–16. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Middleton, N.; Tozer, P.; Tozer, B. Sand and dust storms: Underrated natural hazards. Disasters 2019, 43, 390–409. [Google Scholar] [CrossRef]
- Özsoy, E.; Kubilay, N.; Nickovic, S.; Moulin, C. A Hemispheric Dust Storm Affecting the Atlantic and Mediterranean in April 1994: Analyses, Modeling, Ground-Based Measurements and Satellite Observations. J. Geophys. Res. 2001, 106, 18439–18460. [Google Scholar] [CrossRef]
- Kubilay, N.; Oğuz, T.; Koçak, M.; Torres, O. Ground-based assessment of total ozone mapping spectrometer (TOMS) data for dust transport over the northeastern Mediterranean. Glob. Biogeochem. Cycles 2005, 19, 1. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Gkikas, A.; Mihalopoulos, N.; Torres, O.; Katsoulis, B.D. Natural versus Anthropogenic Aerosols in the Eastern Mediterranean Basin Derived from Multiyear TOMS and MODIS Satellite Data. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Aldabash, M.; Balçık, F.B.; Glantz, P. Validation of MODIS C6.1 and MERRA-2 AOD using AERONET observations: A comparative study over Turkey. Atmosphere 2020, 11, 905. [Google Scholar] [CrossRef]
- Aslanoğlu, S.Y.; Proestakis, E.; Gkikas, A.; Güllü, G.; Amiridis, V. Dust Climatology of Turkey as a Part of The Eastern Mediterranean Basin via 9-Year CALIPSO-Derived Product. Atmosphere 2022, 13, 733. [Google Scholar] [CrossRef]
- Remer, L.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.; Holben, B. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Levy, R.; Remer, L.; Kleidman, R.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Wu, Y.; Graaf, M.; Menenti, M. The sensitivity of AOD retrieval to aerosol type and vertical distribution over land with MODIS data. Remote Sens. 2016, 8, 765. [Google Scholar] [CrossRef]
- Verma, S.; Prakash, D.; Soni, M.; Ram, K. Atmospheric Aerosols Monitoring: Ground and Satellite-Based Instruments. In Advances in Environmental Monitoring and Assessment; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Technol. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Lyapustin, A.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. 2011, 116, D03210. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M. MODIS collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13–965. [Google Scholar] [CrossRef]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 2008, 113, D14S07. [Google Scholar] [CrossRef]
- Dubovik, O.A.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (AERONET) sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Giles, D.; Sinyuk, A.; Sorokin, M.; Schafer, J.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the aerosol robotic network (AERONET) version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Technol. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Angstrom, A. On the atmospheric transmission of Sun radiation and on dust in the air. Geogr. Ann. 1929, 12, 130–159. [Google Scholar]
- Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, I.-P.; Mamouri, R.-E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens. 2021, 13, 2319. [Google Scholar] [CrossRef]
- Marey, H.; Gille, J.; El-Askary, H.; Shalaby, E.; El-Raey, M. Study of the formation of the “black cloud” and its dynamics over Cairo, Egypt, using MODIS and MISR sensors. J. Geophys. Res. 2010, 115, D21206. [Google Scholar] [CrossRef]
- Derimian, Y.; Karnieli, A.; Kaufman, Y.J.; Andreae, M.O.; Andreae, T.W.; Dubovik, O.; Maenhaut, W.; Koren, I.; Holben, B.N. Dust and pollution aerosols over the Negev desert, Israel: Properties, transport, and radiative effect. J. Geophys. Res. Atmos. 2006, 111, D5. [Google Scholar] [CrossRef]
- Derimian, Y.; Choël, M.; Rudich, Y.; Deboudt, K.; Dubovik, O.; Laskin, A.; Legrand, M.; Damiri, B.; Koren, I.; Unga, F.; et al. Effect of sea breeze circulation on aerosol mixing state and radiative properties in a desert setting. Atmos. Chem. Phys. Discuss. 2017, 17, 11331–11353. [Google Scholar] [CrossRef]
- Andreae, T.W.; Andreae, M.O.; Ichoku, C.; Maenhaut, W.; Cafmeyer, J.; Karnieli, A.; Orlovsky, L. Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel. J. Geophys. Res.-Atmos. 2002, 107, 4008. [Google Scholar] [CrossRef]
- Sciare, J.; d’Argouges, O.; Zhang, Q.J.; Sarda-Estève, R.; Gaimoz, C.; Gros, V.; Beekmann, M.; Sanchez, O. Comparison between simulated and observed chemical composition of fine aerosols in Paris (France) during springtime: Contribution of regional versus continental emissions. Atmos. Chem. Phys. 2010, 10, 11987–12004. [Google Scholar] [CrossRef]
- Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos. Chem. Phys. 2006, 6, 697–713. [Google Scholar] [CrossRef]
- Toledano, C.; Cachorro, V.E.; Berjon, A.; de Frutos, A.M.; Sorribas, M.; de la Morena, B.A.; Goloub, P. Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc. 2007, 133, 795–807. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Toth, T.D.; Zhang, J.; Campbell, J.R.; Reid, J.S.; Shi, Y.; Johnson, R.S.; Smirnov, A.; Vaughan, M.A.; Winker, D.M. Investigating enhanced Aqua MODIS aerosol optical depth retrievals over the mid-to-high latitude Southern Oceans through intercomparison with co-located CALIOP, MAN, and AERONET data sets. J. Geophys. Res. Atmos. 2013, 118, 4700–4714. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L.; Zhang, L. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces. Atmos. Environ. 2019, 200, 280–301. [Google Scholar] [CrossRef]
- Gavrouzou, M.; Hatzianastassiou, N.; Gkikas, A.; Lolis, C.J.; Mihalopoulos, N. A Climatological Assessment of Intense Desert Dust Episodes over the Broader Mediterranean Basin Based on Satellite Data. Remote Sens. 2021, 13, 2895. [Google Scholar] [CrossRef]
- Eck, T.; Holben, B.; Reid, J.; Xian, P.; Giles, D.; Sinyuk, A.; Xia, X. Observations of the interaction and transport of fine mode aerosols with cloud and/or fog in northeast Asia from aerosol robotic network and satellite remote sensing. J. Geophys. Res. Atmos. 2018, 123, 5560–5587. [Google Scholar] [CrossRef]
- Mao, K.B.; Ma, Y.; Xia, L.; Chen, W.Y.; Shen, X.Y.; He, T.J.; Xu, T.R. Global aerosol change in the last decade: An analysis based on MODIS data. Atmos. Environ. 2014, 94, 680–686. [Google Scholar] [CrossRef]
- Rodriguez, S.; Querol, X.; Alastuey, A.; Plana, F. Sources and processes affecting levels and composition of atmospheric aerosol in the western Mediterranean. J. Geophys. Res. 2002, 107, AAC-12. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.; Lelieveld, J.; Zanis, P.; Pöschl, U.; Tsikerdekis, A. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the eastern Mediterranean. Atmos. Chem. Phys. 2016, 16, 13853–13884. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, S.-A.; Salamalikis, V.; Kazantzidis, A. Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET Version 3. Atmos. Res. 2020, 239, 104893. [Google Scholar] [CrossRef]
- Alfaro-Contreras, R.; Zhang, J.; Campbell, J.R.; Holz, R.E.; Reid, J.S. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS. J. Geophys. Res. Atmos. 2014, 119, 5410–5423. [Google Scholar] [CrossRef]
- Farahat, A. Comparative analysis of MODIS, MISR, and AERONET climatology over the Middle East and North Africa. Ann. Geophys. 2019, 37, 49–64. [Google Scholar] [CrossRef]
- Basart, S.; Pérez, C.; Cuevas, E.; Baldasano, J.M.; Gobbi, G.P. Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations. Atmos. Chem. Phys. 2009, 9, 8265–8282. [Google Scholar] [CrossRef]
- El-Metwally, M.; Alfaro, S.C.; Abdel Wahab, M.; Chatenet, B. Aerosol characteristics over urban Cairo: Seasonal variations as retrieved from Sun photometer measurements. J. Geophys. Res. 2008, 113, D14219. [Google Scholar] [CrossRef]
- Tutsak, E.; Koçak, M. Long-term measurements of aerosol optical and physical properties over the Eastern Mediterranean: Hygroscopic nature and source regions. Atmos. Environ. 2019, 207, 1–15. [Google Scholar] [CrossRef]
- Tutsak, E.; Koçak, M. Optical and microphysical properties of the columnar aerosol burden over the Eastern Mediterranean: Discrimination of aerosol types. Atmos. Environ. 2020, 229, 117463. [Google Scholar] [CrossRef]
Station Name | City/Country | Coordinates Latitude/Longitude | Elevation | Measurement Period |
---|---|---|---|---|
IMS-METU-ERDEMLI | Mersin/Türkiye | 36.565N/34.255E | 3 m | 1999–2019 |
CUT-TEPAK | Limassol/Cyprus | 34.675N/33.043E | 22 m | 2010–2023 |
Cairo_EMA_2 | Cairo/Egypt | 30.081N/31.290E | 70 m | 2010–2023 |
SEDE_BOKER | Sede Boker/Israel | 30.855N/34.782E | 480 m | 1995–2023 |
IMS-METU-ERDEMLI | CUT-TEPAK | Cairo_EMA_2 | SEDE_BOKER | |
---|---|---|---|---|
N | 817 | 658 | 1357 | 3773 |
R | 0.8627 | 0.8658 | 0.6341 | 0.4391 |
R2 | 0.7442 | 0.7496 | 0.4021 | 0.1928 |
Regression equation * | y = 0.70x + 0.03 | y = 0.89x + 0.07 | y = 0.50x + 0.09 | y = 0.43x + 0.20 |
RMSE | 0.0844 | 0.0775 | 0.1585 | 0.1497 |
%within EE | 82.62 | 70.52 | 51.66 | 40.23 |
%above EE | 1.35 | 21.51 | 2.65 | 56 |
%below EE | 16.03 | 1.98 | 45.69 | 3.76 |
IMS-METU-ERDEMLI | CUT-TEPAK | Cairo_EMA_2 | SEDE_BOKER | |||||
---|---|---|---|---|---|---|---|---|
MODIS | AERONET | MODIS | AERONET | MODIS | AERONET | MODIS | AERONET | |
Mean | 0.2102 | 0.2545 | 0.2557 | 0.2116 | 0.2771 | 0.3809 | 0.2758 | 0.1813 |
Std Dev | 0.1158 | 0.1417 | 0.1246 | 0.1214 | 0.1192 | 0.1522 | 0.1084 | 0.111 |
January | 0.1483 | 0.1810 | 0.1581 | 0.1722 | 0.2099 | 0.2976 | 0.2125 | 0.1338 |
February | 0.2080 | 0.2548 | 0.1655 | 0.1570 | 0.2696 | 0.3748 | 0.2361 | 0.1406 |
March | 0.2023 | 0.2085 | 0.2384 | 0.2338 | 0.2753 | 0.3771 | 0.2377 | 0.1994 |
April | 0.2621 | 0.2960 | 0.2935 | 0.2376 | 0.2887 | 0.3947 | 0.2693 | 0.2242 |
May | 0.2407 | 0.2624 | 0.2998 | 0.2391 | 0.3161 | 0.3819 | 0.3507 | 0.2369 |
June | 0.1949 | 0.2626 | 0.2928 | 0.2264 | 0.2890 | 0.3846 | 0.3009 | 0.1688 |
July | 0.2416 | 0.3147 | 0.2978 | 0.2232 | 0.2826 | 0.3663 | 0.3095 | 0.1786 |
August | 0.2668 | 0.3461 | 0.3000 | 0.2281 | 0.2868 | 0.4012 | 0.3283 | 0.2030 |
September | 0.2034 | 0.2451 | 0.2698 | 0.2253 | 0.2945 | 0.4089 | 0.3050 | 0.2039 |
October | 0.1899 | 0.2029 | 0.1770 | 0.1499 | 0.3038 | 0.4061 | 0.2637 | 0.1924 |
November | 0.1718 | 0.1962 | 0.1773 | 0.1846 | 0.2148 | 0.3654 | 0.1928 | 0.1531 |
December | 0.1289 | 0.1611 | 0.1410 | 0.1416 | 0.2134 | 0.3616 | 0.1890 | 0.1139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isik, A.G.; Aslanoğlu, S.Y.; Güllü, G. Long-Term Evaluation of Aerosol Optical Properties in the Levantine Region: A Comparative Analysis of AERONET and Aqua/MODIS. Remote Sens. 2024, 16, 2651. https://doi.org/10.3390/rs16142651
Isik AG, Aslanoğlu SY, Güllü G. Long-Term Evaluation of Aerosol Optical Properties in the Levantine Region: A Comparative Analysis of AERONET and Aqua/MODIS. Remote Sensing. 2024; 16(14):2651. https://doi.org/10.3390/rs16142651
Chicago/Turabian StyleIsik, Ayse Gokcen, S. Yeşer Aslanoğlu, and Gülen Güllü. 2024. "Long-Term Evaluation of Aerosol Optical Properties in the Levantine Region: A Comparative Analysis of AERONET and Aqua/MODIS" Remote Sensing 16, no. 14: 2651. https://doi.org/10.3390/rs16142651
APA StyleIsik, A. G., Aslanoğlu, S. Y., & Güllü, G. (2024). Long-Term Evaluation of Aerosol Optical Properties in the Levantine Region: A Comparative Analysis of AERONET and Aqua/MODIS. Remote Sensing, 16(14), 2651. https://doi.org/10.3390/rs16142651