Sea Ice Detection from GNSS-R Data Based on Local Linear Embedding
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Adopted Datasets
2.2. Theory of GNSS-R Spaceborne Remote Sensing
2.3. DDMs and IDWs
2.4. Locally Linear Embedding Algorithm
2.5. Support Vector Machine (SVM)
2.6. Process of GNSS-R Sea Ice Detection
- Pre-process the DDM data collected by TDS-1:
- 2.
- Use the LLE algorithm for feature extraction, then take the extracted features as the input of SVM and the sea ice detection results as the output.
- 3.
- Determine the optimal parameters of the model and select the best model for sea ice detection.
3. Results and Analysis
3.1. Sea Ice Detection with Selected DDMs
3.2. Sea Ice Detection with Unselected DDMs
3.3. Analysis of Sea Ice Detection during Sea Ice Melting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soukissian, T.; Karathanasi, F.; Axaopoulos, P.; Voukouvalas, E.; Kotroni, V. Offshore Wind Climate Analysis and Variabil-ity in the Mediterranean Sea. Int. J. Climatol. 2018, 38, 384–402. [Google Scholar] [CrossRef]
- Min, S.; Zhang, X.; Zwiers, F.W.; Agnew, T. Human Influence on Arctic Sea Ice Detectable from Early 1990s Onwards. Geophys. Res. Lett. 2008, 35, 2008GL035725. [Google Scholar] [CrossRef]
- Meier, W.N.; Stewart, J.S. Assessing Uncertainties in Sea Ice Extent Climate Indicators. Environ. Res. Lett. 2019, 14, 035005. [Google Scholar] [CrossRef]
- Belmonte Rivas, M.; Otosaka, I.; Stoffelen, A.; Verhoef, A. A Scatterometer Record of Sea Ice Extents and Backscatter: 1992–2016. Cryosphere 2018, 12, 2941–2953. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Y.; Li, X.; Hui, F.; Cheng, X.; Chen, Z. Arctic Sea Ice Classification Using Microwave Scatterometer and Radiometer Data during 2002–2017. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5319–5328. [Google Scholar] [CrossRef]
- Otosaka, I.; Belmonte Rivas, M.; Stoffelen, A. Bayesian Sea Ice Detection with the ERS Scatterometer and Sea Ice Backscatter Model at C-Band. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2248–2254. [Google Scholar] [CrossRef]
- Laxon, S.; Peacock, N.; Smith, D. High Interannual Variability of Sea Ice Thickness in the Arctic Region. Nature 2003, 425, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.K.; Andersen, O.B.; Passaro, M.; Ludwigsen, C.A.; Schwatke, C. Arctic Ocean Sea Level Record from the Complete Radar Altimetry Era: 1991–2018. Remote Sens. 2019, 11, 1672. [Google Scholar] [CrossRef]
- Landy, J.C.; Tsamados, M.; Scharien, R.K. A Facet-Based Numerical Model for Simulating SAR Altimeter Echoes from Heterogeneous Sea Ice Surfaces. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4164–4180. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Li, X.-M.; Zhang, L. An Approach to Discrimination of Sea Ice from Open Water Using SAR Data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 4865–4867. [Google Scholar]
- Bishop, T.N.; Bube, K.P.; Cutler, R.T.; Langan, R.T.; Love, P.L.; Resnick, J.R.; Shuey, R.T.; Spindler, D.A.; Wyld, H.W. Tomo-graphic Determination of Velocity and Depth in Laterally Varying Media. Geophysics 1985, 50, 903–923. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS Signals from the Ocean with Wind Remote Sensing Application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef]
- Garrison, J.L.; Katzberg, S.J. Detection of Ocean Reflected GPS Signals: Theory and Experiment. In Proceedings of the Proceedings IEEE SOUTHEASTCON’97.’Engineering the New Century’, Blacksburg, VA, USA, 12–14 April 1997; pp. 290–294. [Google Scholar]
- Helm, A. Ground-Based GPS Altimetry with the L1 OpenGPS Receiver Using Carrier Phase Delay Observations of Reflected GPS Signals. Ph.D. Thesis, GeoForschungsZentrum, Potsdam, Germany, 2008. Scientific Technical Report. [Google Scholar]
- Valencia, E.; Camps, A.; Rodriguez-Alvarez, N.; Park, H.; Ramos-Perez, I. Using GNSS-R Imaging of the Ocean Surface for Oil Slick Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 217–223. [Google Scholar] [CrossRef]
- Zhao, D.; Heidler, K.; Asgarimehr, M.; Arnold, C.; Xiao, T.; Wickert, J.; Zhu, X.X.; Mou, L. DDM-Former: Transformer Net-works for GNSS Reflectometry Global Ocean Wind Speed Estimation. Remote Sens. Environ. 2023, 294, 113629. [Google Scholar] [CrossRef]
- Guo, W.; Du, H.; Guo, C.; Southwell, B.J.; Cheong, J.W.; Dempster, A.G. Information Fusion for GNSS-R Wind Speed Retrieval Using Statistically Modified Convolutional Neural Network. Remote Sens. Environ. 2022, 272, 112934. [Google Scholar] [CrossRef]
- Asgarimehr, M.; Arnold, C.; Weigel, T.; Ruf, C.; Wickert, J. GNSS Reflectometry Global Ocean Wind Speed Using Deep Learning: Development and Assessment of CyGNSSnet. Remote Sens. Environ. 2022, 269, 112801. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, Q. Stand-Alone Retrieval of Sea Ice Thickness from FY-3E GNOS-R Data. IEEE Geosci. Remote Sens. Lett. 2024, 21, 2000305. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Thickness Measurement Using Spaceborne GNSS-R: First Results with TechDemoSat-1 Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 577–587. [Google Scholar] [CrossRef]
- Yan, Q.; Gong, S.; Jin, S.; Huang, W.; Zhang, C. Near Real-Time Soil Moisture in China Retrieved From CyGNSS Reflectivity. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8004205. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W.; Jin, S.; Jia, Y. Pan-Tropical Soil Moisture Mapping Based on a Three-Layer Model from CYGNSS GNSS-R Data. Remote Sens. Environ. 2020, 247, 111944. [Google Scholar] [CrossRef]
- Yu, K.; Wang, S.; Li, Y.; Chang, X.; Li, J. Snow Depth Estimation with GNSS-R Dual Receiver Observation. Remote Sens. 2019, 11, 2056. [Google Scholar] [CrossRef]
- Southwell, B.J.; Cheong, J.W.; Dempster, A.G. A Matched Filter for Spaceborne GNSS-R Based Sea-Target Detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5922–5931. [Google Scholar] [CrossRef]
- Di Simone, A.; Park, H.; Riccio, D.; Camps, A. Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theo-ry and Experimental Proof of Concept Using TDS-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4237–4255. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Tsunami Detection and Parameter Estimation from GNSS-R Delay-Doppler Map. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4650–4659. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, S.; Chen, T.; Jin, S.; Xie, T.; Huang, W. Mapping Surface Water Fraction over the Pan-Tropical Region Using CYGNSS Data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5800914. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results from the U.K. TechDemoSat-1 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4795–4801. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, K.; Zou, J.; Wickert, J. Sea Ice Detection Based on Differential Delay-Doppler Maps from UK TechDemoSat-1. Sensors 2017, 17, 1614. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Alvarez, N.; Holt, B.; Jaruwatanadilok, S.; Podest, E.; Cavanaugh, K.C. An Arctic Sea Ice Multi-Step Classifica-tion Based on GNSS-R Data from the TDS-1 Mission. Remote Sens. Environ. 2019, 230, 111202. [Google Scholar] [CrossRef]
- Zhu, Y.; Tao, T.; Yu, K.; Li, Z.; Qu, X.; Ye, Z.; Geng, J.; Zou, J.; Semmling, M.; Wickert, J. Sensing Sea Ice Based on Doppler Spread Analysis of Spaceborne GNSS-R Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 217–226. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W.; Moloney, C. Neural Networks Based Sea Ice Detection and Concentration Retrieval From GNSS-R Delay-Doppler Maps. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3789–3798. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Sensing From GNSS-R Data Using Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1510–1514. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, Z.; Liu, W.; Yuan, X.; Hu, Q.; Wickert, J. GNSS-R Sea Ice Detection Based on Linear Discriminant Analysis. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5800812. [Google Scholar] [CrossRef]
- Rothe, I.; Susse, H.; Voss, K. The Method of Normalization to Determine Invariants. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 366–376. [Google Scholar] [CrossRef]
- Park, H.; Pascual, D.; Camps, A.; Martin, F.; Alonso-Arroyo, A.; Carreno-Luengo, H. Analysis of Spaceborne GNSS-R De-lay-Doppler Tracking. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1481–1492. [Google Scholar] [CrossRef]
- Marchan-Hernandez, J.F.; Camps, A.; Rodriguez-Alvarez, N.; Valencia, E.; Bosch-Lluis, X.; Ramos-Perez, I. An Efficient Algorithm to the Simulation of Delay–Doppler Maps of Reflected Global Navigation Satellite System Signals. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2733–2740. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.; Cipollini, P.; Zuffada, C. First Spaceborne Observation of Sea Surface Height Using GPS-Reflectometry. Geophys. Res. Lett. 2016, 43, 767–774. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, J.; Yang, D.; Wang, F.; Gao, H. Sea Ice Edge Detection Using Spaceborne GNSS-R Signal. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 668–674. [Google Scholar]
- Eustice, D.; Baylis, C.; Marks, R.J. Woodward’s Ambiguity Function: From Foundations to Applications. In Proceedings of the 2015 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 23–24 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–17. [Google Scholar]
- Foti, G.; Gommenginger, C.; Unwin, M.; Jales, P.; Tye, J.; Roselló, J. An Assessment of Non-Geophysical Effects in Space-borne GNSS Reflectometry Data from the UK TechDemoSat-1 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3418–3429. [Google Scholar] [CrossRef]
- Chojnacki, W.; Brooks, M.J. A Note on the Locally Linear Embedding Algorithm. Int. J. Patt. Recogn. Artif. Intell. 2009, 23, 1739–1752. [Google Scholar] [CrossRef]
- Zhang, H.; Berg, A.C.; Maire, M.; Malik, J. SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; IEEE: New York, NY, USA, 2006; Volume 2, pp. 2126–2136. [Google Scholar]
- Negre, C.; Plantard, T. Efficient Modular Arithmetic in Adapted Modular Number System Using Lagrange Representation. In Information Security and Privacy; Mu, Y., Susilo, W., Seberry, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5107, pp. 463–477. [Google Scholar]
- Pal, M.; Mather, P. Support Vector Machines for Classification in Remote Sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Detecting Sea Ice from TechDemoSat-1 Data Using Support Vector Machines with Feature Selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1409–1416. [Google Scholar] [CrossRef]
Month | Selected DDM | Unselected DDM |
---|---|---|
February | 7000 | 73,971 |
March | 4283 | 60,844 |
April | 2751 | 100,064 |
May | 962 | 24,555 |
June | 1250 | 36,350 |
July | 1177 | 57,525 |
August | 1620 | 109,526 |
September | 1603 | 28,103 |
October | 708 | 8128 |
November | 895 | 30,815 |
December | 1288 | 33,153 |
Collection Period | Number of Employed Selected IDWs | Number of Correct Selected IDWs | Accuracy (%) |
---|---|---|---|
2018-03 | 4283 | 4275 | 99.809 |
2018-04 | 2751 | 2750 | 99.988 |
2018-05 | 962 | 959 | 99.677 |
2018-06 | 1250 | 1247 | 99.773 |
2018-07 | 1177 | 1170 | 99.405 |
2018-08 | 1620 | 1613 | 99.629 |
2018-09 | 1603 | 1599 | 99.762 |
2018-10 | 708 | 705 | 99.663 |
2018-11 | 895 | 894 | 99.848 |
2018-12 | 1288 | 1284 | 99.696 |
03-12 | 16,537 | 16,492 | 99.725 |
Operating system | Windows 10 |
CPU | Intel i5-7300 |
Random-access memory | 8 GB (7.89 GB) |
Graphics card | GTX 1050 |
Programming language | Python 3.8 |
Programming software | PyCharm Community Edition 2022.2.3 |
The Number of DDMs | Accuracy/% | Data Size/GB | Processing Time/s | |||
---|---|---|---|---|---|---|
CNN | LLE-SVM | CNN | LLE-SVM | CNN | LLE-SVM | |
1000 | 80.62 | 92.2 | 1.12 | 2.24 × 10−5 | 17.18 | 1.2437 |
2000 | 89.26 | 96 | 2.24 | 2.38 × 10−5 | 41.54 | 2.3816 |
3000 | 86.60 | 96.63 | 3.36 | 3.60 × 10−5 | 100.60 | 3.6033 |
4000 | 86.93 | 97.33 | 4.49 | 5.05 × 10−5 | 151.042 | 5.0575 |
5000 | 87.90 | 97.86 | 5.61 | 6.19 × 10−5 | 209.39 | 6.1964 |
Collection Period | Number of Employed DDMs | Accuracy | ||
---|---|---|---|---|
LLE-SVM | SVM | CNN | ||
2018-02 | 73,971 | 92.74% | 84.93% | 86.10% |
2018-03 | 60,844 | 91.39% | 85.12% | 86.38% |
2018-04 | 100,064 | 87.01% | 80.51% | 82.88% |
2018-05 | 24,555 | 84.96% | 77.82% | 81.91% |
2018-06 | 36,350 | 82.04% | 75.15% | 70.89% |
2018-07 | 57,525 | 83.75% | 79.10% | 73.41% |
2018-08 | 109,526 | 83.54% | 76.21% | 70.19% |
2018-09 | 28,103 | 85.49% | 73.77% | 64.75% |
2018-10 | 8128 | 84.65% | 76.92% | 72.29% |
2018-11 | 30,815 | 84.55% | 81.02% | 76.13% |
2018-12 | 33,153 | 88.75% | 86.03% | 85.49% |
02-12 | 563,034 | 92.74% | 79.69% | 77.31% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Hua, X.; Yan, Q.; Liu, W.; Jiang, Z.; Wickert, J. Sea Ice Detection from GNSS-R Data Based on Local Linear Embedding. Remote Sens. 2024, 16, 2621. https://doi.org/10.3390/rs16142621
Hu Y, Hua X, Yan Q, Liu W, Jiang Z, Wickert J. Sea Ice Detection from GNSS-R Data Based on Local Linear Embedding. Remote Sensing. 2024; 16(14):2621. https://doi.org/10.3390/rs16142621
Chicago/Turabian StyleHu, Yuan, Xifan Hua, Qingyun Yan, Wei Liu, Zhihao Jiang, and Jens Wickert. 2024. "Sea Ice Detection from GNSS-R Data Based on Local Linear Embedding" Remote Sensing 16, no. 14: 2621. https://doi.org/10.3390/rs16142621
APA StyleHu, Y., Hua, X., Yan, Q., Liu, W., Jiang, Z., & Wickert, J. (2024). Sea Ice Detection from GNSS-R Data Based on Local Linear Embedding. Remote Sensing, 16(14), 2621. https://doi.org/10.3390/rs16142621