Validation of GPM DPR Rainfall and Drop Size Distributions Using Disdrometer Observations in the Western Mediterranean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. GPM-DPR
2.1.2. Disdrometer Locations
2.1.3. Disdrometer Data
2.2. Methodology
2.2.1. Comparison of Independent Datasets
2.2.2. Matching Approaches
- Point: The disdrometer location was found within the footprint of the DPR (within the 5 km2 pixel area) and so could be compared directly.
- Mean 5 km: Disdrometer data were compared with the average of all DPR pixels within a 5 km radius of the disdrometer.
- Mean 10 km: Disdrometer data were compared with the average of all DPR pixels within a radius of 10 km of the disdrometer.
- Optimal: Disdrometer data were compared with the DPR pixel closest to the disdrometer within a 5 km radius and the nine DPR pixels containing the disdrometer. Finally, among these nine pixels, the pixel with closest radar reflectivity factor to that of the disdrometer was selected for comparison.
2.2.3. Verification Metrics
3. Results
3.1. GPM CO vs. Disdrometer-Derived Independent Estimates
3.1.1. Rain Rate Effects
3.1.2. Stratiform vs. Convective Regimes
3.2. Analysis of Satellite Overpass Events Coincident with Disdrometer Data
3.2.1. Single- vs. Dual-Frequency-derived Estimates
3.2.2. Stratiform vs. Convective Regimes
4. Discussion
5. Conclusions
- The behavior of DSD-derived variables among the plain, mountain and coastal subregions showed some differences according to the disdrometer data, which were captured by the DPR DF algorithm. However, the GPM DSD parameters show an overestimation of Dm by about 0.1 mm at low and moderate precipitation rates (0.1–1, 1–2, 2–4 mm/h) and by 0.4 mm at precipitation rates greater than 4 mm/h by the DF algorithm with respect to the disdrometer. In contrast, the behavior of Nw was underestimated by the DPR, with a maximum value close to 6 dBNw at moderate precipitation rates (4–8 mm/h).
- Disdrometer data indicated that the shape parameter mode over the area of study corresponds to the DPR fixed value (µ = 3), but the median was higher (µ = 7). Moreover, µ presents a distribution with a substantial natural variability which implies an increase in the uncertainty of DSD estimates based on the constant value assumption.
- The superiority of the optimal matching approach was observed when validating the GPM DPR rainfall parameters with disdrometers. The GPM DPR estimates showed better verification statistics for the radar reflectivity factor in both Ku and Ka bands and the mass-weighted mean diameter, while worse results were found for the rainfall rate and the shape parameter Nw.
- According to the available sample of overpass matches (41 cases) the DPR DF rainfall classification algorithm showed little ability to detect events identified as convective by the disdrometers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Adler, R.F.; Gu, G.; Huffman, G.J.; Sapiano, M.R.; Wang, J.-J. GPCP and the Global Characteristics of Precipitation. Satell. Precip. Meas. 2020, 2, 677–697. [Google Scholar]
- GPM Core Observatory. Available online: https://gpm.nasa.gov/missions/GPM/core-observatory (accessed on 8 April 2024).
- Liao, L.; Meneghini, R. GPM DPR Retrievals: Algorithm, Evaluation, and Validation. Remote Sens. 2022, 14, 843. [Google Scholar] [CrossRef]
- Tokay, A.; D’Adderio, L.P.; Wolff, D.B.; Petersen, W.A. Development and Evaluation of the Raindrop Size Distribution Parameters for the NASA Global Precipitation Measurement Mission Ground Validation Program. J. Atmos. Ocean. Technol. 2020, 37, 115–128. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Lan, C.-H.; Huang, M.-Q. Evaluation of GPM DPR Rain Parameters with North Taiwan Disdrometers. J. Hydrometeorol. 2023, 25, 47–64. [Google Scholar] [CrossRef]
- Liao, L.; Meneghini, R.; Tokay, A. Uncertainties of GPM DPR Rain Estimates Caused by DSD Parameterizations. J. Appl. Meteorol. Climatol. 2014, 53, 2524–2537. [Google Scholar] [CrossRef]
- Radhakrishna, B.; Satheesh, S.K.; Narayana Rao, T.; Saikranthi, K.; Sunilkumar, K. Assessment of DSDs of GPM-DPR with Ground-Based Disdrometer at Seasonal Scale over Gadanki, India. J. Geophys. Res. Atmos. 2016, 121, 11–792. [Google Scholar] [CrossRef]
- D’Adderio, L.P.; Porcù, F.; Panegrossi, G.; Marra, A.C.; Sanò, P.; Dietrich, S. Comparison of the GPM DPR Single- and Double-Frequency Products over the Mediterranean Area. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9724–9739. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Hao, X.; Lei, H.; Zheng, H. Validation of GPM Precipitation Products by Comparison with Ground-Based Parsivel Disdrometers over Jianghuai Region. Water 2019, 11, 1260. [Google Scholar] [CrossRef]
- Chase, R.J.; Nesbitt, S.W.; McFarquhar, G.M. Evaluation of the Microphysical Assumptions within GPM-DPR Using Ground-Based Observations of Rain and Snow. Atmosphere 2020, 11, 619. [Google Scholar] [CrossRef]
- Del Castillo-Velarde, C.; Kumar, S.; Valdivia-Prado, J.M.; Moya-Álvarez, A.S.; Flores-Rojas, J.L.; Villalobos-Puma, E.; Martínez-Castro, D.; Silva-Vidal, Y. Evaluation of GPM Dual-Frequency Precipitation Radar Algorithms to Estimate Drop Size Distribution Parameters, Using Ground-Based Measurement over the Central Andes of Peru. Earth Syst. Environ. 2021, 5, 597–619. [Google Scholar] [CrossRef]
- Adirosi, E.; Montopoli, M.; Bracci, A.; Porcù, F.; Capozzi, V.; Annella, C.; Budillon, G.; Bucchignani, E.; Zollo, A.L.; Cazzuli, O.; et al. Validation of GPM Rainfall and Drop Size Distribution Products through Disdrometers in Italy. Remote Sens. 2021, 13, 2081. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, X.; Cui, W.; Zhou, Z.; Fu, Z.; Zhou, L.; Deng, Y.; Cui, C. Vertical Structures of Typical Meiyu Precipitation Events Retrieved from GPM-DPR. J. Geophys. Res. Atmos. 2020, 125, e2019JD031466. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G.; Maggioni, V.; Chambon, P.; Oki, R. The Global Satellite Precipitation Constellation: Current Status and Future Requirements. Bull. Am. Meteorol. Soc. 2021, 102, E1844–E1861. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Oki, T. The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission’s Single/Dual-Frequency Radar Measurements. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5239–5251. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Meneghini, R.; Awaka, J.; Kubota, T.; Masaki, T.; Takahashi, N. The Precipitation Rate Retrieval Algorithms for the GPM Dual-Frequency Precipitation Radar. J. Meteorol. Soc. Jpn. Ser. II 2021, 99, 205–237. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Le, M.; Chandrasekar, V.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document. 2021. Available online: https://gpm.nasa.gov/sites/default/files/2022-06/ATBD_DPR_V07A.pdf (accessed on 15 May 2024).
- Seto, S.; Iguchi, T. Intercomparison of Attenuation Correction Methods for the GPM Dual-Frequency Precipitation Radar. J. Atmos. Ocean. Technol. 2015, 32, 915–926. [Google Scholar] [CrossRef]
- Udina, M.; Peinó, E.; Polls, F.; Mercader, J.; Guerrero, I.; Valmassoi, A.; Paci, A.; Bech, J. Irrigation Impact on Boundary Layer and Precipitation Characteristics in Weather Research and Forecasting Model Simulations during LIAISE-2021. Q. J. R. Meteorol. Soc. 2024, 1–23. [Google Scholar] [CrossRef]
- González, S.; Bech, J.; Garcia-Benadí, A.; Udina, M.; Codina, B.; Trapero, L.; Paci, A.; Georgis, J.-F. Vertical Structure and Microphysical Observations of Winter Precipitation in an Inner Valley during the Cerdanya-2017 Field Campaign. Atmos. Res. 2021, 264, 105826. [Google Scholar] [CrossRef]
- OTT HydroMet. Operating Instructions Present Weather Sensor OTT Parsivel 2; OTT HydroMet: Kempten, Germany, 2016; p. 52. [Google Scholar]
- OTT Messtechnik. Operating Instructions: Present Weather Sensor–Parsivel; OTT Messtechnik: Kempten, Germany, 2009. [Google Scholar]
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and Stationary PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy Rainfall. J. Atmos. Ocean. Technol. 2013, 30, 2063–2080. [Google Scholar] [CrossRef]
- Casanovas, C.; Salio, P.; Galligani, V.; Dolan, B.; Nesbitt, S.W. Drop Size Distribution Variability in Central Argentina during RELAMPAGO-CACTI. Remote Sens. 2021, 13, 2026. [Google Scholar] [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler Radar Characteristics of Precipitation at Vertical Incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- WMO CODE TABLE 4677. Available online: https://www.nodc.noaa.gov/archive/arc0021/0002199/1.1/data/0-data/HTML/WMO-CODE/WMO4677.HTM (accessed on 8 April 2024).
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Reddy, K.K.; Shirooka, R.; Wang, P.K. A Comparison Study of Summer Season Raindrop Size Distribution between Palau and Taiwan, Two Islands in Western Pacific. J. Geophys. Res. Atmos. 2017, 122, 11–787. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra. J. Appl. Meteorol. Climatol. 1998, 37, 912–923. [Google Scholar] [CrossRef]
- Leinonen, J. High-Level Interface to T-Matrix Scattering Calculations: Architecture, Capabilities and Limitations. Opt. Express OE 2014, 22, 1655–1660. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Thurai, M.; Huang, G.J.; Bringi, V.N.; Randeu, W.L.; Schönhuber, M. Drop Shapes, Model Comparisons, and Calculations of Polarimetric Radar Parameters in Rain. J. Atmos. Ocean. Technol. 2007, 24, 1019–1032. [Google Scholar] [CrossRef]
- Pytmatrix/Pytmatrix/Tmatrix_aux.Py at Master·Jleinonen/Pytmatrix. Available online: https://github.com/jleinonen/pytmatrix/blob/master/pytmatrix/tmatrix_aux.py (accessed on 9 February 2024).
- Hamada, A.; Takayabu, Y.N. Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Ocean. Technol. 2016, 33, 653–667. [Google Scholar] [CrossRef]
- Silvestro, F.; Rebora, N.; Ferraris, L. An Algorithm for Real-Time Rainfall Rate Estimation by Using Polarimetric Radar: RIME. J. Hydrometeorol. 2009, 10, 227–240. [Google Scholar] [CrossRef]
- Brooks, H.E.; Flora, M.L.; Baldwin, M.E. A Rose by Any Other Name: On Basic Scores from the 2 × 2 Table and the Plethora of Names Attached to Them. Artif. Intell. Earth Syst. 2024, 3, e230104. [Google Scholar] [CrossRef]
- Ghada, W.; Casellas, E.; Herbinger, J.; Garcia-Benadí, A.; Bothmann, L.; Estrella, N.; Bech, J.; Menzel, A. Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar. Remote Sens. 2022, 14, 4563. [Google Scholar] [CrossRef]
- Livezey, R.E. Deterministic Forecasts of Multi-Category Events. In Forecast Verification: A Practitioner’s Guide in Atmospheric Science; Jolliffe, I.T., Stephenson, D.B., Eds.; Willey-Blackwell: West Sussex, UK, 2011; pp. 61–75. [Google Scholar]
- Tharwat, A. Classification Assessment Methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- Gonzalez, S.; Bech, J. Extreme Point Rainfall Temporal Scaling: A Long Term (1805–2014) Regional and Seasonal Analysis in Spain. Int. J. Climatol. 2017, 37, 5068–5079. [Google Scholar] [CrossRef]
- Peinó, E.; Bech, J.; Udina, M.; Polls, F. Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean. Remote Sens. 2024, 16, 457. [Google Scholar] [CrossRef]
- Adirosi, E.; Roberto, N.; Montopoli, M.; Gorgucci, E.; Baldini, L. Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD: Application to Italian Climatology. Atmosphere 2018, 9, 360. [Google Scholar] [CrossRef]
- Park, S.-G.; Kim, H.-L.; Ham, Y.-W.; Jung, S.-H. Comparative Evaluation of the OTT PARSIVEL2 Using a Collocated Two-Dimensional Video Disdrometer. J. Atmos. Ocean. Technol. 2017, 34, 2059–2082. [Google Scholar] [CrossRef]
- Dolan, B.; Fuchs, B.; Rutledge, S.A.; Barnes, E.A.; Thompson, E.J. Primary Modes of Global Drop Size Distributions. J. Atmos. Sci. 2018, 75, 1453–1476. [Google Scholar] [CrossRef]
- Bringi, V.N.; Huang, G.-J.; Munchak, S.J.; Kummerow, C.D.; Marks, D.A.; Wolff, D.B. Comparison of Drop Size Distribution Parameter (D0) and Rain Rate from S-Band Dual-Polarized Ground Radar, TRMM Precipitation Radar (PR), and Combined PR–TMI: Two Events from Kwajalein Atoll. J. Atmos. Ocean. Technol. 2012, 29, 1603–1616. [Google Scholar] [CrossRef]
- Bringi, V.N.; Tolstoy, L.; Thurai, M.; Petersen, W.A. Estimation of Spatial Correlation of Drop Size Distribution Parameters and Rain Rate Using NASA’s S-Band Polarimetric Radar and 2D Video Disdrometer Network: Two Case Studies from MC3E. J. Hydrometeorol. 2015, 16, 1207–1221. [Google Scholar] [CrossRef]
- Watters, D.C. The Global Precipitation Measurement Mission: Product Validation and Model Evaluation Studies. Ph.D Thesis, University of Leicester, Leicester, UK, 30 November 2021. [Google Scholar] [CrossRef]
- Ulbrich, C.W. Natural Variations in the Analytical Form of the Raindrop Size Distribution. J. Appl. Meteorol. Climatol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef]
- Meneghini, R.; Liao, L.; Iguchi, T. A Generalized Dual-Frequency Ratio (DFR) Approach for Rain Retrievals. J. Atmos. Ocean. Technol. 2022, 39, 1309–1329. [Google Scholar] [CrossRef]
DPR Version | Disdrometer Type | Variables Studied * | Region of Study | Reference |
---|---|---|---|---|
- | OTT Parsivel 2 | RR, Nw, Dm, Z, k | Iowa, USA | Liao et al., (2014) [9] |
V03 | RD-80 | RR, Nw, Dm, Z, k | Gadanki, India | Radhakrishna et al., (2016) [10] |
V05 | 2DVD | RR, DSD, Z | Italian Peninsula | D’Adderio et al., (2019) [11] |
V06 | OTT Parsivel 2 | RR, Nw, Dm, Z, µ | Jianghuai, China | Wu et al., (2019) [12] |
V06 | 2DVD | RR, Dm | Several international sites | Chase et al., (2020) [13] |
V06 | OTT Parsivel 2 | RR, Nw, Dm, Z, k | Central Andes, Peru | Del Castillo-Velarde et al., (2021) [14] |
V06 | Thies, OTT Parsivel 2 | RR, Nw, Dm, Z | Italian Peninsula | Adirosi et al., (2021) [15] |
V07 | Joss–Waldvogel | RR, Nw, Dm, Z | North Taiwan | Seela et al., (2023) [8] |
Disdrometer Type | Disdrometer Site | Label (Subregions) | Lon (°E) | Lat (°N) | Height (m) | Start Date | End Date | Valid Data (min) |
---|---|---|---|---|---|---|---|---|
Parsivel 1 | Barcelona University | C01 (Coast) | 2.11 | 41.38 | 98 | 1 January 2015 | 1 February 2024 | 51,679 |
Parsivel 2 | Fabra Observatory | C02 (Coast) | 2.12 | 41.42 | 411 | 26 July 2022 | 13 February 2024 | 12,537 |
Parsivel 1,2 | Das | M01 (Mountain) | 1.87 | 42.39 | 1097 | 9 December 2016 | 8 February 2024 | 59,388 |
Parsivel 2 | Tarrega | P01 (Plain) | 1.16 | 41.67 | 427 | 4 May 2021 | 14 June 2022 | 10,218 |
Parsivel 2 | Mollerussa | P02 (Plain) | 0.87 | 41.62 | 247 | 27 April 2021 | 5 December 2022 | 12,855 |
Parsivel 2 | Tordera | P03 (Plain) | 1.22 | 41.68 | 388 | 30 April 2021 | 14 June 2022 | 12,035 |
Parsivel 2 | Cendrosa | P04 (Plain) | 0.93 | 41.69 | 239 | 9 April 2021 | 12 October 2021 | 3616 |
Name | Formula | Perfect Score |
---|---|---|
Correlation Coefficient (CC) | 1 | |
Normalized Mean Bias (NBias) | 0 | |
Normalized Mean Absolute Error (MAE) | 0 | |
Normalized Root Mean Square Error (RMSE) | 0 | |
Accuracy | 1 | |
Precision | 1 | |
Recall | 1 |
Observed Class | |||||
---|---|---|---|---|---|
A | B | C | Total | ||
Predicted Class | A | TPA | FBA | FCA | TPA + FBA + FCA |
B | FAB | TPB | FCB | FAB + TPB + FCB | |
C | FAC | FBC | TPC | FAC + FBC + TPC | |
Total | TPA + FAB + FAC | FBA + TPB + FBC | FCA + FCB + TPC | All classifications |
Dataset | ZKa (dBZ) | ZKu (dBZ) | R (mm/h) | Nw (dB) | Dm (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Median | Max | Median | Max | Median | Max | Median | Max | Median | Max | |
C01 | 51,679 | 24.77 | 47.27 | 24.92 | 51.86 | 0.89 | 60.83 | 33.75 | 51.61 | 1.19 | 6.28 |
C02 | 12,537 | 22.79 | 52.40 | 22.68 | 55.83 | 0.77 | 183.27 | 35.23 | 53.06 | 1.04 | 4.40 |
M01 | 59,388 | 21.13 | 49.74 | 20.92 | 54.88 | 0.60 | 107.70 | 36.16 | 52.04 | 0.96 | 7.86 |
P01 | 10,218 | 20.30 | 47.83 | 20.04 | 52.47 | 0.48 | 74.61 | 34.77 | 50.17 | 0.98 | 3.85 |
P02 | 12,855 | 21.49 | 50.26 | 21.38 | 53.97 | 0.54 | 115.74 | 34.09 | 49.98 | 1.06 | 4.91 |
P03 | 12,035 | 21.04 | 50.16 | 20.79 | 53.76 | 0.56 | 114.86 | 35.27 | 50.00 | 1.00 | 7.59 |
P04 | 3616 | 21.56 | 50.71 | 21.44 | 55.20 | 0.54 | 132.65 | 34.75 | 50.88 | 1.04 | 4.75 |
Coast | 60,570 | 24.26 | 52.40 | 24.34 | 55.83 | 0.85 | 183.27 | 34.04 | 53.06 | 1.16 | 6.28 |
Mountain | 59,388 | 21.13 | 49.74 | 20.92 | 54.88 | 0.60 | 107.70 | 36.16 | 52.04 | 0.96 | 7.86 |
Plain | 24,254 | 20.44 | 50.71 | 20.21 | 55.20 | 0.48 | 132.65 | 34.43 | 50.88 | 1.01 | 7.59 |
All | 144,212 | 22.28 | 52.40 | 22.16 | 55.83 | 0.66 | 183.27 | 34.97 | 53.06 | 1.04 | 7.86 |
Dataset | ZKa (dBZ) | ZKu (dBZ) | R (mm/h) | Nw (dB) | Dm (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Median | Max | N | Median | Max | Median | Max | Median | Max | Median | Max | |
C01 | 291 | 25.10 | 45.70 | 351 | 24.46 | 51.13 | 0.96 | 57.07 | 33.19 | 51.29 | 1.19 | 3.00 |
C02 | 312 | 25.00 | 42.34 | 376 | 24.24 | 51.13 | 0.90 | 36.33 | 33.24 | 51.29 | 1.18 | 4.45 |
M01 | 360 | 23.47 | 37.54 | 423 | 23.25 | 46.34 | 0.78 | 18.49 | 33.04 | 50.65 | 1.16 | 3.00 |
P01 | 262 | 23.16 | 41.37 | 304 | 22.38 | 51.05 | 0.68 | 27.75 | 33.11 | 43.93 | 1.12 | 5.00 |
P02 | 203 | 24.23 | 38.67 | 232 | 23.18 | 44.61 | 0.75 | 11.71 | 33.34 | 41.34 | 1.12 | 3.00 |
P03 | 269 | 23.63 | 41.37 | 304 | 22.20 | 51.05 | 0.67 | 27.75 | 33.13 | 43.93 | 1.11 | 4.99 |
P04 | 234 | 23.42 | 37.44 | 273 | 22.38 | 47.42 | 0.68 | 13.18 | 33.34 | 41.51 | 1.11 | 3.56 |
Coast | 603 | 25.05 | 45.70 | 727 | 24.40 | 51.13 | 0.92 | 57.07 | 33.21 | 51.29 | 1.18 | 4.45 |
Mountain | 360 | 23.47 | 37.54 | 423 | 23.25 | 46.34 | 0.78 | 18.49 | 33.04 | 50.65 | 1.16 | 3.00 |
Plain | 968 | 23.55 | 41.37 | 1113 | 22.59 | 51.05 | 0.69 | 27.75 | 33.21 | 43.93 | 1.11 | 5.00 |
All | 1931 | 23.89 | 45.70 | 2263 | 23.19 | 51.12 | 0.77 | 57.07 | 33.17 | 51.29 | 1.14 | 5.00 |
Stratiform | Convective | Ambiguous | Outlier | |
---|---|---|---|---|
Disdrometer | 53 | 31 | 13 | 2 |
GPM DPR (DF) | 73 | 18 | 8 | 1 |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | |||
---|---|---|---|---|---|---|---|---|
Vapor Deposition | Weak Convection | Aggregation/ Riming | Collision– Coalescence | Ice-Based | Ambiguous | Outlier | ||
Disdrometer | 4 | 29 | 4 | 14 | 0 | 1 | 12 | 32 |
GPM DPR (DF) | 4 | 15 | 0 | 22 | 0 | 2 | 11 | 46 |
GPM Product | Group A: GPM CO Overpasses with Rain without Necessarily Matching Disdrometer Data | Group B: GPM CO Overpasses with Rain Matching Disdrometer Data | ||||||
---|---|---|---|---|---|---|---|---|
Matching Method | Point | 5 km | 10 km | 9 pixels | Point | Mean 5 km | Mean 10 km | Optimal |
DPR-FS | 142 | 272 | 460 | 567 | 19 | 33 | 39 | 40 |
Ka-FS | 69 | 157 | 289 | 328 | 12 | 27 | 33 | 34 |
Ku-FS | 142 | 270 | 463 | 569 | 20 | 34 | 41 | 41 |
Point | Mean 5 km | Mean 10 km | Optimal | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NBIAS | NMAE | NRMSE | CC | NBIAS | NMAE | NRMSE | CC | NBIAS | NMAE | NRMSE | CC | NBIAS | NMAE | NRMSE | CC | ||
R | DF | −46.12 | 0.70 | 1.20 | 0.48 * | −39.21 | 0.66 | 1.02 | 0.31 | −16.88 | 0.59 | 0.90 | 0.70 * | 0.26 | 0.61 | 1.60 | 0.77 * |
SF | −49.84 | 0.69 | 1.18 | 0.37 * | −46.93 | 0.64 | 1.01 | 0.30 * | −31.63 | 0.66 | 0.99 | 0.44 * | −35.35 | 0.43 | 0.78 | 0.78 * | |
ZKa | DF | −6.07 | 0.19 | 0.27 | 0.61 | −7.55 | 0.17 | 0.22 | 0.61 * | −4.68 | 0.18 | 0.23 | 0.66 * | −2.58 | 0.09 | 0.14 | 0.88 * |
SF | −13.55 | 0.16 | 0.20 | 0.27 | −11.58 | 0.16 | 0.19 | 0.42 * | −7.37 | 0.17 | 0.21 | 0.48 * | −2.81 | 0.10 | 0.16 | 0.77 * | |
ZKu | DF | −10.23 | 0.20 | 0.29 | 0.63 * | −10.75 | 0.18 | 0.25 | 0.63 * | −8.27 | 0.20 | 0.26 | 0.66 * | −6.04 | 0.12 | 0.16 | 0.88 * |
SF | −9.23 | 0.20 | 0.29 | 0.63 * | −11.53 | 0.18 | 0.27 | 0.64 * | −8.12 | 0.20 | 0.25 | 0.65 * | −5.37 | 0.10 | 0.16 | 0.88 * | |
Dm | DF | −1.08 | 0.24 | 0.28 | 0.65 * | 2.05 | 0.21 | 0.27 | 0.56 * | 1.82 | 0.22 | 0.28 | 0.51 * | 0.96 | 0.14 | 0.18 | 0.83 * |
SF | −1.68 | 0.23 | 0.27 | 0.67 * | 2.82 | 0.23 | 0.32 | 0.38 * | 5.30 | 0.23 | 0.34 | 0.33 * | 2.99 | 0.14 | 0.19 | 0.83 * | |
Nw | DF | −7.01 | 0.12 | 0.16 | 0.34 | −7.59 | 0.11 | 0.14 | 0.32 | −5.83 | 0.09 | 0.12 | 0.35 * | −5.12 | 0.11 | 0.13 | 0.39 * |
SF | −6.77 | 0.12 | 0.15 | 0.34 | −8.61 | 0.12 | 0.15 | 0.16 | −8.36 | 0.12 | 0.15 | −0.01 | 0.29 | 0.12 | 0.14 | 0.19 |
Disdrometer | |||||
---|---|---|---|---|---|
Ambiguous | Convective | Stratiform | Total | ||
DPR DF | Ambiguous | 1 | 0 | 1 | 2 |
Convective | 2 | 0 | 0 | 2 | |
Stratiform | 5 | 15 | 17 | 37 | |
Total | 8 | 15 | 18 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinó, E.; Bech, J.; Polls, F.; Udina, M.; Petracca, M.; Adirosi, E.; Gonzalez, S.; Boudevillain, B. Validation of GPM DPR Rainfall and Drop Size Distributions Using Disdrometer Observations in the Western Mediterranean. Remote Sens. 2024, 16, 2594. https://doi.org/10.3390/rs16142594
Peinó E, Bech J, Polls F, Udina M, Petracca M, Adirosi E, Gonzalez S, Boudevillain B. Validation of GPM DPR Rainfall and Drop Size Distributions Using Disdrometer Observations in the Western Mediterranean. Remote Sensing. 2024; 16(14):2594. https://doi.org/10.3390/rs16142594
Chicago/Turabian StylePeinó, Eric, Joan Bech, Francesc Polls, Mireia Udina, Marco Petracca, Elisa Adirosi, Sergi Gonzalez, and Brice Boudevillain. 2024. "Validation of GPM DPR Rainfall and Drop Size Distributions Using Disdrometer Observations in the Western Mediterranean" Remote Sensing 16, no. 14: 2594. https://doi.org/10.3390/rs16142594
APA StylePeinó, E., Bech, J., Polls, F., Udina, M., Petracca, M., Adirosi, E., Gonzalez, S., & Boudevillain, B. (2024). Validation of GPM DPR Rainfall and Drop Size Distributions Using Disdrometer Observations in the Western Mediterranean. Remote Sensing, 16(14), 2594. https://doi.org/10.3390/rs16142594