Early Radiometric Assessment of NOAA-21 Visible Infrared Imaging Radiometer Suite Reflective Solar Bands Using Vicarious Techniques
Abstract
1. Introduction
2. Methodology
2.1. Calibration of RSBs
2.2. Vicarious Approaches
2.3. Correction for Spectral Differences
3. Results
3.1. Libya-4
3.2. DCC
3.3. Dome C
3.4. SNO
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murphy, R.P.; Ardanuy, P.E.; De Luccia, F.; Clement, J.E.; Schueler, C. The visible infrared imaging radiometer suite. In Earth Science Satellite Remote Sensing; Springer: New York, NY, USA, 2006; Volume 1, pp. 199–223. [Google Scholar]
- Salomonson, V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Barnes, W.L.; Salomonson, V.V. MODIS: A global image spectroradiometer for the Earth Observing System. Crit. Rev. Opt. Sci. Technol. 1993, CR47, 285–307. [Google Scholar]
- Rao, C.R.N.; Chen, J. Inter-satellite calibration linkages for the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 spacecraft. Int. J. Remote Sens. 1995, 16, 1931–1942. [Google Scholar]
- Thome, K.; Biggar, S.; Choi, H.J. Vicarious calibration of Terra ASTER, MISR, and MODIS. In Proceedings of the Earth Observing Systems IX, Denver, CO, USA, 2–6 August 2004; Volume 5542, pp. 290–299. [Google Scholar]
- Chander, G.; Xiong, X.; Choi, T.; Angal, A. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ. 2010, 114, 925–939. [Google Scholar] [CrossRef]
- Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A. Using the Sonoran and Libyan Desert Test Sites to monitor the temporal stability of reflective solar bands for Landsat 7 ETM+ and Terra MODIS Sensors. J. Appl. Remote Sens. 2010, 4, 043525. [Google Scholar]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Doelling, D.R.; Morstad, D.; Angal, A.; Bhatt, R. Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands’ Calibration Stability. IEEE Trans. Geosci. Remote Sens. 2012, 51, 4330–4338. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Bhatt, R.; Haney, C.; Doelling, D.R.; Angal, A.; Mu, Q. An Assessment of SNPP and NOAA20 VIIRS RSB Calibration Performance in NASA SIPS Reprocessed Collection-2 L1B Data Products. Remote Sens. 2022, 14, 4134. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Chang, T.; Chiang, K.; Lei, N.; Li, Y.; Sun, J.; Twedt, K.; Wu, A. MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sens. 2020, 12, 3167. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Shao, X. Radiometric consistency between GOES-16 ABI and VIIRS on Suomi NPP and NOAA-20. J. Appl. Remote Sens. 2020, 14, 032407. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. Evaluation of NOAA-20 VIIRS Reflective Solar Bands Early On-Orbit Performance Using Daily Deep Convective Clouds Recent Improvements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3975–3985. [Google Scholar] [CrossRef]
- Shea, Y.; Fleming, G.; Kopp, G.; Lukashin, C.; Pilewskie, P.; Smith, P.; Thome, K.; Wielicki, B.; Liu, X.; Wu, W. Clarreo Pathfinder: Mission Overview and Current Status. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3286–3289. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Young, D.F.; Mlynczak, M.G.; Thome, K.J.; Leroy, S.; Corliss, J.; Anderson, J.G.; Ao, C.O.; Bantges, R.; Best, F.; et al. Achieving climate change absolute accuracy in orbit. Bull. Am. Meteorol. Soc. 2013, 94, 1519–1539. [Google Scholar] [CrossRef]
- VIIRS.1 NASA Goddard Space Flight Center. Joint Polar Satellite System (JPSS) VIIRS Radiometric Calibration Algorithm Theoretical Basis Document (ATBD); NASA Goddard Space Flight Center: Greenbelt, MA, USA, 2013. [Google Scholar]
- Lei, N.; Wang, Z.; Xiong, X. On-orbit Radiometric Calibration of Suomi NPP VIIRS Reflective Solar Bands through Observations of a Sunlit Solar Diffuser Panel. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5983–5990. [Google Scholar] [CrossRef]
- Xiong, X.; Sun, J.; Fulbright, J.; Wang, Z.; Butler, J. Lunar Calibration and Performance for S-NPP VIIRS Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1052–1061. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Sun, J.; Lei, N.; Twedt, K.; Chen, H.; Chiang, K.F. An overview of NOAA-21 VIIRS early on-orbit calibration and performance. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXVII, Amsterdam, The Netherlands, 3–7 September 2023; Volume 1272916, pp. 308–317. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X.; Twedt, K.; Angal, A.; Li, S.; Sun, J. Early mission performance of NOAA-21 VIIRS reflective solar bands. In Proceedings Volume 12685, Earth Observing Systems XXVIII; SPIE Optical Engineering + Applications: San Diego, CA, USA, 2003. [Google Scholar] [CrossRef]
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ. 1996, 58, 101–114. [Google Scholar] [CrossRef]
- Doelling, D.R.; Morstad, D.; Scarino, B.R.; Bhatt, R.; Gopalan, A. The Characterization of Deep Convective Clouds as an Invariant Calibration Target and as a Visible Calibration Technique. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1147–1159. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Angal, A.; Xiong, X.; Haney, C.; Scarino, B.R.; Wu, A.; Gopalan, A. Response Versus Scan-Angle Assessment of MODIS Reflective Solar Bands in Collection 6.1 Calibration. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2276–2289. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Scarino, B.; Haney, C.; Gopalan, A. Development of Seasonal BRDF Models to Extend the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration. Remote Sens. 2017, 9, 1061. [Google Scholar] [CrossRef]
- Six, D.; Fily, M.; Alvain, S.; Henry, P.; Benoist, J.-P. Surface characterization of the dome concordia area (Antarctica) as a potential satellite calibration site using spot 4/vegetation instrument. Remote Sens. Environ. 2004, 89, 83–94. [Google Scholar] [CrossRef]
- Gottwald, M.; Bovensmann, H. SCIAMACHY—Exploring the Changing Earth’s Atmosphere; Springer: New York, NY, USA, 2011. [Google Scholar]
- Scarino, B.R.; Doelling, D.R.; Minnis, P.; Gopalan, A.; Chee, T.; Bhatt, R.; Lukashin, C.; Haney, C. A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived from SCIAMACHY Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2529–2542. [Google Scholar] [CrossRef]
- Mu, Q.; Wu, A.; Xiong, X.; Doelling, D.R.; Angal, A.; Chang, T.; Bhatt, R. Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands. Remote Sens. 2017, 9, 535. [Google Scholar] [CrossRef]
- Doelling, D.R.; Bhatt, R.; Scarino, B.R.; Gopalan, A.; Rutan, D.; Scott, R.; Haney, C.O. Additional characterization of Dome-C to improve its use as an invariant visible calibration target. In Earth Observing Systems XXVI; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; p. 118290D. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X. Products of the SNPP VIIRS SD Screen Transmittance and the SD BRDFs from Both Yaw Maneuver and Regular On-orbit Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1975–1987. [Google Scholar] [CrossRef]
- Bhatt, R.; Shea, Y.; Wu, W.; Yang, Q.; Goldin, D.; Sun, W.; Little, M.; Liu, X.; Smith, N.; Lukashin, C. CLARREO Pathfinder as a SI-traceable reference for satellite intercalibration. In Earth Observing Systems XXVIII; SPIE Optical Engineering + Applications: San Diego, CA, USA, 2023; Volume 12685, p. 1268507. [Google Scholar] [CrossRef]
Band | Wavelength (µm) | Bandwidth (µm) | Gain Mode | Primary Use |
---|---|---|---|---|
I1 | 0.64 | 0.08 | Single | Imagery |
I2 | 0.865 | 0.039 | Single | Imagery |
I3 | 1.61 | 0.06 | Single | Imagery |
M1 | 0.412 | 0.02 | Low/High | Ocean color, aerosol |
M2 | 0.445 | 0.018 | Low/High | Ocean color, aerosol |
M3 | 0.488 | 0.02 | Low/High | Ocean color, aerosol |
M4 | 0.555 | 0.02 | Low/High | Ocean color, aerosol |
M5 | 0.672 | 0.02 | Low/High | Ocean color, aerosol |
M6 | 0.746 | 0.015 | Single | Atmospheric correction |
M7 | 0.865 | 0.039 | Low/High | Ocean color, aerosol |
M8 | 1.24 | 0.02 | Single | Cloud particle size |
M9 | 1.378 | 0.015 | Single | Cirrus/Cloud cover |
M10 | 1.61 | 0.06 | Single | Snow fraction |
M11 | 2.25 | 0.05 | Single | Clouds |
Band | M1 | M2 | M3 | M4 | M5 | M7 | M8 | M9 | M10 | M11 | I1 | I2 | I3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Libya-4 | 7.85 ±1.25 | 6.16 ±1.32 | 4.22 ±1.40 | 3.20 ±1.21 | 4.47 ±0.87 | 2.67 ±1.10 | 2.44 ±1.25 | NA | 1.75 ±0.75 | 1.50 ±2.18 | 2.74 ±1.22 | 2.59 ±1.08 | 3.00 ±0.76 |
DCC | 6.73 ±1.36 | 5.27 ±1.24 | 5.32 ±1.17 | 5.38 ±1.32 | 4.95 ±1.22 | 3.93 ±0.97 | 1.80 ±0.75 | 0.74 ±2.78 | 2.61 ±2.68 | 1.85 ±1.97 | 4.56 ±1.21 | 4.4 ±0.92 | 4.13 ±2.62 |
Dome C | 7.99 ±1.30 | 6.42 ±1.15 | 4.73 ±1.48 | 4.51 ±3.38 | 4.88 ±2.33 | 2.17 ±2.49 | NA | NA | NA | NA | 3.01 ±3.25 | 2.42 ±2.50 | NA |
SNO | 6.87 ±2.06 | 5.72 ±1.20 | 3.74 ±1.39 | 4.59 ±0.76 | 4.35 ±2.03 | 2.77 ±1.43 | 2.98 ±1.50 | NA | 2.93 ±3.27 | NA | 2.27 ±1.01 | 2.49 ±1.42 | 3.81 ±3.27 |
Band | M1 | M2 | M3 | M4 | M5 | M7 | M8 | M9 | M10 | M11 | I1 | I2 | I3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Libya4 | 0.90 ±1.16 | 1.37 ±1.45 | 1.29 ±1.49 | 0.91 ±1.10 | −0.36 ±0.95 | 0.91 ±1.10 | 3.06 ±1.15 | NA | 4.62 ±0.82 | 2.05 ±2.23 | −0.46 ±1.28 | 0.51 ±1.09 | 2.34 ±0.88 |
DCC | 0.79 ±1.05 | 1.17 ±1.23 | 0.62 ±1.08 | −2.23 ±1.04 | −1.18 ±1.05 | 0.31 ±0.75 | 2.47 ±0.79 | 1.86 ±2.31 | 2.97 ±2.50 | −0.24 ±1.99 | −0.93 ±1.06 | −0.42 ±0.82 | 0.74 ±2.59 |
Dome C | 3.83 ±1.02 | 4.28 ±1.24 | 1.46 ±1.48 | −0.81 ±3.48 | 0.47 ±2.39 | −0.99 ±2.38 | NA | NA | NA | −0.81 ±3.23 | −1.10 ±2.40 | NA | |
SNO | 1.80 ±2.28 | 2.11 ±1.24 | 1.64 ±1.52 | 1.11 ±0.85 | −0.10 ±1.98 | 1.21 ±1.59 | 1.09 ±1.68 | NA | 3.33 ±2.60 | NA | 0.59 ±1.08 | 1.19 ±1.58 | 2.73 ±2.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, A.; Xiong, X.; Mu, Q.; Angal, A.; Bhatt, R.; Shea, Y. Early Radiometric Assessment of NOAA-21 Visible Infrared Imaging Radiometer Suite Reflective Solar Bands Using Vicarious Techniques. Remote Sens. 2024, 16, 2528. https://doi.org/10.3390/rs16142528
Wu A, Xiong X, Mu Q, Angal A, Bhatt R, Shea Y. Early Radiometric Assessment of NOAA-21 Visible Infrared Imaging Radiometer Suite Reflective Solar Bands Using Vicarious Techniques. Remote Sensing. 2024; 16(14):2528. https://doi.org/10.3390/rs16142528
Chicago/Turabian StyleWu, Aisheng, Xiaoxiong Xiong, Qiaozhen Mu, Amit Angal, Rajendra Bhatt, and Yolanda Shea. 2024. "Early Radiometric Assessment of NOAA-21 Visible Infrared Imaging Radiometer Suite Reflective Solar Bands Using Vicarious Techniques" Remote Sensing 16, no. 14: 2528. https://doi.org/10.3390/rs16142528
APA StyleWu, A., Xiong, X., Mu, Q., Angal, A., Bhatt, R., & Shea, Y. (2024). Early Radiometric Assessment of NOAA-21 Visible Infrared Imaging Radiometer Suite Reflective Solar Bands Using Vicarious Techniques. Remote Sensing, 16(14), 2528. https://doi.org/10.3390/rs16142528