Adaptive Nighttime-Light-Based Building Stock Assessment Framework for Future Environmentally Sustainable Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Building Stock Estimation Enhancement Framework (BSEEF)
2.2.1. Region Classification Module (RCM)
2.2.2. Hybrid Region-Specified Self-Optimization Module (HRSM)
3. Case Study
4. Results
4.1. NLC Classification Results by RCM
4.2. Building Stock Estimation Results from Experimental and Control Trials
4.3. Spatial Distribution of BSEEF Building Stock Estimation Results
5. Discussion
5.1. Environmental Implications and Opportunities of BSEEF
5.2. Limitations of the BSEEF and Suggestions for Future Improvement
- One of the main objectives of developing the BSEEF in this study was to improve the estimation accuracy in urban areas that are susceptible to the saturation effect of NTLs. However, the results did not meet expectations, and the improvement was lower in the urban cluster compared to the suburban cluster. We speculate that this may be due to the clustering setting of the current framework design. To be consistent with the real-world concepts of urban and suburban areas, we categorized all NLCs into two clusters. The suburban cluster consists of NLCs with relatively similar characteristics, while the urban cluster includes all NLCs that are not categorized as suburban. The urban cluster has much greater internal variation, and the current clustering result alone does not adequately reflect these internal differences. This leads to poorer modeling results for urban areas. Theoretically, this problem could be addressed by further subdividing the urban areas into multiple subgroups and fitting a model to each subgroup. However, further subdivision of urban areas is not feasible in practice due to data volume limitations. More subdivisions mean fewer data per group, which may result in insufficient data volume to adequately train the model. Since the urban cluster already has less data volume compared to the suburban cluster, further subdivision for separate model training may result in more accuracy issues. This becomes the most obvious deficiency in the experimental results and needs to be addressed in the future.
- Although BSEEF has a broadly distributed accuracy improvement in predicting building stock in comparison to the fundamental linear regression models, from an overall perspective, the improvement is only a few percentage points per metric. Considering the additional computational cost of using BSEEF, the cost-benefit ratio of obtaining the current improvement in accuracy is not high or even close to marginal. If we had kept the input data types the same and continued to try to iteratively improve the model itself, the costs would likely have continued to increase while the benefits would have gradually diminished. Therefore, in future similar studies, it will be necessary to evaluate the cost of the study and the need for accuracy before executing the entire modeling process. If one is sensitive to computational costs and does not require high predictive accuracy, using a basic linear regression model may be a better choice.
- Some of the errors in the results of this study come from the mismatch between the NTL intensity and the building stock distribution, which is similar to the findings demonstrated in past research on building morphology [108]. With the development of technology and the advancement of observational instruments, the accuracy of the NTL intensity observations is improved, and these mismatches may not simply be categorized as saturation and blooming effects but rather as objective differences. That is, although there is a high correlation between human-induced NTL and building stock, this correlation is not uniformly distributed, and it is weaker in the region of these mismatches. Therefore, the introduction of external ancillary data, such as NDVI, to strengthen the correlation between nighttime lighting and building stock may be necessary to further improve the accuracy [73,74].
- Similarly, due to the existence of differences in the distribution of NTL intensity and building stock, the correlation between these two variables may vary between regions, for example, due to differences in architectural styles or construction standards in different countries or differences in material types or amounts due to different climates, or differences in NTL intensity due to varying levels of economic development and power supply stability. Therefore, when utilizing a single trained BSEEF model for cross-region prediction, differences between regions need to be considered in order to determine the optimal range of applicability of this model. If the similarity between regions cannot be confirmed, further post-prediction verification of the results may be required.
- In this study, the use of the edge detection method in the HRSM module of BSEEF proved to be redundant as the results showed that it did not lead to an improvement in model performance. As this method has been integrated into the model framework process, it adds unnecessary computational cost and weakens the model performance to some extent. A similar situation is likely to occur in future research if more advanced methods are to be incorporated to improve upon the modeling framework of this study. However, trial and error is necessary, and the ensuing computational costs are inevitable.
- One of the main ultimate goals of this study is to enable more convenient snapshot-level building stock estimation, thereby utilizing the high temporal resolution of NTL data to obtain higher temporal resolution maps for the evolution of building stock distribution. Therefore, further experiments are needed after this study to test whether the estimation accuracy of this framework can be reflected at different time scales. If this objective cannot be achieved, further attempts to improve the estimation accuracy are needed.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moomaw, R.L.; Shatter, A.M. Urbanization and Development: A Bias towards Large Cities? J. Urban Econ. 1996, 40, 13–37. [Google Scholar] [CrossRef]
- Jones, D.W. Urbanization and Energy Use In Economic Development. Energy J. 1989, 10, 29–45. [Google Scholar] [CrossRef]
- Tang, P.; Huang, J.; Zhou, H.; Fang, C.; Zhan, Y.; Huang, W. Local and telecoupling coordination degree model of urbanization and the eco-environment based on RS and GIS: A case study in the Wuhan urban agglomeration. Sustain. Cities Soc. 2021, 75, 103405. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, Y.; Deng, T.; Daigo, I. The evolution of material stock research: From exploring to rising to hot studies. J. Ind. Ecol. 2022, 26, 462–476. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Chen, W.; Meng, L.; Wu, Q.; Gong, P.; Seto, K.C. Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South. Proc. Natl. Acad. Sci. USA 2022, 119, e2214813119. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.D. Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Krausmann, F.; Wiedenhofer, D.; Lauk, C.; Haas, W.; Tanikawa, H.; Fishman, T.; Miatto, A.; Schandl, H.; Haberl, H. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. USA 2017, 114, 1880–1885. [Google Scholar] [CrossRef]
- Lanau, M.; Liu, G.; Kral, U.; Wiedenhofer, D.; Keijzer, E.; Yu, C.; Ehlert, C. Taking Stock of Built Environment Stock Studies: Progress and Prospects. Environ. Sci. Technol. 2019, 53, 8499–8515. [Google Scholar] [CrossRef]
- An, Y.; Chen, T.; Shi, L.; Heng, C.K.; Fan, J. Solar energy potential using GIS-based urban residential environmental data: A case study of Shenzhen, China. Sustain. Cities Soc. 2023, 93, 104547. [Google Scholar] [CrossRef]
- Dougherty, T.R.; Jain, R.K. Invisible walls: Exploration of microclimate effects on building energy consumption in New York City. Sustain. Cities Soc. 2023, 90, 104364. [Google Scholar] [CrossRef]
- Tanikawa, H.; Hashimoto, S. Urban stock over time: Spatial material stock analysis using 4d-GIS. Build. Res. Inf. 2009, 37, 483–502. [Google Scholar] [CrossRef]
- Tanikawa, H.; Fishman, T.; Okuoka, K.; Sugimoto, K. The weight of society over time and space: A comprehensive account of the construction material stock of Japan, 1945–2010. J. Ind. Ecol. 2015, 19, 778–791. [Google Scholar] [CrossRef]
- Zhang, L.; Plathottam, S.; Reyna, J.; Merket, N.; Sayers, K.; Yang, X.; Reynolds, M.; Parker, A.; Wilson, E.; Fontanini, A.; et al. High-resolution hourly surrogate modeling framework for physics-based large-scale building stock modeling. Sustain. Cities Soc. 2021, 75, 103292. [Google Scholar] [CrossRef]
- Blázquez, T.; Suárez, R.; Ferrari, S.; Sendra, J.J. Addressing the potential for improvement of urban building stock: A protocol applied to a Mediterranean Spanish case. Sustain. Cities Soc. 2021, 71, 102967. [Google Scholar] [CrossRef]
- Du, X.; Shen, L.; Wong, S.W.; Meng, C.; Yang, Z. Night-time light data based decoupling relationship analysis between economic growth and carbon emission in 289 Chinese cities. Sustain. Cities Soc. 2021, 73, 103119. [Google Scholar] [CrossRef]
- Peled, Y.; Fishman, T. Title: Estimation and mapping of the material stocks of buildings of Europe: A novel nighttime lights-based approach. Resour. Conserv. Recycl. 2021, 169, 105509. [Google Scholar] [CrossRef]
- Guo, J.; Fishman, T.; Wang, Y.; Miatto, A.; Wuyts, W.; Zheng, L.; Wang, H.; Tanikawa, H. Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China. J. Ind. Ecol. 2021, 25, 162–175. [Google Scholar] [CrossRef]
- Lanau, M.; Liu, G. Developing an Urban Resource Cadaster for Circular Economy: A Case of Odense, Denmark. Environ. Sci. Technol. 2020, 54, 4675–4685. [Google Scholar] [CrossRef]
- Mastrucci, A.; Marvuglia, A.; Popovici, E.; Leopold, U.; Benetto, E. Geospatial characterization of building material stocks for the life cycle assessment of end-of-life scenarios at the urban scale. Resour. Conserv. Recycl. 2017, 123, 54–66. [Google Scholar] [CrossRef]
- Miatto, A.; Schandl, H.; Forlin, L.; Ronzani, F.; Borin, P.; Giordano, A.; Tanikawa, H. A spatial analysis of material stock accumulation and demolition waste potential of buildings: A case study of Padua. Resour. Conserv. Recycl. 2019, 142, 245–256. [Google Scholar] [CrossRef]
- Miatto, A.; Dawson, D.; Nguyen, P.D.; Kanaoka, K.S.; Tanikawa, H. The urbanisation-environment conflict: Insights from material stock and productivity of transport infrastructure in Hanoi, Vietnam. J. Environ. Manag. 2021, 294, 113007. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-based Analysis of Vienna’ s Material Stock in Buildings. J. Ind. Ecol. 2017, 21, 368–380. [Google Scholar] [CrossRef]
- Tanikawa, H.; Managi, S.; Lwin, C.M. Estimates of Lost Material Stock of Buildings and Roads Due to the Great East Japan Earthquake and Tsunami. J. Ind. Ecol. 2014, 18, 421–431. [Google Scholar] [CrossRef]
- Mao, R.; Bao, Y.; Huang, Z.; Liu, Q.; Liu, G. High-Resolution Mapping of the Urban Built Environment Stocks in Beijing. Environ. Sci. Technol. 2020, 54, 5345–5355. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Baumgart, A.; Matej, S.; Virág, D.; Kalt, G.; Lanau, M.; Tingley, D.D.; Liu, Z.; Guo, J.; Tanikawa, H.; et al. Mapping and modelling global mobility infrastructure stocks, material flows and their embodied greenhouse gas emissions. J. Clean. Prod. 2023, 434, 139742. [Google Scholar] [CrossRef]
- Ota, Y.; Hiruta, Y.; Yamashita, N.; Shirakawa, H.; Tanikawa, H. Material Stock and Flow Estimation by Identifying the Congruency of Urban Structures between Generations. 2023 Conf. Environ. Inf. Sci. 2023, 37, 195–201. [Google Scholar] [CrossRef]
- Hu, M. A look at residential building stock in the United States-mapping life cycle embodied carbon emissions and other environmental impact. Sustain. Cities Soc. 2023, 89, 104333. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, Z.; Liu, Y.; Feng, W.; Zhou, N.; Yang, L. Towards low-carbon cities through building-stock-level carbon emission analysis: A calculating and mapping method. Sustain. Cities Soc. 2022, 78, 103633. [Google Scholar] [CrossRef]
- Liu, Z.; Saito, R.; Guo, J.; Hirai, C.; Haga, C.; Matsui, T.; Shirakawa, H.; Tanikawa, H. Does Deep Learning Enhance the Estimation for Spatially Explicit Built Environment Stocks through Nighttime Light Data Set? Evidence from Japanese Metropolitans. Environ. Sci. Technol. 2023, 57, 3971–3979. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Deng, S.; Liu, G.; Yang, C.; Chen, Z.; Hill, C.J.; Wu, J. Nighttime Light Images Reveal Spatial-Temporal Dynamics of Global Anthropogenic Resources Accumulation above Ground. Environ. Sci. Technol. 2018, 52, 11520–11527. [Google Scholar] [CrossRef] [PubMed]
- Esch, T.; Zeidler, J.; Palacios-Lopez, D.; Marconcini, M.; Roth, A.; Mönks, M.; Leutner, B.; Brzoska, E.; Metz-Marconcini, A.; Bachofer, F.; et al. Towards a large-scale 3D modeling of the built environment-joint analysis of tanDEM-X, sentinel-2 and open street map data. Remote Sens. 2020, 12, 2391. [Google Scholar] [CrossRef]
- Esch, T.; Brzoska, E.; Dech, S.; Leutner, B.; Palacios-Lopez, D.; Metz-Marconcini, A.; Marconcini, M.; Roth, A.; Zeidler, J. World Settlement Footprint 3D-A first three-dimensional survey of the global building stock. Remote Sens. Environ. 2022, 270, 112877. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Schug, F.; Frantz, D.; Virag, D.; Plutzar, C.; Gruhler, K.; Lederer, J.; Schiller, G.; Fishman, T.; et al. High-Resolution Maps of Material Stocks in Buildings and Infrastructures in Austria and Germany. Environ. Sci. Technol. 2021, 55, 3368–3379. [Google Scholar] [CrossRef] [PubMed]
- Schug, F.; Frantz, D.; Wiedenhofer, D.; Haberl, H.; Virág, D.; van der Linden, S.; Hostert, P. High-resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data. J. Ind. Ecol. 2023, 27, 110–124. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Z.; Wang, H.; Yin, G.; Zhou, X.; Gao, Y. High-resolution quantification of building stock using multi-source remote sensing imagery and deep learning. J. Ind. Ecol. 2023, 27, 350–361. [Google Scholar] [CrossRef]
- Wu, B.; Huang, H.; Wang, Y.; Shi, S.; Wu, J.; Yu, B. Global spatial patterns between nighttime light intensity and urban building morphology. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103495. [Google Scholar] [CrossRef]
- Wang, G.; Hu, Q.; He, L.; Guo, J.; Huang, J.; Zhong, L. The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales. Sustain. Cities Soc. 2024, 101, 105066. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GIScience Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Anderson, S.J.; Tuttle, B.T.; Powell, R.L.; Sutton, P.C. Characterizing relationships between population density and nighttime imagery for Denver, Colorado: Issues of scale and representation. Int. J. Remote Sens. 2010, 31, 5733–5746. [Google Scholar] [CrossRef]
- Wang, L.; Fan, H.; Wang, Y. Improving population mapping using Luojia 1-01 nighttime light image and location-based social media data. Sci. Total Environ. 2020, 730, 139148. [Google Scholar] [CrossRef]
- Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS ONE 2015, 10, e0139779. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, S.; You, X.; Yang, C.; Wang, C.; Lin, J.; Wu, W.; Yu, B. New nighttime light landscape metrics for analyzing urban-rural differentiation in economic development at township: A case study of Fujian province, China. Appl. Geogr. 2023, 150, 102841. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, Z.; Song, W.; Yang, D. Mapping the spatial-temporal changes in energy consumption-related carbon emissions in the Beijing-Tianjin-Hebei region via nighttime light data. Sustain. Cities Soc. 2023, 94, 104476. [Google Scholar] [CrossRef]
- Liu, X.; Li, X. Luojia nighttime light data with a 130m spatial resolution providing a better measurement of gridded anthropogenic heat flux than VIIRS. Sustain. Cities Soc. 2023, 94, 104565. [Google Scholar] [CrossRef]
- Wan, R.; Qian, S.; Ruan, J.; Zhang, L.; Zhang, Z.; Zhu, S.; Jia, M.; Cai, B.; Li, L.; Wu, J.; et al. Modelling monthly-gridded carbon emissions based on nighttime light data. J. Environ. Manag. 2024, 354, 120391. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, X.; Gao, X.; Zhang, J. Spatial and temporal distribution characteristics of carbon emissions and their drivers in shrinking cities in China: Empirical evidence based on the NPP/VIIRS nighttime lighting index. J. Environ. Manag. 2022, 322, 116082. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Teng, F.; Ji, Y. The spatiotemporal evolution and impact mechanism of energy consumption carbon emissions in China from 2010 to 2020 by integrating multisource remote sensing data. J. Environ. Manag. 2023, 346, 119054. [Google Scholar] [CrossRef]
- Wang, M.; Li, R.; Zhang, M.; Chen, L.; Zhang, F.; Huang, C. Mapping high-resolution energy consumption CO2 emissions in China by integrating nighttime lights and point source locations. Sci. Total Environ. 2023, 900, 165829. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Li, Y.; Li, P.; Zhao, X.; Zhang, J. Using a combination of nighttime light and MODIS data to estimate spatiotemporal patterns of CO2 emissions at multiple scales. Sci. Total Environ. 2022, 848, 157630. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Liang, H.; Cao, Z.; Dong, L.; Huang, C. An improved nightlight-based method for modeling urban CO2 emissions. Environ. Model. Softw. 2018, 107, 307–320. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Wang, Y. Estimating local-scale urban heat island intensity using nighttime light satellite imageries. Sustain. Cities Soc. 2020, 57, 102125. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Weng, F.; Zhang, F.; Shu, W. Impacts of urban spatial layout and scale on local climate: A case study in Beijing. Sustain. Cities Soc. 2021, 68, 102767. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Huang, C.; Zhuang, Q.; Meng, X.; Guo, H.; Han, J. An improved nightlight threshold method for revealing the spatiotemporal dynamics and driving forces of urban expansion in China. J. Environ. Manag. 2021, 289, 112574. [Google Scholar] [CrossRef]
- Zheng, Y.; He, Y.; Zhou, Q.; Wang, H. Quantitative Evaluation of Urban Expansion using NPP-VIIRS Nighttime Light and Landsat Spectral Data. Sustain. Cities Soc. 2022, 76, 103338. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Ma, Q.; He, C.; Wu, J.; Liu, Z.; Zhang, Q.; Sun, Z. Quantifying spatiotemporal patterns of urban impervious surfaces in China: An improved assessment using nighttime light data. Landsc. Urban Plan. 2014, 130, 36–49. [Google Scholar] [CrossRef]
- Huang, X.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, H.; Zhu, S.; Zeng, H.; Zhao, Z.; Yang, X.; Zhang, S. Material stock analysis of urban road from nighttime light data based on a bottom-up approach. Environ. Res. 2023, 228, 115902. [Google Scholar] [CrossRef] [PubMed]
- National Polar Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project Science Team; National Aeronautics and Space Administration; Earth Observing System Project Science Office. NPP NPOESS Preparatory Project: Building a Bridge to a New Era of Earth Observations. 2011; p. 15. Available online: https://www.nasa.gov/pdf/596329main_NPP_Brochure_ForWeb.pdf (accessed on 25 December 2023).
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual time series of global viirs nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The Vegetation adjusted NTL Urban Index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Zhuo, L.; Zheng, J.; Zhang, X.; Li, J.; Liu, L. An improved method of night-time light saturation reduction based on EVI. Int. J. Remote Sens. 2015, 36, 4114–4130. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Li, W.; Peng, J.; Liu, H. Evaluating saturation correction methods for DMSP/OLS nighttime light data: A case study from China’s cities. Remote Sens. 2014, 6, 9853–9872. [Google Scholar] [CrossRef]
- Cao, X.; Hu, Y.; Zhu, X.; Shi, F.; Zhuo, L.; Chen, J. A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images. Remote Sens. Environ. 2019, 224, 401–411. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, Y.; Zhou, L.; Sun, Q.; Yu, X.; Zhu, L.; Zhang, X.; Fang, Q.; Yang, X.; Yang, J.; et al. Trade-off between vegetation CO2 sequestration and fossil fuel-related CO2 emissions: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Sustain. Cities Soc. 2021, 74, 103195. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S. Urban shrinkage in a developing context: Rethinking China’s present and future trends. Sustain. Cities Soc. 2022, 80, 103779. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Sun, Y.; Cao, Q.; Liu, Y.; Liu, Y. Integrating multiple source data to enhance variation and weaken the blooming effect of DMSP-OLS light. Remote Sens. 2015, 7, 1422–1440. [Google Scholar] [CrossRef]
- Okujeni, A.; van der Linden, S.; Jakimow, B.; Rabe, A.; Verrelst, J.; Hostert, P. A comparison of advanced regression algorithms for quantifying urban land cover. Remote Sens. 2014, 6, 6324–6346. [Google Scholar] [CrossRef]
- Frantz, D.; Schug, F.; Okujeni, A.; Navacchi, C.; Wagner, W.; van der Linden, S.; Hostert, P. National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series. Remote Sens. Environ. 2021, 252, 112128. [Google Scholar] [CrossRef]
- Zhang, R.; Yamashita, N.; Liu, Z.; Guo, J.; Hiruta, Y.; Shirakawa, H.; Tanikawa, H. Paving the way to the future: Mapping historical patterns and future trends of road material stock in Japan. Sci. Total Environ. 2023, 903, 166632. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geosci. Remote Sens. Lett. 2018, 15, 607–611. [Google Scholar] [CrossRef]
- Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 2018, 158, 1533–1543. [Google Scholar] [CrossRef]
- Xu, Y.; Li, F.; Asgari, A. Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms. Energy 2022, 240, 122692. [Google Scholar] [CrossRef]
- Tan, X.; Zhu, X.; Chen, J.; Chen, R. Modeling the direction and magnitude of angular effects in nighttime light remote sensing. Remote Sens. Environ. 2022, 269, 112834. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Zhou, Y.; Dong, B. Impact of temporal compositing on nighttime light data and its applications. Remote Sens. Environ. 2022, 274, 113016. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.O.; Kalb, V.L.; Miller, S.D.; Zhang, J.; Shrestha, R.M. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sens. Environ. 2021, 263, 112557. [Google Scholar] [CrossRef]
- Hao, X.; Liu, J.; Heiskanen, J.; Maeda, E.E.; Gao, S.; Hao, X.; Liu, J.; Heiskanen, J.; Eiji, E.; Gao, S.; et al. A robust gap-filling method for predicting missing observations in daily Black Marble nighttime light data A robust gap-filling method for predicting missing observations in daily Black. GIScience Remote Sens. 2023, 60, 2282238. [Google Scholar] [CrossRef]
- NASA Level 1 and Atmosphere Archive and Distribution System Distributed Active Archive Center. NASA VIIRS Land Science Investigator-Led Processing System. VNP46A4-VIIRS/NPP Lunar BRDF-Adjusted Nighttime Lights Yearly L3 Global 15 arc second Linear Lat Lon Grid. 2021. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP46A4/#overview (accessed on 28 January 2024).
- Wang, Z.; Shrestha, R.M.; Roman, M.O.; Kalb, V.L. NASA’s Black Marble Multiangle Nighttime Lights Temporal Composites. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2505105. [Google Scholar] [CrossRef]
- Liu, M.; Ma, J.; Zhou, R.; Li, C.; Li, D.; Hu, Y. High-resolution mapping of mainland China’s urban floor area. Landsc. Urban Plan. 2021, 214, 104187. [Google Scholar] [CrossRef]
- Heeren, N.; Hellweg, S. Tracking Construction Material over Space and Time: Prospective and Geo-referenced Modeling of Building Stocks and Construction Material Flows. J. Ind. Ecol. 2019, 23, 253–267. [Google Scholar] [CrossRef]
- Müller, D.B. Stock dynamics for forecasting material flows-Case study for housing in The Netherlands Dynamic modelling Prospects for resource demand Waste management Vintage effects Diffusion processes. Ecol. Econ. 2005, 9, 142–156. [Google Scholar] [CrossRef]
- Brady, L.; Abdellatif, M. Assessment of energy consumption in existing buildings. Energy Build. 2017, 149, 142–150. [Google Scholar] [CrossRef]
- Guo, J.; Miatto, A.; Shi, F.; Tanikawa, H. Spatially explicit material stock analysis of buildings in Eastern China metropoles. Resour. Conserv. Recycl. 2019, 146, 45–54. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Liang, H.; Bian, X.; Dong, L. Towards net zero carbon buildings: Accounting the building embodied carbon and life cycle-based policy design for Greater Bay Area, China. Geosci. Front. 2024, 15, 101760. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A New Approach for Detecting Urban Centers and Their Spatial Structure with Nighttime Light Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Google for Developers. K-Means Advantages and Disadvantages. Machine Learning, Advanced Courses, Clustering. 2022. Available online: https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages (accessed on 4 February 2024).
- Ballabio, D.; Todeschini, R.; Consonni, V. Recent Advances in High-Level Fusion Methods to Classify Multiple Analytical Chemical Data. Data Handl. Sci. Technol. 2019, 31, 129–155. [Google Scholar] [CrossRef]
- Statistics Bureau, Ministry of Internal Affairs and Communications, Japan. Statistical Handbook of Japan 2022. 2022. Available online: https://www.stat.go.jp/english/data/handbook/pdf/2020all.pdf (accessed on 28 February 2024).
- Wang, K.; Aktas, Y.D.; Malki-Epshtein, L.; Wu, D.; Ammar Bin Abdullah, M.F. Mapping the city scale anthropogenic heat emissions from buildings in Kuala Lumpur through a top-down and a bottom-up approach. Sustain. Cities Soc. 2022, 76, 103443. [Google Scholar] [CrossRef]
- Kapur, A.; Keoleian, G.; Kendall, A.; Kesler, S.E. Dynamic modeling of in-use cement stocks in the United States. J. Ind. Ecol. 2008, 12, 539–556. [Google Scholar] [CrossRef]
- Xu, G.; Su, J.; Xia, C.; Li, X.; Xiao, R. Spatial mismatches between nighttime light intensity and building morphology in Shanghai, China. Sustain. Cities Soc. 2022, 81, 103851. [Google Scholar] [CrossRef]
(a) | ||||
Root Mean Squared Error (RMSE) | Mean Absolute Error (MAE) | |||
Experimental trial | ||||
(+16.75%) | (+1.81%) | (+4.81%) | ||
Control trial #1 | ||||
(−17.82%) | (+0.06%) | (+0.28%) | ||
Control trial #2 | ||||
(+62.21%) | (+1.58%) | (+4.62%) | ||
Control trial #3 | ||||
Building stock reference (SumTFA) | ||||
(b) | ||||
Root Mean Squared Error (RMSE) | Mean Absolute Error (MAE) | |||
Experimental trial | ||||
(+95.87%) | (+2.68%) | (+7.19%) | ||
Control trial #1 | ||||
(+96.33%) | (+0.05%) | (+2.00%) | ||
Control trial #2 | ||||
(+35.24%) | (+2.14%) | (+6.50%) | ||
Control trial #3 | ||||
Building stock reference (SumTFA) | ||||
(c) | ||||
Root Mean Squared Error (RMSE) | Mean Absolute Error (MAE) | |||
Experimental trial | ||||
(+99.79%) | (+1.37%) | (+0.74%) | ||
Control trial #1 | ||||
(+98.02%) | (+0.06%) | (−2.68%) | ||
Control trial #2 | ||||
(+33.90%) | (+1.30%) | (+1.39%) | ||
Control trial #3 | ||||
Building stock reference (SumTFA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Guo, J.; Zhang, R.; Ota, Y.; Nagata, S.; Shirakawa, H.; Tanikawa, H. Adaptive Nighttime-Light-Based Building Stock Assessment Framework for Future Environmentally Sustainable Management. Remote Sens. 2024, 16, 2495. https://doi.org/10.3390/rs16132495
Liu Z, Guo J, Zhang R, Ota Y, Nagata S, Shirakawa H, Tanikawa H. Adaptive Nighttime-Light-Based Building Stock Assessment Framework for Future Environmentally Sustainable Management. Remote Sensing. 2024; 16(13):2495. https://doi.org/10.3390/rs16132495
Chicago/Turabian StyleLiu, Zhiwei, Jing Guo, Ruirui Zhang, Yuya Ota, Sota Nagata, Hiroaki Shirakawa, and Hiroki Tanikawa. 2024. "Adaptive Nighttime-Light-Based Building Stock Assessment Framework for Future Environmentally Sustainable Management" Remote Sensing 16, no. 13: 2495. https://doi.org/10.3390/rs16132495
APA StyleLiu, Z., Guo, J., Zhang, R., Ota, Y., Nagata, S., Shirakawa, H., & Tanikawa, H. (2024). Adaptive Nighttime-Light-Based Building Stock Assessment Framework for Future Environmentally Sustainable Management. Remote Sensing, 16(13), 2495. https://doi.org/10.3390/rs16132495