Mapping Extreme Wildfires Using a Critical Threshold in SMAP Soil Moisture
Abstract
:1. Introduction
- Examine soil moisture variations in the months and days leading to extreme wildfires;
- Analyze the soil moisture conditions that allowed certain fires to spread rapidly and take larger proportions;
- Assess the potential of thresholds in low antecedent soil moisture to map large fires.
2. Data and Methods
2.1. Earth Observations
2.2. Study Region
2.3. Extreme Wildfire Events
2.4. Classification of Burned Areas Based on Soil Moisture
2.5. Performance Metrics
3. Results
3.1. Contrast in Soil Moisture between Megafires and Control Areas
3.2. Critical Thresholds in Antecedent Soil Moisture
3.3. Performance of Burned Area Classification
4. Discussion
4.1. Current Limitations of Soil Moisture in Fire Forecast
4.2. New Insights into Soil Moisture as an Indicator of Burned Areas
4.3. Societal Implications
4.4. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.; Moreira-Muñoz, A.; Kolden, C.A.; Chávez, R.O.; Muñoz, A.A.; Salinas, F.; González-Reyes, Á.; Rocco, R.; de la Barrera, F.; Williamson, G.J.; et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 2019, 48, 350–362. [Google Scholar] [CrossRef] [PubMed]
- De la Barrera, F.; Barraza, F.; Favier, P.; Ruiz, V.; Quense, J. Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Sci. Total Environ. 2018, 637, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- González, M.E.; Gómez-González, S.; Lara, A.; Garreaud, R.; Díaz-Hormazábal, I. The 2010–2015 Megadrought and its influence on the fire regime in central and south-central Chile. Ecosphere 2018, 9, e02300. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Cordero, R.R.; Feron, S.; Damiani, A.; Carrasco, J.; Karas, C.; Wang, C.; Kraamwinkel, C.T.; Beaulieu, A. Extreme fire weather in Chile driven by climate change and El Niño–Southern Oscillation (ENSO). Sci. Rep. 2024, 14, 1974. [Google Scholar] [CrossRef] [PubMed]
- Sarricolea, P.; Serrano-Notivoli, R.; Fuentealba, M.; Hernández-Mora, M.; De la Barrera, F.; Smith, P.; Meseguer-Ruiz, Ó. Recent wildfires in Central Chile: Detecting links between burned areas and population exposure in the wildland urban interface. Sci. Total Environ. 2020, 706, 135894. [Google Scholar] [CrossRef]
- Úbeda, X.; Sarricolea, P. Wildfires in Chile: A review. Glob. Planet. Chang. 2016, 146, 152–161. [Google Scholar] [CrossRef]
- Chaparro, D.; Vall-Llossera, M.; Piles, M.; Camps, A.; Rüdiger, C.; Riera-Tatché, R. Predicting the extent of wildfires using remotely sensed soil moisture and temperature trends. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2818–2829. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Engle, D.M.; Carlson, J.D.; Twidwell, D.; Fuhlendorf, S.D. Soil moisture affects growing-season wildfire size in the southern Great Plains. Soil Sci. Soc. Am. J. 2015, 79, 1567–1576. [Google Scholar] [CrossRef]
- Sungmin, O.; Hou, X.; Orth, R. Observational evidence of wildfire-promoting soil moisture anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar] [CrossRef]
- Sharma, S.; Carlson, J.D.; Krueger, E.S.; Engle, D.M.; Twidwell, D.; Fuhlendorf, S.D.; Patrignani, A.; Feng, L.; Ochsner, T.E. Soil moisture as an indicator of growing-season herbaceous fuel moisture and curing rate in grasslands. Int. J. Wildland Fire 2020, 30, 57–69. [Google Scholar] [CrossRef]
- Jia, S.; Kim, S.H.; Nghiem, S.V.; Kafatos, M. Estimating live fuel moisture using SMAP L-band radiometer soil moisture for Southern California, USA. Remote Sens. 2019, 11, 1575. [Google Scholar] [CrossRef]
- Pellizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 2007, 16, 232–241. [Google Scholar] [CrossRef]
- Qi, Y.; Dennison, P.E.; Spencer, J.; Riaño, D. Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecol. 2012, 8, 71–87. [Google Scholar] [CrossRef]
- Bianchi, L.O.; Defossé, G.E. Live fuel moisture content and leaf ignition of forest species in Andean Patagonia, Argentina. Int. J. Wildland Fire 2015, 24, 340–348. [Google Scholar] [CrossRef]
- Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environ. Res. Lett. 2012, 7, 044021. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Quiring, S.M.; Engle, D.M.; Carlson, J.D.; Twidwell, D.; Fuhlendorf, S.D. Measured soil moisture is a better predictor of large growing-season wildfires than the Keetch–Byram Drought Index. Soil Sci. Soc. Am. J. 2017, 81, 490–502. [Google Scholar] [CrossRef]
- Vinodkumar; Dharssi, I.; Bally, J.; Steinle, P.; McJannet, D.; Walker, J. Comparison of soil wetness from multiple models over Australia with observations. Water Resour. Res. 2017, 53, 633–646. [Google Scholar] [CrossRef]
- Holgate, C.M.; Van DIjk, A.I.; Cary, G.J.; Yebra, M. Using alternative soil moisture estimates in the McArthur Forest Fire Danger Index. Int. J. Wildland Fire 2017, 26, 806–819. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Delwart, S. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Ambadan, J.T.; Oja, M.; Gedalof, Z.E.; Berg, A.A. Satellite-observed soil moisture as an indicator of wildfire risk. Remote Sens. 2020, 12, 1543. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Chaleplis, K.; Walters, A.; Fang, B.; Lakshmi, V.; Gemitzi, A. A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece. Remote Sens. 2024, 16, 1816. [Google Scholar] [CrossRef]
- Dadap, N.C.; Cobb, A.R.; Hoyt, A.M.; Harvey, C.F.; Konings, A.G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 2019, 14, 094014. [Google Scholar] [CrossRef]
- Rigden, A.J.; Powell, R.S.; Trevino, A.; McColl, K.A.; Huybers, P. Microwave retrievals of soil moisture improve grassland wildfire predictions. Geophys. Res. Lett. 2020, 47, e2020GL091410. [Google Scholar] [CrossRef]
- Sazib, N.; Bolten, J.D.; Mladenova, I.E. Leveraging NASA soil moisture active passive for assessing fire susceptibility and potential impacts over Australia and California. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 779–787. [Google Scholar] [CrossRef]
- Krueger, E.S.; Levi, M.R.; Achieng, K.O.; Bolten, J.D.; Carlson, J.D.; Coops, N.C.; Holden, Z.A.; Magi, B.I.; Rigden, A.J.; Ochsner, T.E. Using soil moisture information to better understand and predict wildfire danger: A review of recent developments and outstanding questions. Int. J. Wildland Fire 2022, 32, 111–132. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MODIS/Terra + Aqua Burned Area Monthly L3 Global 500m SIN Grid, Version 6.1 [Data Set]. NASA EOSDIS Land Processes Distributed Active Archive Center, 2021. Available online: https://lpdaac.usgs.gov/products/mcd64a1v061/ (accessed on 29 March 2024).
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid, Version 6.1 [Data Set]. NASA EOSDIS Land Processes Distributed Active Archive Center, 2022. Available online: https://lpdaac.usgs.gov/products/mcd12q1v061/ (accessed on 27 May 2024).
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J.; Colliander, A. SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 9 km EASE-Grid Soil Moisture, Version 5 [Data Set]. NASA National Snow and Ice Data Center Distributed Active Archive Center—Boulder, Colorado, USA, 2021. Available online: https://nsidc.org/data/spl3smp_e/versions/5 (accessed on 22 May 2024).
- Beck, H.E.; McVicar, T.R.; Vergopolan, B.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Dacre, H.F.; Crawford, B.R.; Charlton-Perez, A.J.; Lopez-Saldana, G.; Griffiths, G.H.; Veloso, J.V. Chilean wildfires: Probabilistic prediction, emergency response, and public communication. Bull. Am. Meteorol. Soc. 2018, 99, 2259–2274. [Google Scholar] [CrossRef]
- McWethy, D.B.; Pauchard, A.; García, R.A.; Holz, A.; González, M.E.; Veblen, T.T.; Stahl, J.; Currey, B. Landscape drivers of recent fire activity (2001-2017) in south-central Chile. PLoS ONE 2018, 13, e0201195. [Google Scholar] [CrossRef] [PubMed]
- Linley, G.D.; Jolly, C.J.; Doherty, T.S.; Geary, W.L.; Armenteras, D.; Belcher, C.M.; Duane, A.; Fletcher, M.-S.; Giorgis, M.A. What do you mean,‘megafire’? Glob. Ecol. Biogeogr. 2022, 31, 1906–1922. [Google Scholar] [CrossRef]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Schaefer, A.J.; Magi, B.I. Land-cover dependent relationships between fire and soil moisture. Fire 2019, 2, 55. [Google Scholar] [CrossRef]
- Jensen, D.; Reager, J.T.; Zajic, B.; Rousseau, N.; Rodell, M.; Hinkley, E. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 2018, 13, 014021. [Google Scholar] [CrossRef] [PubMed]
- Teuling, A.J.; Seneviratne, S.I.; Stöckli, R.; Reichstein, M.; Moors, E.; Ciais, P.; Luyssaert, S.; van den Hurk, B.; Ammann, C.; Bernhofer, C.; et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 2010, 3, 722–727. [Google Scholar] [CrossRef]
- Goffin, B.D.; Aryal, A.; Deppert, Q. Chile Wildland Fires: Augmenting Wildfire Risk Assessment Efforts with Satellite-based Measurements of Soil Moisture and Vegetation Health in Central and South-Central Chile [Unpublished manuscript]. NASA DEVELOP National Program, Virginia—LaRC, 2023. Available online: https://ntrs.nasa.gov/api/citations/20230012417/downloads/2023Sum_PUP_ChileWildlandFires_TechPaper_FD_v2.docx (accessed on 25 June 2024).
- Castillo, M.E.; Julio-Alvear, G.; Salinas, R.G. Current wildfire risk status and forecast in Chile: Progress and future challenges. In Wildfire Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 59–75. [Google Scholar] [CrossRef]
- Cortez, D.; Herrera, S.; Araya-Osses, D.; Caroca, C.; Padilla, R.; Manuel Uribe, J.; Paneque, M. Topoclimatic zoning of continental Chile. J. Maps 2021, 17, 114–124. [Google Scholar] [CrossRef]
- Pozo, R.A.; Galleguillos, M.; González, M.E.; Vásquez, F.; Arriagada, R. Assessing the socio-economic and land-cover drivers of wildfire activity and its spatiotemporal distribution in south-central Chile. Sci. Total Environ. 2022, 810, 152002. [Google Scholar] [CrossRef]
- Ciocca, I.; Fernández, A.; Jaque, E.; Justino, F.; Shumacher, V.; da Silva, A.S.; Muñoz, A.; de la Barrera, F. Increased wildfire hazard along South-Central Chile under the RCP8. 5 scenario as revealed by high-resolution modeling. Environ. Res. Lett. 2023, 18, 034023. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef]
- Flannigan, M.; Cantin, A.S.; De Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Gómez-González, S.; González, M.E.; Paula, S.; Díaz-Hormazábal, I.; Lara, A.; Delgado-Baquerizo, M. Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. For. Ecol. Manag. 2019, 433, 535–543. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mathiesen, C. Challenges in Developing Wildfire Understanding from Wildfire Information through Spatial Planning Processes. Sustainability 2024, 16, 420. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; March, A. Long-established rules and emergent challenges: Spatial planning and wildfires in Chile. Int. Plan. Stud. 2023, 28, 37–53. [Google Scholar] [CrossRef]
- González, M.E.; Syphard, A.D.; Fischer, A.P.; Muñoz, A.A.; Miranda, A. Chile’s Valparaíso hills on fire. Science 2024, 383, 1424. [Google Scholar] [CrossRef]
- Lee, J.H. Prediction of large-scale wildfires with the canopy stress index derived from soil moisture active passive. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 2096–2102. [Google Scholar] [CrossRef]
Satellite and Sensor | Data Product | Variable | Temporal Coverage | Spatial Resolution |
---|---|---|---|---|
Terra + Aqua MODIS | MDC64A1 v6.1 | Burned area date | November 2001–Present | 500 m × 500 m |
Terra + Aqua MODIS | MCD12Q1 v6.1 | Land cover type | November 2001–Present | 500 m × 500 m |
SMAP | SPL3SMP_E v5 | Surface soil moisture | April 2015–Present | 9 km × 9 km |
Timeframe | Area Burned over This Month | Area Burned during These Days | Megafires Considered (i.e., >10,000 ha) | Other Fires (i.e., Control) |
---|---|---|---|---|
18–29 January 2017 | 449,740 ha | 426,300 ha (94.8%) | 7 | 98 |
2–11 February 2023 | 346,070 ha | 318,120 ha (91.9%) | 5 | 97 |
Actual Negative | Actual Positive | ||
Predicted Negative | TN = 67 (34.0%) | FN = 51 (25.9%) | |
Predicted Positive | FP = 19 (9.6%) | TP = 60 (30.5%) | Precision = 0.759 |
Specificity = 0.779 | Recall = 0.541 | Accuracy = 0.645 |
Actual Negative | Actual Positive | ||
Predicted Negative | TN = 111 (54.4%) | FN = 64 (31.4%) | |
Predicted Positive | FP = 25 (12.3%) | TP = 4 (2.0%) | Precision = 0.138 |
Specificity = 0.816 | Recall = 0.059 | Accuracy = 0.564 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goffin, B.D.; Aryal, A.; Deppert, Q.; Ross, K.W.; Lakshmi, V. Mapping Extreme Wildfires Using a Critical Threshold in SMAP Soil Moisture. Remote Sens. 2024, 16, 2457. https://doi.org/10.3390/rs16132457
Goffin BD, Aryal A, Deppert Q, Ross KW, Lakshmi V. Mapping Extreme Wildfires Using a Critical Threshold in SMAP Soil Moisture. Remote Sensing. 2024; 16(13):2457. https://doi.org/10.3390/rs16132457
Chicago/Turabian StyleGoffin, Benjamin D., Aashutosh Aryal, Quinton Deppert, Kenton W. Ross, and Venkataraman Lakshmi. 2024. "Mapping Extreme Wildfires Using a Critical Threshold in SMAP Soil Moisture" Remote Sensing 16, no. 13: 2457. https://doi.org/10.3390/rs16132457
APA StyleGoffin, B. D., Aryal, A., Deppert, Q., Ross, K. W., & Lakshmi, V. (2024). Mapping Extreme Wildfires Using a Critical Threshold in SMAP Soil Moisture. Remote Sensing, 16(13), 2457. https://doi.org/10.3390/rs16132457