Convformer: A Model for Reconstructing Ocean Subsurface Temperature and Salinity Fields Based on Multi-Source Remote Sensing Observations
Abstract
:1. Introduction
- Most studies’ basic models are limited to CNN, ConvLSTM, and U-net. These models share the common feature of using CNN as the primary spatial feature extraction method. However, the limitations of convolutional layers, such as local receptive and fixed receptive fields, lead to each neuron’s limited ability to consider information from a confined input area. This incapacity to capture longer distance dependencies between elements constrains the network’s performance in processing global contextual information.
- Most studies employ LSTM as the primary method for learning temporal information. However, LSTM still has not entirely resolved the vanishing gradient problem inherent in RNN, making it difficult to effectively capture long-range sequence dependencies, especially when dealing with global temporal information. Additionally, LSTM architectures pose challenges for parallelization.
- Few studies have delved deeply into the physical processes underlying ocean dynamics. Some research endeavors to tackle this issue by incorporating multi-factor inputs, yet a thorough elaboration of the modeling mechanism often needs to be improved.
- Compared to CNN and LSTM, we utilized the Transformer’s attention mechanism to extract spatiotemporal information by residually connecting spatial and temporal attention blocks. This facilitates a more comprehensive and accurate capture of spatiotemporal information on a global scale, compensating for the omission of global information from previous work.
- The Transformer architecture inherently lacks a concept of position or sequence, necessitating the introduction of positional encoding to address this challenge. Traditional positional encoding inadequately addresses this challenge. Consequently, we employ ConvLSTM as the positional encoding layer for Convformer. ConvLSTM considers positional information in a sequential input manner, thereby employing it as a positional encoding layer facilitates effective learning of sequential spatiotemporal information. Additionally, given that the Transformer requires a large amount of data, CNN exhibits strong learning capabilities even with relatively small training sets due to its robust inductive bias. Hence, in scenarios where data is limited, employing ConvLSTM as the positional encoding layer in the model can also effectively extract spatiotemporal features at an initial stage.
- The Vision Transformer primarily focuses on extracting spatial attention by computing attention among patches, which overlooks the internal correlations within each patch. To address this limitation, we introduce a local spatial attention mechanism that computes attention among the elements within each patch, thereby enabling a comprehensive extraction of spatial features.
- By discussing the potential connection between residual connections and differential equations, we elucidate the Convformer’s ability to capture the physical processes of ocean dynamics from a modeling mechanism.
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. ConvLSTM
3.2. Self-Attention
3.3. Multi-Head Attention
3.4. Convformer
3.4.1. Model Architeure
3.4.2. Input
3.4.3. Positional Encodeding
3.4.4. Patch Embeding
3.4.5. ConvFomer Encoder
3.4.6. Residual Connections and Differential Equations
4. Results
4.1. Convformer Performance against Typical Models
4.2. Sensitivity Analysis of Model Input
4.3. Effects of Different Components of Convformer
4.4. Error Analysis of Reconstruction Result
4.4.1. Temporal Error Analysis
4.4.2. Longitude Profile Validation
4.4.3. Spatial Error Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stewart, R.H. Introduction to Physical Oceanography; Texas A&M University: College Station, TX, USA, 2004. [Google Scholar]
- Bindoff, N.L.; Cheung, W.W.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; Hilmi, N.J.M.; Jiao, N.; Karim, M.S.; Levin, L.; et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK, 2019; pp. 477–587. [Google Scholar]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Johnson, G.C.; Lyman, J.M. Warming trends increasingly dominate global ocean. Nat. Clim. Chang. 2020, 10, 757–761. [Google Scholar] [CrossRef]
- Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 2013, 111, 139–156. [Google Scholar] [CrossRef]
- Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, T.; Zhang, L.; Chen, X.; Zhang, W.; Jiang, J. Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett. 2020, 47, e2019GL086902. [Google Scholar] [CrossRef]
- Wallace, J.; Rasmusson, E.; Mitchell, T.; Kousky, V.; Sarachik, E.; Von Storch, H. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res. Ocean. 1998, 103, 14241–14259. [Google Scholar] [CrossRef]
- Planton, Y.Y.; Vialard, J.; Guilyardi, E.; Lengaigne, M.; McPhaden, M.J. The asymmetric influence of ocean heat content on ENSO predictability in the CNRM-CM5 coupled general circulation model. J. Clim. 2021, 34, 5775–5793. [Google Scholar] [CrossRef]
- Sprintall, J.; Tomczak, M. On the formation of Central Water and thermocline ventilation in the southern hemisphere. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 827–848. [Google Scholar] [CrossRef]
- Qi, J.; Qu, T.; Yin, B.; Chi, J. Variability of the South Pacific western subtropical mode water and its relationship with ENSO during the Argo period. J. Geophys. Res. Ocean. 2020, 125, e2020JC016134. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 2014, 345, 897–903. [Google Scholar] [CrossRef]
- Klemas, V.; Yan, X.H. Subsurface and deeper ocean remote sensing from satellites: An overview and new results. Prog. Oceanogr. 2014, 122, 1–9. [Google Scholar] [CrossRef]
- Meng, L.; Zhuang, W.; Zhang, W.; Yan, C.; Yan, X.H. Variability of the shallow overturning circulation in the Indian Ocean. J. Geophys. Res. Ocean. 2020, 125, e2019JC015651. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.; Emery, W.; Swift, J. Physical properties of seawater. Descr. Phys. Oceanogr. 2011, 6, 29–65. [Google Scholar]
- Roemmich, D.; Johnson, G.C.; Riser, S.; Davis, R.; Gilson, J.; Owens, W.B.; Garzoli, S.L.; Schmid, C.; Ignaszewski, M. The Argo Program: Observing the global ocean with profiling floats. Oceanography 2009, 22, 34–43. [Google Scholar] [CrossRef]
- Roemmich, D.; Alford, M.H.; Claustre, H.; Johnson, K.; King, B.; Moum, J.; Oke, P.; Owens, W.B.; Pouliquen, S.; Purkey, S.; et al. On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci. 2019, 6, 439. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Asgarimehr, M.; Yekkehkhany, B.; Moghimi, A.; Jin, S.; Naboureh, A.; Mohseni, F.; Mahdavi, S.; Layegh, N.F. Remote sensing systems for ocean: A review (Part 1: Passive systems). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 210–234. [Google Scholar] [CrossRef]
- Huang, R.X. Ocean Circulation: Wind-Driven and Thermohaline Processes; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Munk, W.H. On the wind-driven ocean circulation. J. Atmos. Sci. 1950, 7, 80–93. [Google Scholar] [CrossRef]
- Yan, X.H.; Okubo, A. Three-dimensional analytical model for the mixed layer depth. J. Geophys. Res. Ocean. 1992, 97, 20201–20226. [Google Scholar] [CrossRef]
- Ali, M.; Swain, D.; Weller, R. Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophys. Res. Lett. 2004, 31, 021192. [Google Scholar] [CrossRef]
- Fu, L.L.; Davidson, R.A. A note on the barotropic response of sea level to time-dependent wind forcing. J. Geophys. Res. Ocean. 1995, 100, 24955–24963. [Google Scholar] [CrossRef]
- Wu, X.; Yan, X.H.; Jo, Y.H.; Liu, W.T. Estimation of subsurface temperature anomaly in the North Atlantic using a self-organizing map neural network. J. Atmos. Ocean. Technol. 2012, 29, 1675–1688. [Google Scholar] [CrossRef]
- Meijers, A.; Bindoff, N.; Rintoul, S. Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. J. Atmos. Ocean. Technol. 2011, 28, 548–568. [Google Scholar] [CrossRef]
- Guinehut, S.; Dhomps, A.L.; Larnicol, G.; Le Traon, P.Y. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci. 2012, 8, 845–857. [Google Scholar] [CrossRef]
- Liu, L.; Peng, S.; Wang, J.; Huang, R.X. Retrieving density and velocity fields of the ocean’s interior from surface data. J. Geophys. Res. Ocean. 2014, 119, 8512–8529. [Google Scholar] [CrossRef]
- Wang, J.; Flierl, G.R.; LaCasce, J.H.; McClean, J.L.; Mahadevan, A. Reconstructing the ocean’s interior from surface data. J. Phys. Oceanogr. 2013, 43, 1611–1626. [Google Scholar] [CrossRef]
- Akbari, E.; Alavipanah, S.K.; Jeihouni, M.; Hajeb, M.; Haase, D.; Alavipanah, S. A review of ocean/sea subsurface water temperature studies from remote sensing and non-remote sensing methods. Water 2017, 9, 936. [Google Scholar] [CrossRef]
- Holloway, J.; Mengersen, K. Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sens. 2018, 10, 1365. [Google Scholar] [CrossRef]
- Jeong, Y.; Hwang, J.; Park, J.; Jang, C.J.; Jo, Y.H. Reconstructed 3-D ocean temperature derived from remotely sensed sea surface measurements for mixed layer depth analysis. Remote Sens. 2019, 11, 3018. [Google Scholar] [CrossRef]
- Maes, C.; Behringer, D.; Reynolds, R.W.; Ji, M. Retrospective analysis of the salinity variability in the western tropical Pacific Ocean using an indirect minimization approach. J. Atmos. Ocean. Technol. 2000, 17, 512–524. [Google Scholar] [CrossRef]
- Nardelli, B.B.; Santoleri, R. Methods for the reconstruction of vertical profiles from surface data: Multivariate analyses, residual GEM, and variable temporal signals in the North Pacific Ocean. J. Atmos. Ocean. Technol. 2005, 22, 1762–1781. [Google Scholar] [CrossRef]
- Su, H.; Huang, L.; Li, W.; Yang, X.; Yan, X.H. Retrieving ocean subsurface temperature using a satellite-based geographically weighted regression model. J. Geophys. Res. Ocean. 2018, 123, 5180–5193. [Google Scholar] [CrossRef]
- Willis, J.K.; Roemmich, D.; Cornuelle, B. Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J. Geophys. Res. Ocean. 2003, 108, JC001755. [Google Scholar] [CrossRef]
- Chu, P.C.; Fan, C.; Liu, W.T. Determination of vertical thermal structure from sea surface temperature. J. Atmos. Ocean. Technol. 2000, 17, 971–979. [Google Scholar] [CrossRef]
- Fischer, M. Multivariate projection of ocean surface data onto subsurface sections. Geophys. Res. Lett. 2000, 27, 755–757. [Google Scholar] [CrossRef]
- Lu, W.; Su, H.; Yang, X.; Yan, X.H. Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sens. Environ. 2019, 229, 213–222. [Google Scholar] [CrossRef]
- Su, H.; Yang, X.; Lu, W.; Yan, X.H. Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations. Remote Sens. 2019, 11, 1598. [Google Scholar] [CrossRef]
- Su, H.; Zhang, H.; Geng, X.; Qin, T.; Lu, W.; Yan, X.H. OPEN: A new estimation of global ocean heat content for upper 2000 m from remote sensing data. Remote Sens. 2020, 12, 2294. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X.H. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar] [CrossRef]
- Song, T.; Wei, W.; Meng, F.; Wang, J.; Han, R.; Xu, D. Inversion of ocean subsurface temperature and salinity fields based on spatio-temporal correlation. Remote Sens. 2022, 14, 2587. [Google Scholar] [CrossRef]
- Xie, H.; Xu, Q.; Cheng, Y.; Yin, X.; Jia, Y. Reconstruction of subsurface temperature field in the south China Sea from satellite observations based on an attention U-net model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4209319. [Google Scholar] [CrossRef]
- Mao, K.; Liu, C.; Zhang, S.; Gao, F. Reconstructing Ocean Subsurface Temperature and Salinity from Sea Surface Information Based on Dual Path Convolutional Neural Networks. J. Mar. Sci. Eng. 2023, 11, 1030. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Chen, X.; Wei, Z.; Sun, X.; Yuan, C.; Gao, Z. Data driven three-dimensional temperature and salinity anomaly reconstruction of the northwest Pacific Ocean. Front. Mar. Sci. 2023, 10, 1121334. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 03762. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Hauser, D.; Tourain, C.; Hermozo, L.; Alraddawi, D.; Aouf, L.; Chapron, B.; Dalphinet, A.; Delaye, L.; Dalila, M.; Dormy, E.; et al. New observations from the SWIM radar on-board CFOSAT: Instrument validation and ocean wave measurement assessment. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5–26. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Li, H.; Xu, F.; Zhou, W.; Wang, D.; Wright, J.S.; Liu, Z.; Lin, Y. Development of a global gridded A rgo data set with B arnes successive corrections. J. Geophys. Res. Ocean. 2017, 122, 866–889. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 04214. [Google Scholar]
- Wang, X.; Jin, Y.; Long, M.; Wang, J.; Jordan, M.I. Transferable normalization: Towards improving transferability of deep neural networks. Adv. Neural Inf. Process. Syst. 2019, 32, 345446. [Google Scholar]
Depth/m | RMSE/°C | R2/% | ||||||
---|---|---|---|---|---|---|---|---|
ConvLSTM | ViT | A-U-Net | Convformer | ConvLSTM | ViT | A-U-Net | Convformer | |
30 | 0.568 | 0.575 | 0.608 | 0.487 | 98.432 | 98.339 | 98.114 | 99.071 |
50 | 0.742 | 0.780 | 0.746 | 0.665 | 97.546 | 97.110 | 97.352 | 98.158 |
100 | 1.205 | 1.315 | 0.987 | 0.885 | 96.740 | 95.083 | 97.135 | 97.525 |
150 | 1.180 | 1.422 | 0.990 | 0.883 | 96.862 | 94.305 | 97.377 | 97.845 |
200 | 1.172 | 0.959 | 0.784 | 0.737 | 97.919 | 96.974 | 98.017 | 98.357 |
300 | 0.683 | 0.655 | 0.538 | 0.506 | 98.578 | 98.378 | 98.551 | 98.950 |
400 | 0.465 | 0.489 | 0.392 | 0.369 | 97.633 | 97.206 | 97.551 | 97.926 |
500 | 0.971 | 0.979 | 0.500 | 0.470 | 96.560 | 95.304 | 95.559 | 96.947 |
600 | 0.546 | 0.514 | 0.408 | 0.384 | 97.275 | 96.724 | 97.155 | 97.650 |
700 | 0.302 | 0.275 | 0.222 | 0.208 | 97.850 | 97.361 | 97.912 | 98.186 |
800 | 0.202 | 0.196 | 0.142 | 0.133 | 98.072 | 97.698 | 97.960 | 98.370 |
900 | 0.213 | 0.239 | 0.145 | 0.136 | 98.309 | 98.009 | 98.272 | 98.604 |
1000 | 0.373 | 0.356 | 0.323 | 0.303 | 98.220 | 98.067 | 98.259 | 98.578 |
1100 | 0.493 | 0.482 | 0.395 | 0.371 | 98.409 | 98.269 | 98.446 | 98.720 |
1200 | 0.442 | 0.431 | 0.349 | 0.328 | 98.473 | 98.371 | 98.613 | 98.792 |
1300 | 0.349 | 0.346 | 0.293 | 0.275 | 98.687 | 98.591 | 98.886 | 98.983 |
1400 | 0.250 | 0.242 | 0.225 | 0.212 | 98.877 | 98.768 | 98.680 | 99.188 |
1500 | 0.181 | 0.173 | 0.150 | 0.141 | 99.154 | 99.087 | 99.066 | 99.470 |
1600 | 0.144 | 0.139 | 0.122 | 0.115 | 99.370 | 99.302 | 99.255 | 99.669 |
1700 | 0.105 | 0.104 | 0.090 | 0.085 | 99.457 | 99.404 | 99.402 | 99.773 |
1800 | 0.058 | 0.053 | 0.052 | 0.045 | 99.553 | 99.523 | 99.508 | 99.865 |
1900 | 0.038 | 0.037 | 0.037 | 0.033 | 99.589 | 99.620 | 99.618 | 99.952 |
Average | 0.486 | 0.489 | 0.386 | 0.353 | 98.253 | 97.795 | 98.213 | 98.663 |
Depth/m | RMSE/psu | R2/% | ||||||
---|---|---|---|---|---|---|---|---|
ConvLSTM | ViT | A-U-Net | Convformer | ConvLSTM | ViT | A-U-Net | Convformer | |
30 | 0.115 | 0.115 | 0.107 | 0.092 | 99.90794 | 99.89066 | 99.89220 | 99.91870 |
50 | 0.131 | 0.115 | 0.118 | 0.104 | 99.86417 | 99.86597 | 99.87158 | 99.87522 |
150 | 0.168 | 0.151 | 0.135 | 0.121 | 99.87167 | 99.86614 | 99.86373 | 99.87265 |
200 | 0.118 | 0.109 | 0.099 | 0.089 | 99.90785 | 99.90153 | 99.91057 | 99.91341 |
300 | 0.083 | 0.074 | 0.060 | 0.054 | 99.96621 | 99.96467 | 99.96565 | 99.96757 |
400 | 0.203 | 0.196 | 0.117 | 0.105 | 99.97482 | 99.97107 | 99.94515 | 99.97500 |
500 | 0.199 | 0.191 | 0.185 | 0.166 | 99.98963 | 99.98773 | 99.98899 | 99.98978 |
600 | 0.146 | 0.138 | 0.137 | 0.122 | 99.99631 | 99.99527 | 99.99601 | 99.99665 |
700 | 0.125 | 0.117 | 0.113 | 0.101 | 99.99741 | 99.99623 | 99.99710 | 99.99773 |
800 | 0.093 | 0.084 | 0.081 | 0.073 | 99.99810 | 99.99692 | 99.99762 | 99.99831 |
900 | 0.096 | 0.085 | 0.069 | 0.062 | 99.99848 | 99.99748 | 99.99789 | 99.99851 |
1000 | 0.109 | 0.096 | 0.098 | 0.088 | 99.99870 | 99.99789 | 99.99846 | 99.99880 |
1100 | 0.117 | 0.108 | 0.100 | 0.090 | 99.99912 | 99.99849 | 99.99825 | 99.99915 |
1200 | 0.105 | 0.093 | 0.086 | 0.077 | 99.99932 | 99.99860 | 99.99690 | 99.99933 |
1300 | 0.028 | 0.028 | 0.011 | 0.010 | 99.99984 | 99.99984 | 99.99973 | 99.99985 |
1400 | 0.009 | 0.009 | 0.009 | 0.008 | 99.99986 | 99.99985 | 99.99984 | 99.99987 |
1500 | 0.025 | 0.023 | 0.022 | 0.020 | 99.99990 | 99.99989 | 99.99988 | 99.99990 |
1600 | 0.015 | 0.013 | 0.014 | 0.012 | 99.99992 | 99.99991 | 99.99990 | 99.99992 |
1700 | 0.010 | 0.009 | 0.009 | 0.008 | 99.99993 | 99.99992 | 99.99991 | 99.99993 |
1800 | 0.008 | 0.007 | 0.007 | 0.006 | 99.99994 | 99.99994 | 99.99994 | 99.99995 |
1900 | 0.006 | 0.006 | 0.006 | 0.005 | 99.99995 | 99.99995 | 99.99995 | 99.99996 |
Average | 0.093 | 0.086 | 0.078 | 0.069 | 99.96900 | 99.96691 | 99.96746 | 99.97145 |
Depth/m | RMSE/psu | |||||
---|---|---|---|---|---|---|
w/o SSA | w/o STA | w/o SWUA | w/o SWVA | w/o SWHA | w/o None | |
30 | 0.169 | 0.095 | 0.094 | 0.094 | 0.096 | 0.092 |
50 | 0.153 | 0.103 | 0.113 | 0.108 | 0.111 | 0.104 |
100 | 0.118 | 0.107 | 0.112 | 0.109 | 0.115 | 0.107 |
150 | 0.125 | 0.123 | 0.125 | 0.129 | 0.139 | 0.121 |
200 | 0.092 | 0.088 | 0.089 | 0.093 | 0.105 | 0.089 |
300 | 0.061 | 0.061 | 0.056 | 0.057 | 0.066 | 0.054 |
400 | 0.111 | 0.112 | 0.111 | 0.117 | 0.121 | 0.105 |
500 | 0.174 | 0.176 | 0.175 | 0.181 | 0.181 | 0.166 |
600 | 0.126 | 0.127 | 0.127 | 0.133 | 0.131 | 0.122 |
700 | 0.106 | 0.107 | 0.109 | 0.115 | 0.117 | 0.101 |
800 | 0.074 | 0.074 | 0.076 | 0.081 | 0.091 | 0.073 |
900 | 0.063 | 0.062 | 0.065 | 0.069 | 0.076 | 0.062 |
1000 | 0.090 | 0.091 | 0.090 | 0.090 | 0.095 | 0.088 |
1100 | 0.091 | 0.091 | 0.090 | 0.091 | 0.095 | 0.090 |
1200 | 0.078 | 0.078 | 0.078 | 0.079 | 0.081 | 0.077 |
1300 | 0.012 | 0.010 | 0.012 | 0.011 | 0.013 | 0.010 |
1400 | 0.008 | 0.008 | 0.008 | 0.008 | 0.009 | 0.008 |
1500 | 0.020 | 0.020 | 0.021 | 0.022 | 0.024 | 0.020 |
1600 | 0.013 | 0.012 | 0.013 | 0.013 | 0.015 | 0.012 |
1700 | 0.009 | 0.008 | 0.008 | 0.008 | 0.009 | 0.008 |
1800 | 0.006 | 0.006 | 0.006 | 0.006 | 0.007 | 0.006 |
1900 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
Average | 0.078 | 0.071 | 0.072 | 0.074 | 0.077 | 0.069 |
Depth/m | RMSE/°C | |||||
---|---|---|---|---|---|---|
w/o SSA | w/o STA | w/o SWUA | w/o SWVA | w/o SWHA | w/o None | |
30 | 0.492 | 0.711 | 0.496 | 0.506 | 0.510 | 0.487 |
50 | 0.666 | 0.819 | 0.691 | 0.678 | 0.701 | 0.665 |
100 | 0.905 | 0.920 | 0.887 | 0.956 | 1.089 | 0.885 |
150 | 0.915 | 0.888 | 0.887 | 0.915 | 1.071 | 0.883 |
200 | 0.770 | 0.764 | 0.738 | 0.741 | 0.846 | 0.737 |
300 | 0.502 | 0.517 | 0.512 | 0.532 | 0.596 | 0.506 |
400 | 0.364 | 0.370 | 0.376 | 0.377 | 0.443 | 0.369 |
500 | 0.507 | 0.488 | 0.484 | 0.518 | 0.584 | 0.470 |
600 | 0.402 | 0.411 | 0.394 | 0.415 | 0.506 | 0.384 |
700 | 0.205 | 0.214 | 0.217 | 0.212 | 0.264 | 0.208 |
800 | 0.137 | 0.138 | 0.135 | 0.137 | 0.188 | 0.133 |
900 | 0.146 | 0.136 | 0.137 | 0.146 | 0.231 | 0.136 |
1000 | 0.305 | 0.304 | 0.308 | 0.307 | 0.356 | 0.303 |
1100 | 0.380 | 0.372 | 0.375 | 0.373 | 0.484 | 0.371 |
1200 | 0.337 | 0.332 | 0.330 | 0.330 | 0.432 | 0.328 |
1300 | 0.278 | 0.278 | 0.278 | 0.282 | 0.344 | 0.275 |
1400 | 0.213 | 0.212 | 0.212 | 0.222 | 0.237 | 0.212 |
1500 | 0.141 | 0.144 | 0.141 | 0.152 | 0.171 | 0.141 |
1600 | 0.115 | 0.116 | 0.115 | 0.115 | 0.138 | 0.115 |
1700 | 0.086 | 0.087 | 0.090 | 0.089 | 0.100 | 0.085 |
1800 | 0.048 | 0.047 | 0.044 | 0.047 | 0.053 | 0.045 |
1900 | 0.033 | 0.033 | 0.033 | 0.033 | 0.035 | 0.033 |
Average | 0.361 | 0.377 | 0.358 | 0.367 | 0.426 | 0.353 |
Depth/m | RMSE/°C | ||||
---|---|---|---|---|---|
w/o T | w/o S | w/o S_Local | w/o Residual | Convformer | |
30 | 0.506 | 0.502 | 0.501 | 0.667 | 0.487 |
50 | 0.648 | 0.657 | 0.664 | 0.747 | 0.665 |
100 | 0.964 | 1.014 | 0.967 | 1.104 | 0.885 |
150 | 0.978 | 0.968 | 0.992 | 1.071 | 0.883 |
200 | 0.794 | 0.828 | 0.851 | 0.837 | 0.737 |
300 | 0.562 | 0.575 | 0.561 | 0.608 | 0.506 |
400 | 0.419 | 0.433 | 0.409 | 0.434 | 0.369 |
500 | 0.512 | 0.562 | 0.531 | 0.589 | 0.470 |
600 | 0.470 | 0.484 | 0.473 | 0.454 | 0.384 |
700 | 0.245 | 0.234 | 0.248 | 0.258 | 0.208 |
800 | 0.172 | 0.173 | 0.165 | 0.165 | 0.133 |
900 | 0.215 | 0.206 | 0.205 | 0.210 | 0.136 |
1000 | 0.348 | 0.349 | 0.348 | 0.358 | 0.303 |
1100 | 0.467 | 0.468 | 0.471 | 0.476 | 0.371 |
1200 | 0.422 | 0.424 | 0.424 | 0.435 | 0.328 |
1300 | 0.337 | 0.331 | 0.339 | 0.348 | 0.275 |
1400 | 0.233 | 0.230 | 0.236 | 0.240 | 0.212 |
1500 | 0.168 | 0.166 | 0.165 | 0.178 | 0.141 |
1600 | 0.129 | 0.134 | 0.132 | 0.145 | 0.115 |
1700 | 0.098 | 0.099 | 0.096 | 0.100 | 0.085 |
1800 | 0.049 | 0.051 | 0.049 | 0.052 | 0.045 |
1900 | 0.034 | 0.034 | 0.035 | 0.035 | 0.033 |
Average | 0.399 | 0.406 | 0.403 | 0.432 | 0.353 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Xu, G.; Yang, K.; Li, X.; Peng, S. Convformer: A Model for Reconstructing Ocean Subsurface Temperature and Salinity Fields Based on Multi-Source Remote Sensing Observations. Remote Sens. 2024, 16, 2422. https://doi.org/10.3390/rs16132422
Song T, Xu G, Yang K, Li X, Peng S. Convformer: A Model for Reconstructing Ocean Subsurface Temperature and Salinity Fields Based on Multi-Source Remote Sensing Observations. Remote Sensing. 2024; 16(13):2422. https://doi.org/10.3390/rs16132422
Chicago/Turabian StyleSong, Tao, Guangxu Xu, Kunlin Yang, Xin Li, and Shiqiu Peng. 2024. "Convformer: A Model for Reconstructing Ocean Subsurface Temperature and Salinity Fields Based on Multi-Source Remote Sensing Observations" Remote Sensing 16, no. 13: 2422. https://doi.org/10.3390/rs16132422
APA StyleSong, T., Xu, G., Yang, K., Li, X., & Peng, S. (2024). Convformer: A Model for Reconstructing Ocean Subsurface Temperature and Salinity Fields Based on Multi-Source Remote Sensing Observations. Remote Sensing, 16(13), 2422. https://doi.org/10.3390/rs16132422