FEFN: Feature Enhancement Feedforward Network for Lightweight Object Detection in Remote Sensing Images
Abstract
:1. Introduction
- (1)
- A lightweight channel feedforward module (LCFM) is designed to capture shallow spatial information in the images and enhance feature interactions. The introduction of this module enhances the ability of the model to recognize densely packed objects in the complex backgrounds of remote sensing images, thereby improving the overall performance of the model.
- (2)
- To facilitate the model in learning deeper representations and prevent the omission of densely arranged small objects, a feature enhancement module (FEM) is proposed. The feature enhancement module strengthens the feature extraction capability through residual connections between different convolutional and normalization layers.
- (3)
- We conduct ablation and comparative experiments on two publicly available remote sensing image datasets, and the results demonstrate the effectiveness of our proposed method.
2. Related Works
2.1. Channel Feedforward Network
2.2. Feature Enhancement Modules
3. Methods
3.1. Lightweight Channel Feedforward Module
Algorithm 1 Pseudo code for the LCFM |
The Forward Propagation Process of LCFM |
Input: input feature Output: output feature |
1. out1 = Group Normalization () 2. out2 = Depthwise Convolution (out1) 3. out3 = Depth Convolution (out2) 4. out4 = Point Convolution (out3) 5. out5 = Droppath (out4) 6. out6 = concat out5 7. out7 = Group Normalization (out6) 8. out8 = Full connection (out7) 9. out9 = GeLu (out8) 10. out10 = Full connection (out9) 11. out11 = Dropout (out10) 12. = out11 concat out6 |
3.2. Feature Enhancement Module
4. Experiments
4.1. Experimental Conditions
4.1.1. Datasets
4.1.2. Experimental Setup and Evaluation Metrics
4.1.3. Experimental Settings
4.2. Ablation Experiment Evaluation
4.3. Comparative Experiment Evaluation
4.4. Comparative Experiments on Images with Different Image Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, X.; Dong, Y.; Tan, W.; Su, Y.; Huang, P.J.R.S. A Parameter-Free Pixel Correlation-Based Attention Module for Remote Sensing Object Detection. Remote Sens. 2024, 16, 312. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Yan, G.; Wang, Y.; Hu, B. Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images. Remote Sens. 2023, 15, 4974. [Google Scholar] [CrossRef]
- Roy, P.; Behera, M.; Srivastav, S. Satellite remote sensing: Sensors, applications and techniques. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2017, 87, 465–472. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Weifeng, F.; Weibao, Z. Review of remote sensing image classification based on deep learning. Appl. Res. Comput. 2018, 35, 3521–3525. [Google Scholar]
- Kiang, C.-W.; Kiang, J.-F. Imaging on underwater moving targets with multistatic synthetic aperture sonar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Gerg, I.D.; Monga, V. Deep multi-look sequence processing for synthetic aperture sonar image segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Sledge, I.J.; Emigh, M.S.; King, J.L.; Woods, D.L.; Cobb, J.T.; Principe, J.C. Target detection and segmentation in circular-scan synthetic aperture sonar images using semisupervised convolutional encoder–decoders. IEEE J. Ocean. Eng. 2022, 47, 1099–1128. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Zhu, P.; Zhang, T.; Li, C.; Jiao, L. GRS-Det: An anchor-free rotation ship detector based on Gaussian-mask in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3518–3531. [Google Scholar] [CrossRef]
- Li, Q.; Mou, L.; Xu, Q.; Zhang, Y.; Zhu, X.X. R3-net: A deep network for multi-oriented vehicle detection in aerial images and videos. arXiv 2018, arXiv:1808.05560. [Google Scholar]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. Scrdet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8232–8241. [Google Scholar]
- Shi, G.; Zhang, J.; Liu, J.; Zhang, C.; Zhou, C.; Yang, S. Global context-augmented objection detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10604–10617. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiong, Z.; Wang, Q. VSSA-NET: Vertical spatial sequence attention network for traffic sign detection. IEEE Trans. Image Process. 2019, 28, 3423–3434. [Google Scholar] [CrossRef]
- Li, Z.; Chen, G.; Li, G.; Zhou, L.; Pan, X.; Zhao, W.; Zhang, W. DBANet: Dual-branch Attention Network for hyperspectral remote sensing image classification. Comput. Electr. Eng. 2024, 118, 109269. [Google Scholar] [CrossRef]
- Chang, S.; Deng, Y.; Zhang, Y.; Zhao, Q.; Wang, R.; Zhang, K. An advanced scheme for range ambiguity suppression of spaceborne SAR based on blind source separation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Qiu, H.; Li, H.; Wu, Q.; Meng, F.; Ngan, K.N.; Shi, H. A2RMNet: Adaptively aspect ratio multi-scale network for object detection in remote sensing images. Remote Sens. 2019, 11, 1594. [Google Scholar] [CrossRef]
- Cheng, G.; Si, Y.; Hong, H.; Yao, X.; Guo, L. Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 431–435. [Google Scholar] [CrossRef]
- Huang, Z.; Li, W.; Xia, X.G.; Tao, R. A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection. IEEE Trans. Image Process. 2022, 31, 1895–1910. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, X.; Cao, G.; Yang, Y.; Jiao, L.; Liu, F. ViT-YOLO: Transformer-based YOLO for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2799–2808. [Google Scholar]
- Li, Q.; Chen, Y.; Zeng, Y. Transformer with transfer CNN for remote-sensing-image object detection. Remote Sens. 2022, 14, 984. [Google Scholar] [CrossRef]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv 2020, arXiv:2010.04159. [Google Scholar]
- Song, H.; Sun, D.; Chun, S.; Jampani, V.; Han, D.; Heo, B.; Kim, W.; Yang, M. Vidt: An efficient and effective fully transformer-based object detector. arXiv 2021, arXiv:2110.03921. [Google Scholar]
- Chen, Y.; Kalantidis, Y.; Li, J.; Yan, S.; Feng, J. A2-nets: Double attention networks. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Zheng, M.; Gao, P.; Zhang, R.; Li, K.; Wang, X.; Li, H.; Dong, H. End-to-end object detection with adaptive clustering transformer. arXiv 2020, arXiv:2011.09315. [Google Scholar]
- Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Vaswani, A.; Ramachandran, P.; Srinivas, A.; Parmar, N.; Hechtman, B.; Shlens, J. Scaling local self-attention for parameter efficient visual backbones. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12894–12904. [Google Scholar]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Hou, Q.; Jiang, Z.; Yuan, L.; Cheng, M.-M.; Yan, S.; Feng, J. Vision permutator: A permutable mlp-like architecture for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 1328–1334. [Google Scholar] [CrossRef]
- Liu, H.; Dai, Z.; So, D.; Le, Q.V. Pay attention to mlps. Adv. Neural Inf. Process. Syst. 2021, 34, 9204–9215. [Google Scholar]
- Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10819–10829. [Google Scholar]
- Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. Maxim: Multi-axis mlp for image processing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5769–5780. [Google Scholar]
- An, L.; Wang, L.; Li, Y. HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation. Sensors 2022, 22, 7024. [Google Scholar] [CrossRef]
- Liang, Z.; Zheng, Z.; Chen, W.; Pei, Z.; Wang, J.; Chen, J. A Novel Deep Transfer Learning Framework Integrating General and Domain-Specific Features for EEG-Based Brain-Computer Interface. Biomed. Signal Process. Control 2024, 95, 106311. [Google Scholar] [CrossRef]
- Mishra, S.; Tripathy, H.K.; Mallick, P.K.; Bhoi, A.K.; Barsocchi, P. EAGA-MLP—An enhanced and adaptive hybrid classification model for diabetes diagnosis. Sensors 2020, 20, 4036. [Google Scholar] [CrossRef]
- Al Bataineh, A.; Manacek, S. MLP-PSO hybrid algorithm for heart disease prediction. J. Pers. Med. 2022, 12, 1208. [Google Scholar] [CrossRef]
- Pahuja, R.; Kumar, A. Sound-spectrogram based automatic bird species recognition using MLP classifier. Appl. Acoust. 2021, 180, 108077. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, Y.; Jiang, Z.; Zheng, Q. Polyp segmentation with convolutional MLP. Vis. Comput. 2023, 39, 4819–4837. [Google Scholar] [CrossRef]
- Kong, J.; Wang, H.; Yang, C.; Jin, X.; Zuo, M.; Zhang, X. A spatial feature-enhanced attention neural network with high-order pooling representation for application in pest and disease recognition. Agriculture 2022, 12, 500. [Google Scholar] [CrossRef]
- Zhai, Y.; Fan, D.-P.; Yang, J.; Borji, A.; Shao, L.; Han, J.; Wang, L. Bifurcated backbone strategy for RGB-D salient object detection. IEEE Trans. Image Process. 2021, 30, 8727–8742. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Dong, J.; Wei, W.; Zheng, B.; Ma, J.; Zhou, T. Remote Sensing Image Object Detection by Fusing Multi-Scale Contextual Features and Channel Enhancement. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 01–07. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, L.; Weng, L.; Yang, Y. A high resolution optical satellite image dataset for ship recognition and some new baselines. In Proceedings of the International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 24–26 February 2017; pp. 324–331. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Wong, C.; Yifu, Z.; Montes, D. Ultralytics/Yolov5: V6. 2-Yolov5 Classification Models, Apple M1, Reproducibility, Clearml and Deci. Ai Integrations. Zenodo. 2022. Available online: https://zenodo.org/records/7002879 (accessed on 25 June 2024).
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 603–612. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Ren, S.; Fang, Z.; Gu, X. A Cross Stage Partial Network with Strengthen Matching Detector for Remote Sensing Object Detection. Remote Sens. 2023, 15, 1574. [Google Scholar] [CrossRef]
- Huang, W.; Li, G.; Chen, Q.; Ju, M.; Qu, J. CF2PN: A cross-scale feature fusion pyramid network based remote sensing target detection. Remote Sens. 2021, 13, 847. [Google Scholar] [CrossRef]
- Ye, Y.; Ren, X.; Zhu, B.; Tang, T.; Tan, X.; Gui, Y.; Yao, Q. An adaptive attention fusion mechanism convolutional network for object detection in remote sensing images. Remote Sens. 2022, 14, 516. [Google Scholar] [CrossRef]
- Huyan, L.; Bai, Y.; Li, Y.; Jiang, D.; Zhang, Y.; Zhou, Q.; Wei, J.; Liu, J.; Zhang, Y.; Cui, T. A lightweight object detection framework for remote sensing images. Remote Sens. 2021, 13, 683. [Google Scholar] [CrossRef]
- Liu, N.; Mao, Z.; Wang, Y.; Shen, J. Remote Sensing Images Target Detection Based on Adjustable Parameter and Receptive field. Acta Photonica Sin. 2021, 50, 1128001–1128012. [Google Scholar]
- Wang, J.; Gong, Z.; Liu, X.; Guo, H.; Yu, D.; Ding, L. Object detection based on adaptive feature-aware method in optical remote sensing images. Remote Sens. 2022, 14, 3616. [Google Scholar] [CrossRef]
- Chen, T.; Li, R.; Fu, J.; Jiang, D. Tucker Bilinear Attention Network for Multi-scale Remote Sensing Object Detection. arXiv 2023, arXiv:2303.05329. [Google Scholar] [CrossRef]
- Li, Z.; Hou, B.; Wu, Z.; Ren, B.; Yang, C. FCOSR: A simple anchor-free rotated detector for aerial object detection. Remote Sens. 2023, 15, 5499. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Yang, X.; Liu, Q.; Yan, J.; Li, A.; Zhang, Z.; Yu, G. R3det: Refined single-stage detector with feature refinement for rotating object. arXiv 2019, arXiv:1908.05612. [Google Scholar] [CrossRef]
- Han, J.; Ding, J.; Li, J.; Xia, G.-S. Align deep features for oriented object detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.-S.; Lu, Q. Learning RoI transformer for oriented object detection in aerial images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2849–2858. [Google Scholar]
- Yang, X.; Yan, J. Arbitrary-oriented object detection with circular smooth label. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part VIII 16. pp. 677–694. [Google Scholar]
- Duan, M.; Meng, R.; Xiao, L. An Orientation-Aware Anchor-Free Detector for Aerial Object Detection. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3075–3078. [Google Scholar]
- Cheng, G.; Wang, J.; Li, K.; Xie, X.; Lang, C.; Yao, Y.; Han, J. Anchor-free oriented proposal generator for object detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Li, H.-C.; Zhang, H.; Xia, G.-S. Learning center probability map for detecting objects in aerial images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4307–4323. [Google Scholar] [CrossRef]
- Pan, X.; Ren, Y.; Sheng, K.; Dong, W.; Yuan, H.; Guo, X.; Ma, C.; Xu, C. Dynamic refinement network for oriented and densely packed object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11207–11216. [Google Scholar]
Modules | Baseline | FEM | LCFM | mAP | FPS | FLOPs(G) | Params(M) |
---|---|---|---|---|---|---|---|
Select Module(s) | √ | 73.1 | 35 | 130.70 | 68.78 | ||
√ | √ | 74.3 | 26 | 154.29 | 97.09 | ||
√ | √ | 73.6 | 31 | 136.61 | 78.23 | ||
√ | √ | √ | 74.7 | 25 | 160.20 | 106.54 |
Modules | Baseline | FEM | LCFM | mAP | FPS | FLOPs(G) | Params(M) |
---|---|---|---|---|---|---|---|
Select module(s) | √ | 96.00 | 26 | 130.64 | 68.76 | ||
√ | √ | 96.50 | 23 | 154.23 | 97.07 | ||
√ | √ | 96.70 | 24 | 136.54 | 78.20 | ||
√ | √ | √ | 97.10 | 20 | 160.14 | 106.52 |
Methods | mAP | AL | AT | BF | BC | B | C | D | ESA | ETS | GC |
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 73.1 | 91.7 | 74.2 | 92.6 | 80.7 | 43.4 | 89.8 | 60.1 | 55.9 | 62.0 | 78.3 |
Baseline + FEM | 74.3 | 92.0 | 76.9 | 93.1 | 80.8 | 45.0 | 90.5 | 66.7 | 54.8 | 64.6 | 79.0 |
Baseline + LCFM | 73.6 | 91.3 | 77.4 | 92.9 | 81.3 | 44.1 | 91.1 | 62.9 | 54.5 | 61.7 | 78.2 |
Baseline + FEM + LCFM (Ours) | 74.7 | 92.3 | 79.3 | 91.9 | 81.4 | 43.7 | 91.1 | 66.2 | 56.2 | 63.1 | 80.6 |
Methods | mAP | GTF | HB | O | S | SD | ST | TC | TS | V | W |
Baseline | 73.1 | 79.0 | 56.3 | 59.2 | 85.9 | 83.9 | 82.8 | 86.0 | 53.4 | 71.7 | 77.0 |
Baseline + FEM | 74.3 | 76.7 | 56.2 | 59.6 | 86.7 | 88.0 | 81.2 | 86.4 | 58.1 | 71.8 | 78.1 |
Baseline + LCFM | 73.6 | 76.7 | 56.2 | 60.6 | 87.6 | 85.3 | 82.1 | 84.3 | 55.9 | 71.1 | 77.6 |
Baseline + FEM + LCFM (Ours) | 74.7 | 76.5 | 55.3 | 60.2 | 87.1 | 90.2 | 81.1 | 85.8 | 62.5 | 71.8 | 78.4 |
Methods | mAP | FPS | AL | AT | BF | BC | B | C | D | ESA | ETS | GC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yolov5 | 68.6 | 80 | 87.3 | 61.7 | 73.8 | 90.0 | 42.6 | 77.5 | 55.2 | 63.8 | 63.2 | 66.9 |
Centernet | 63.9 | 10 | 73.6 | 58.0 | 69.7 | 88.5 | 36.2 | 76.9 | 47.9 | 52.7 | 54.0 | 60.5 |
Efficientnet | 62.2 | 13 | 72.4 | 68.3 | 64.6 | 87.0 | 33.6 | 74.5 | 43.7 | 60.1 | 55.4 | 72.6 |
StrMCsDet | 65.6 | 38 | 78.6 | 58.4 | 38.1 | 38.3 | 55.0 | 49.5 | 56.8 | 35.5 | 79.1 | 37.1 |
CF2PN | 57.9 | 18 | 70.0 | 57.4 | 36.9 | 36.3 | 43.4 | 45.1 | 51.2 | 34.8 | 73.8 | 45.9 |
AAFM-Enhanced EfficientDet | 69.8 | - | 71.6 | 75.1 | 82.6 | 81.0 | 45.9 | 70.4 | 69.0 | 83.2 | 68.2 | 78.4 |
MSF-SNET | 66.5 | - | 90.3 | 76.6 | 90.9 | 69.6 | 37.5 | 88.3 | 70.6 | 70.8 | 63.6 | 69.9 |
ASDN | 66.9 | 32 | 63.9 | 73.8 | 71.8 | 81.0 | 46.3 | 73.4 | 56.3 | 73.4 | 66.2 | 74.7 |
AFADet | 66.1 | 61 | 85.6 | 66.5 | 76.3 | 88.1 | 37.4 | 78.3 | 53.6 | 61.8 | 58.4 | 54.3 |
GTNet | 73.3 | - | 72.3 | 87.5 | 72.3 | 89.0 | 53.7 | 72.5 | 71.0 | 85.1 | 77.6 | 78.1 |
Ours | 74.7 | 25 | 92.3 | 79.3 | 91.9 | 81.4 | 43.7 | 91.1 | 66.2 | 56.2 | 63.1 | 80.6 |
Methods | mAP | FPS | GTF | HB | O | S | SD | ST | TC | TS | V | W |
Yolov5 | 68.6 | 80 | 78.0 | 58.2 | 58.1 | 87.8 | 54.3 | 79.3 | 89.7 | 50.2 | 54.0 | 79.6 |
Centernet | 63.9 | 10 | 62.6 | 45.7 | 52.6 | 88.2 | 63.7 | 76.2 | 83.7 | 51.3 | 54.4 | 79.5 |
Efficientnet | 62.2 | 13 | 67.0 | 47.0 | 53.0 | 86.3 | 37.6 | 70.9 | 81.2 | 43.4 | 50.3 | 75.5 |
StrMCsDet | 65.6 | 38 | 42.5 | 66.0 | 38.3 | 66.6 | 62.9 | 80.8 | 49.3 | 35.0 | 72.1 | 81.3 |
CF2PN | 57.9 | 18 | 38.7 | 59.0 | 35.5 | 46.5 | 55.2 | 50.2 | 47.5 | 33.5 | 63.5 | 77.2 |
AAFM-Enhanced EfficientDet | 69.8 | - | 80.8 | 48.3 | 59.8 | 76.8 | 81.0 | 56.6 | 85.6 | 60.5 | 45.6 | 76.5 |
MSF-SNET | 66.5 | - | 61.9 | 59.0 | 57.5 | 20.5 | 90.6 | 72.4 | 80.9 | 60.3 | 39.8 | 58.6 |
ASDN | 66.9 | 32 | 75.2 | 51.1 | 58.4 | 76.2 | 67.4 | 60.2 | 81.4 | 58.7 | 45.8 | 83.1 |
AFADet | 66.1 | 61 | 67.2 | 70.4 | 53.1 | 82.7 | 62.8 | 64.0 | 88.2 | 50.3 | 44.0 | 79.2 |
GTNet | 73.3 | - | 81.9 | 65.9 | 63.9 | 80.8 | 76.2 | 62.5 | 81.5 | 65.5 | 48.5 | 80.9 |
Ours | 74.7 | 25 | 76.5 | 55.3 | 60.2 | 87.1 | 90.2 | 81.1 | 85.8 | 62.5 | 71.8 | 78.4 |
Methods | mAP | FPS |
---|---|---|
Rotated FCOS | 88.70 | 24 |
Rotated RetinaNet | 95.21 | 20 |
CSL | 96.10 | 24 |
R3Det | 96.01 | 16 |
OAF-Net | 89.96 | - |
AOPG | 96.22 | 11 |
S2ANET | 95.01 | 13 |
CenterMap-Net | 92.80 | 6 |
DRN | 92.70 | - |
ROI-transformer | 86.20 | 6 |
Ours | 97.10 | 20 |
Dataset | SNR (dB) | Methods | mAP |
---|---|---|---|
Ori HRSC2016 | - | Rotated FCOS | 88.70 |
Rotated RetinaNet | 95.21 | ||
Ours | 97.10 | ||
HRSC2016 with minor noise | 8.05 | Rotated FCOS | 79.20 |
Rotated RetinaNet | 88.70 | ||
Ours | 94.50 | ||
HRSC2016 with massive noise | 1.99 | Rotated FCOS | 32.74 |
Rotated RetinaNet | 67.30 | ||
Ours | 78.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Ni, R.; Chen, Z.; Huang, F.; Chen, L. FEFN: Feature Enhancement Feedforward Network for Lightweight Object Detection in Remote Sensing Images. Remote Sens. 2024, 16, 2398. https://doi.org/10.3390/rs16132398
Wu J, Ni R, Chen Z, Huang F, Chen L. FEFN: Feature Enhancement Feedforward Network for Lightweight Object Detection in Remote Sensing Images. Remote Sensing. 2024; 16(13):2398. https://doi.org/10.3390/rs16132398
Chicago/Turabian StyleWu, Jing, Rixiang Ni, Zhenhua Chen, Feng Huang, and Liqiong Chen. 2024. "FEFN: Feature Enhancement Feedforward Network for Lightweight Object Detection in Remote Sensing Images" Remote Sensing 16, no. 13: 2398. https://doi.org/10.3390/rs16132398
APA StyleWu, J., Ni, R., Chen, Z., Huang, F., & Chen, L. (2024). FEFN: Feature Enhancement Feedforward Network for Lightweight Object Detection in Remote Sensing Images. Remote Sensing, 16(13), 2398. https://doi.org/10.3390/rs16132398