High-Resolution PM10 Estimation Using Satellite Data and Model-Agnostic Meta-Learning
Abstract
:1. Introduction
2. Materials
2.1. Ground-based PM10 Data
2.2. Satellite Data
2.3. Meteorological Data
2.4. Other Input Data
3. Methodology
3.1. Model-Agnostic Meta-Learning
3.2. PM10 Estimation Model
3.3. Task Formulation
3.4. Model Training, Fine-Tuning, and Evaluation
4. Results
5. Comparison
5.1. Baseline
5.2. Competitors
6. Conclusions
- (1)
- A MAML-trained ANN model is proposed to estimate the ground-level PM10 at high resolution (60 m × 60 m) over the study area.
- (2)
- The proposed MAML-ANN model is able to estimate PM10 in the study area and has the potential to obtain high-resolution PM10 over other data-sparse and small regions with heavy pollution.
- (3)
- MAML-ANN improves the PM10 estimation performance compared with the pre-trained ANN.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Stirnberg, R.; Cermak, J.; Andersen, H. An analysis of factors influencing the relationship between satellite-derived AOD and ground-level PM10. Remote Sens. 2018, 10, 1353. [Google Scholar] [CrossRef]
- Stirnberg, R.; Cermak, J.; Fuchs, J.; Andersen, H. Mapping and understanding patterns of air quality using satellite data and machine learning. J. Geophys. Res. Atmos. 2020, 125, e2019JD031380. [Google Scholar] [CrossRef]
- Al-Saadi, J.; Szykman, J.; Pierce, R.B.; Kittaka, C.; Neil, D.; Chu, D.A.; Remer, L.; Gumley, L.; Prins, E.; Weinstock, L.; et al. Improving National Air Quality Forecasts with Satellite Aerosol Observations. Bull. Am. Meteorol. Soc. 2005, 86, 1249–1262. [Google Scholar] [CrossRef]
- Yang, Y.; Cermak, J.; Yang, K.; Pauli, E.; Chen, Y. Land Use and Land Cover Influence on Sentinel-2 Aerosol Optical Depth below City Scales over Beijing. Remote Sens. 2022, 14, 4677. [Google Scholar] [CrossRef]
- Lee, H.J.; Liu, Y.; Coull, B.; Schwartz, J.D.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res. Atmos. 2009, 114, D14205. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Z.; Chen, D.; Zhang, G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens. Environ. 2015, 168, 276–285. [Google Scholar] [CrossRef]
- Zheng, T.; Bergin, M.H.; Hu, S.; Miller, J.; Carlson, D.E. Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach. Atmos. Environ. 2020, 230, 117451. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2. 5 concentrations in the southeastern US using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef]
- Koelemeijer, R.; Homan, C.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Ma, W.; Yuan, Z.; Lau, A.K.; Wang, L.; Liao, C.; Zhang, Y. Optimized neural network for daily-scale ozone prediction based on transfer learning. Sci. Total Environ. 2022, 827, 154279. [Google Scholar] [CrossRef]
- Taheri Shahraiyni, H.; Sodoudi, S.J.A. Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies. Atmosphere 2016, 7, 15. [Google Scholar] [CrossRef]
- Cermak, J.; Knutti, R. Beijing Olympics as an aerosol field experiment. Geophys. Res. Lett. 2009, 36, L10806. [Google Scholar] [CrossRef]
- Perez, P. Combined model for PM10 forecasting in a large city. Atmos. Environ. 2012, 60, 271–276. [Google Scholar] [CrossRef]
- Park, S.; Kim, M.; Kim, M.; Namgung, H.-G.; Kim, K.-T.; Cho, K.H.; Kwon, S.-B. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). J. Hazard. Mater. 2018, 341, 75–82. [Google Scholar] [CrossRef]
- Wei, J.; Huang, B.; Sun, L.; Zhang, Z.; Wang, L.; Bilal, M. A simple and universal aerosol retrieval algorithm for Landsat series images over complex surfaces. J. Geophys. Res. Atmos. 2017, 122, 13338–13355. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol optical depth retrieval over bright areas using Landsat 8 OLI images. Remote Sens. 2016, 8, 23. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Yang, K.; Cermak, J.; Chen, Y. High-resolution aerosol retrieval over urban areas using sentinel-2 data. Atmos. Res. 2021, 264, 105829. [Google Scholar] [CrossRef]
- Cheng, S.; Shen, H.; Shan, G.; Niu, B.; Bai, W. Visual analysis of meteorological satellite data via model-agnostic meta-learning. J. Vis. 2021, 24, 301–315. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Tseng, G.; Kerner, H.; Nakalembe, C.; Becker-Reshef, I. Learning to predict crop type from heterogeneous sparse labels using meta-learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Nashville, TN, USA, 19–25 June 2021; pp. 1111–1120. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Rußwurm, M.; Wang, S.; Korner, M.; Lobell, D. Meta-learning for few-shot land cover classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 200–201. [Google Scholar]
- Janssen, N.A.H.; Fischer, P.; Marra, M.; Ameling, C.; Cassee, F.R. Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands. Sci. Total Environ. 2013, 463–464, 20–26. [Google Scholar] [CrossRef]
- Tao, Z.; Kokas, A.; Zhang, R.; Cohan, D.S.; Wallach, D. Inferring atmospheric particulate matter concentrations from Chinese social media data. PLoS ONE 2016, 11, e0161389. [Google Scholar] [CrossRef]
- Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population exposure to PM2.5 in the urban area of Beijing. PLoS ONE 2013, 8, e63486. [Google Scholar] [CrossRef]
- Emili, E.; Popp, C.; Wunderle, S.; Zebisch, M.; Petitta, M. Mapping particulate matter in alpine regions with satellite and ground-based measurements: An exploratory study for data assimilation. Atmos. Environ. 2011, 45, 4344–4353. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, K.; Chen, Y. Aerosol Retrieval Algorithm for Sentinel-2 Images Over Complex Urban Areas. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Munchak, L.; Levy, R.; Mattoo, S.; Remer, L.; Holben, B.; Schafer, J.; Hostetler, C.; Ferrare, R. MODIS 3 km aerosol product: Applications over land in an urban/suburban region. Atmos. Meas. Tech. 2013, 6, 1747–1759. [Google Scholar] [CrossRef]
- Yan, X.; Li, Z.; Luo, N.; Shi, W.; Zhao, W.; Yang, X.; Jin, J. A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8. Atmos. Res. 2018, 207, 14–27. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land hourly data from 1950 to 1980. Volume 10. 2021. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 4 July 2024).
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2. 5 and PM1. 0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef]
- Andersen, H.; Cermak, J.; Stirnberg, R.; Fuchs, J.; Kim, M.; Pauli, E. Assessment of COVID-19 effects on satellite-observed aerosol loading over China with machine learning. Tellus B Chem. Phys. Meteorol. 2021, 73, 1971925. [Google Scholar] [CrossRef]
- Wang, X.; Dickinson, R.E.; Su, L.; Zhou, C.; Wang, K. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Am. Meteorol. Soc. 2018, 99, 105–119. [Google Scholar] [CrossRef]
- Leung, D.M.; Tai, A.P.; Mickley, L.J.; Moch, J.M.; Van Donkelaar, A.; Shen, L.; Martin, R.V. Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China. Atmos. Chem. Phys. 2018, 18, 6733–6748. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM 10 trend analysis. Atmos. Chem. Phys. 2018, 18, 6223–6239. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Song, H.; Pan, H.; Wang, B. Air Quality Prediction Model Based on Spatiotemporal Data Analysis and Metalearning. Wirel. Commun. Mobile Comput. 2021, 2021, 9627776. [Google Scholar] [CrossRef]
- Fong, I.H.; Li, T.; Fong, S.; Wong, R.K.; Tallon-Ballesteros, A.J. Predicting concentration levels of air pollutants by transfer learning and recurrent neural network. Knowl.-Based Syst. 2020, 192, 105622. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C.; Lin, C.; Tan, Y.; Zhang, J. Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmos. Environ. 2019, 214, 116885. [Google Scholar] [CrossRef]
- Chellali, M.; Abderrahim, H.; Hamou, A.; Nebatti, A.; Janovec, J. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers. Environ. Sci. Pollut. Res. 2016, 23, 14008–14017. [Google Scholar] [CrossRef] [PubMed]
- Grivas, G.; Chaloulakou, A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40, 1216–1229. [Google Scholar] [CrossRef]
- Papanastasiou, D.; Melas, D.; Kioutsioukis, I. Development and assessment of neural network and multiple regression models in order to predict PM10 levels in a medium-sized Mediterranean city. Water Air Soil Pollut. 2007, 182, 325–334. [Google Scholar] [CrossRef]
- Pérez, P.; Trier, A.; Reyes, J. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmos. Environ. 2000, 34, 1189–1196. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Zheng, T.; Bergin, M.H.; Sutaria, R.; Tripathi, S.N.; Caldow, R.; Carlson, D.E. Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi. Atmos. Meas. Tech. 2019, 12, 5161–5181. [Google Scholar] [CrossRef]
- Saraswat, I.; Mishra, R.K.; Kumar, A. Estimation of PM10 concentration from Landsat 8 OLI satellite imagery over Delhi, India. Remote Sens. Appl. Soc. Environ. 2017, 8, 251–257. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, J.; Liu, S.; Liu, H.; Li, Z.; Zhang, W.; Zhai, P. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmos. Chem. Phys. 2017, 17, 3097–3110. [Google Scholar] [CrossRef]
- Park, S.; Shin, M.; Im, J.; Song, C.-K.; Choi, M.; Kim, J.; Lee, S.; Park, R.; Kim, J.; Lee, D.-W.; et al. Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. Atmos. Chem. Phys. 2019, 19, 1097–1113. [Google Scholar] [CrossRef]
- Imani, M. Particulate matter (PM2.5 and PM10) generation map using MODIS Level-1 satellite images and deep neural network. J. Environ. Manag. 2021, 281, 111888. [Google Scholar] [CrossRef] [PubMed]
Number | Name | Longitude | Latitude | Type |
---|---|---|---|---|
1 | Temple of Heaven | 116.407 | 39.886 | Urban |
2 | Guanyuan | 116.339 | 39.929 | Urban |
3 | Wanshou Palace | 116.352 | 39.878 | Urban |
4 | Olympic Sports Center | 116.397 | 39.982 | Urban |
5 | Fengtai Garden | 116.279 | 39.863 | Urban |
6 | Yungang | 116.146 | 39.824 | Urban |
7 | Gucheng | 116.184 | 39.914 | Urban |
8 | Nongzhanguan | 116.461 | 39.937 | Urban |
9 | Wanliu | 116.287 | 39.987 | Urban |
10 | Dongsi | 116.417 | 39.929 | Urban |
11 | New North Zone | 116.174 | 40.09 | Urban |
12 | Botanical Garden | 116.207 | 40.002 | Urban |
13 | Fangshan | 116.136 | 39.742 | Suburban |
14 | Tongzhou | 116.663 | 39.886 | Suburban |
15 | Shunyi | 116.655 | 40.127 | Suburban |
16 | Changping | 116.23 | 40.217 | Suburban |
17 | Mentougou | 116.106 | 39.937 | Suburban |
18 | Pinggu | 117.1 | 40.143 | Suburban |
19 | Miyun | 116.832 | 40.37 | Suburban |
20 | Yanqing | 115.972 | 40.453 | Suburban |
21 | Daxing | 116.404 | 39.718 | Suburban |
22 | Yizhuang | 116.506 | 39.795 | Suburban |
23 | Huairou | 116.628 | 40.328 | Suburban |
24 | Dingling | 116.22 | 40.292 | Background |
25 | Badaling | 115.988 | 40.365 | Background |
26 | Miyun Reservior | 116.911 | 40.499 | Background |
27 | Donggaocun | 117.12 | 40.1 | Background |
28 | Yongledain | 116.783 | 39.712 | Background |
29 | Liulihe | 116 | 39.58 | Background |
30 | Yufa | 116.3 | 39.52 | Background |
31 | Qianmen | 116.395 | 39.899 | Roadside |
32 | Yongdingmennei | 116.394 | 39.876 | Roadside |
33 | Xizhibeimen | 116.349 | 39.954 | Roadside |
34 | East 4th Ring Road | 116.483 | 39.939 | Roadside |
35 | South 3rd Ring Road | 116.368 | 39.856 | Roadside |
Dataset (Time Period) | Variable (Units) | Description | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
Input features | ||||
Sentinel-2 L1C (2017–2019) | AOD | Aerosol optical depth at 550 nm. | 60 m × 60 m | ≥5 days |
MOD04_L2 (2019–2016) | AOD | Aerosol optical depth at 550 nm. | 10 km × 10 km | daily |
ERA5-Land (2013–2019) | 10 m u-component of wind (m/s) | The horizontal speed of air moving towards the east, at a height of 10 m above the surface of the Earth. | 0.1° | hourly |
10 m v-component of wind (m/s) | The horizontal speed of air moving towards the north, at a height of 10 m above the surface of the Earth. | |||
Wind direction (rad) | Calculated from the 10 m u and v wind component. | |||
2 m temperature (K) | The temperature of air at 2 m above the surface of land, sea, or inland waters. | |||
Surface pressure (Pa) | The pressure (force per unit area) of the atmosphere at the surface of land, sea, and inland water | |||
Other | Year | / | / | / |
Season | / | |||
DOM | Day of the month | |||
MOY | Month of the year | |||
Model outcome | ||||
BJEPB air quality measurements | ) | / | / | hourly |
Hyperparameter | Value |
---|---|
Epochs | 1000 |
Activation function | ReLU (hidden layer) Sigmoid (output layer) |
Hidden layer | [20, 40, 60, 80, 100, 120 1] |
) | [5, 10] |
) | [10] |
) | [4, 8, 12, 16] |
Inner learning rate () | [0.1, 0.01, 0.001, 0.0001] |
Outer learning rate () | [0.1, 0.01, 0.001, 0.0001] |
Inner update steps | [5, 10, 15, 20] |
Update steps for fine-tuning | [5, 10, 15, 20] |
Station Type | MAE | RMSE | |
---|---|---|---|
Urban | 15.47 | 21.35 | 0.87 |
Suburban | 22.34 | 31.95 | 0.72 |
Background | 30.6 | 45.32 | 0.51 |
Roadside | 14.64 | 21.45 | 0.89 |
All | 19.44 | 28.89 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Cermak, J.; Chen, X.; Chen, Y.; Hou, X. High-Resolution PM10 Estimation Using Satellite Data and Model-Agnostic Meta-Learning. Remote Sens. 2024, 16, 2498. https://doi.org/10.3390/rs16132498
Yang Y, Cermak J, Chen X, Chen Y, Hou X. High-Resolution PM10 Estimation Using Satellite Data and Model-Agnostic Meta-Learning. Remote Sensing. 2024; 16(13):2498. https://doi.org/10.3390/rs16132498
Chicago/Turabian StyleYang, Yue, Jan Cermak, Xu Chen, Yunping Chen, and Xi Hou. 2024. "High-Resolution PM10 Estimation Using Satellite Data and Model-Agnostic Meta-Learning" Remote Sensing 16, no. 13: 2498. https://doi.org/10.3390/rs16132498
APA StyleYang, Y., Cermak, J., Chen, X., Chen, Y., & Hou, X. (2024). High-Resolution PM10 Estimation Using Satellite Data and Model-Agnostic Meta-Learning. Remote Sensing, 16(13), 2498. https://doi.org/10.3390/rs16132498