Unveiling the Accuracy of New-Generation Satellite Rainfall Estimates across Bolivia’s Complex Terrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Rain Gauge Measurements
2.2.2. CHIRPS
2.2.3. IMERG
2.3. Evaluation Methods
2.3.1. Categorical Validation Statistics
2.3.2. Continuous Validation Statistics
2.3.3. Bias Decomposition Assessment
2.4. Assessment of Spatio-Temporal Rainfall Patterns
2.5. Assessment of Meteorological Drought
3. Results
3.1. Categorical Validation Statistics
3.2. Continuous Validation Statistics
3.3. Analysis of Bias Decomposition at a Daily Timescale
3.4. Assessment of Spatio-Temporal Rainfall Patterns
3.5. Assessment of Meteorological Drought
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Haregeweyn, N.; Kawai, T.; Sultan, D.; Ebabu, K.; Belay, A.S. Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrol. Process. 2017, 31, 4555–4567. [Google Scholar] [CrossRef]
- Meshesha, T.M.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A.; Berihun, M.L.; Mulu, A.; Belay, A.S.; Sultan, D.; Ebabu, K.; et al. Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia. Water 2024, 16, 1037. [Google Scholar] [CrossRef]
- Sultan, D.; Tsunekawa, A.; Tsubo, M.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Fenta, A.A.; Ebabu, K.; Berihun, M.L.; Setargie, T.A. Evaluation of lag time and time of concentration estimation methods in small tropical watersheds in Ethiopia. J. Hydrol. Reg. Stud. 2022, 40, 101025. [Google Scholar] [CrossRef]
- Belay, A.S.; Fenta, A.A.; Yenehun, A.; Nigate, F.; Tilahun, S.A.; Moges, M.M.; Dessie, M.; Adgo, E.; Nyssen, J.; Chen, M.; et al. Evaluation and application of multi-source satellite rainfall product CHIRPS to assess spatio-temporal rainfall variability on data-sparse western margins of Ethiopian highlands. Remote Sens. 2019, 11, 2688. [Google Scholar] [CrossRef]
- Alsilibe, F.; Bene, K.; Bilal, G.; Alghafli, K.; Shi, X. Accuracy assessment and validation of multi-source CHIRPS precipitation estimates for water resource management in the Barada Basin, Syria. Remote Sens. 2023, 15, 1778. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Haregeweyn, N. Response of streamflow to climate variability and changes in human activities in the semiarid highlands of northern Ethiopia. Reg. Environ. Change 2017, 17, 1229–1240. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Yang, J.E.; Bezak, N.; Chen, Y.; Fenta, A.A.; Fendrich, A.N.; Gupta, S.; Matthews, F.; Modugno, S.; et al. Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland. Int. Soil Water Conserv. Res. 2023, 11, 713–725. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total Environ. 2020, 703, 135016. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Yasuda, H.; Tsubo, M.; Borrelli, P.; Kawai, T.; Belay, A.S.; Ebabu, K.; Berihun, M.L.; et al. Improving satellite-based global rainfall erosivity estimates through merging with gauge data. J. Hydrol. 2023, 620, 129555. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Yasuda, H.; Tsubo, M.; Borrelli, P.; Kawai, T.; Belay, A.S.; Ebabu, K.; Berihun, M.L.; et al. An integrated modeling approach for estimating monthly global rainfall erosivity. Sci. Rep. 2024, 14, 8167. [Google Scholar] [CrossRef]
- Panagos, P.; Hengl, T.; Wheeler, I.; Marcinkowski, P.; Rukeza, M.B.; Yu, B.; Yang, J.E.; Miao, C.; Chattopadhyay, N.; Sadeghi, S.H.; et al. Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution. Data Brief 2023, 50, 109482. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A.; Ebabu, K.; Sultan, D.; Dile, Y.T. Reduced runoff and sediment loss under alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. J. Hydrol. Reg. Stud. 2022, 40, 100998. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Kawai, T.; Ebabu, K.; Berihun, M.L.; Belay, A.S.; Sultan, D. Agroecology-based soil erosion assessment for better conservation planning in Ethiopian river basins. Environ. Res. 2021, 195, 110786. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Kawai, T.; Berihun, M.L.; Ebabu, K.; Sultan, D.; Mekuriaw, S. An integrated framework for improving watershed management planning. Environ. Res. 2023, 236, 116872. [Google Scholar] [CrossRef]
- Blacutt, L.A.; Herdies, D.L.; de Gonçalves, L.G.G.; Vila, D.A.; Andrade, M. Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia. Atmos. Res. 2015, 163, 117–131. [Google Scholar] [CrossRef]
- Heidinger, H.; Yarlequé, C.; Posadas, A.; Quiroz, R. TRMM rainfall correction over the Andean Plateau using wavelet multi-resolution analysis. Int. J. Remote Sens. 2012, 33, 4583–4602. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.-P.; Gosset, M.; Molina, J.; Lima, W.H.Y.; Zolá, R.P.; Timouk, F.; Garnier, J. Assessment of satellite rainfall products over the Andean plateau. Atmos. Res. 2016, 167, 1–14. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Ibaraki, Y.; Haregeweyn, N.; Kawai, T.; Belay, A.S.; Sultan, D.; Ebabu, K. Evaluation of satellite rainfall estimates over the Lake Tana basin at the source region of the Blue Nile River. Atmos. Res. 2018, 212, 43–53. [Google Scholar] [CrossRef]
- Wahyuni, S.; Sisinggih, D.; Dewi, I.A.G. Validation of climate hazard group infrared precipitation with station (CHIRPS) data in wonorejo reservoir, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 930, p. 012042. [Google Scholar]
- Cepeda Arias, E.; Cañon Barriga, J. Performance of high-resolution precipitation datasets CHIRPS and TerraClimate in a Colombian high Andean Basin. Geocarto Int. 2022, 37, 17382–17402. [Google Scholar] [CrossRef]
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; US Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J. Computing Morphing Vectors for Version 06 IMERG; NASA/GSFC: Greenbelt, MD, USA, 2019.
- Marti-Cardona, B.; Torres-Batllo, J.; Pillco-Zola, R.S. The Lake Poopó crisis: Satellite data as an essential tool for the sustainable planning of water resource and land use. In Space, Satellites, and Sustainability; SPIE: Bellingham, WA, USA, 2020; Volume 11527, p. 115270G. [Google Scholar]
- Satgé, F.; Xavier, A.; Pillco Zolá, R.; Hussain, Y.; Timouk, F.; Garnier, J.; Bonnet, M.-P. Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds. Remote Sens. 2017, 9, 369. [Google Scholar] [CrossRef]
- Evia, J.L.; Urquiola, M.S.; Andersen, L.; Antelo, E.; Nina, O. Geography and Development in Bolivia: Migration, Urban and Industrial Concentration, Welfare, and Convergence: 1950–1992; IDB: Washington, DC, USA, 1999. [Google Scholar]
- Du, H.; Tan, M.L.; Zhang, F.; Chun, K.P.; Li, L.; Kabir, M.H. Evaluating the effectiveness of CHIRPS data for hydroclimatic studies. Theor. Appl. Climatol. 2024, 155, 1519–1539. [Google Scholar] [CrossRef]
- Fernandes, K.; Muñoz, A.G.; Ramirez-Villegas, J.; Agudelo, D.; Llanos-Herrera, L.; Esquivel, A.; Rodriguez-Espinoza, J.; Prager, S.D. Improving seasonal precipitation forecasts for agriculture in the orinoquía Region of Colombia. Weather. Forecast. 2020, 35, 437–449. [Google Scholar] [CrossRef]
- Habitou, N.; Morabbi, A.; Ouazar, D.; Bouziane, A.; Hasnaoui, M.D.; Sabri, H. CHIRPS precipitation open data for drought monitoring: Application to the Tensift basin, Morocco. J. Appl. Remote Sens. 2020, 14, 34526. [Google Scholar]
- Mianabadi, A.; Salari, K.; Pourmohamad, Y. Drought monitoring using the long-term CHIRPS precipitation over Southeastern Iran. Appl. Water Sci. 2022, 12, 183. [Google Scholar] [CrossRef]
- Ngoma, H.; Wen, W.; Ojara, M.; Ayugi, B. Assessing current and future spatiotemporal precipitation variability and trends over Uganda, East Africa, based on CHIRPS and regional climate model datasets. Meteorol. Atmos. Phys. 2021, 133, 823–843. [Google Scholar] [CrossRef]
- Sulugodu, B.; Deka, P.C. Evaluating the performance of CHIRPS satellite rainfall data for streamflow forecasting. Water Resour. Manag. 2019, 33, 3913–3927. [Google Scholar] [CrossRef]
- Murove, B.; Mujere, N.; Gumindoga, W. Spatiotemporal variation of rainfall and its implications on water resources management: The case of Manyame River catchment in Zimbabwe. World Water Policy 2023, 9, 113–127. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. (ATBD) Version 2015, 4, 30. [Google Scholar]
- Leonarduzzi, E.; Molnar, P.; McArdell, B.W. Predictive performance of rainfall thresholds for shallow landslides in S witzerland from gridded daily data. Water Resour. Res. 2017, 53, 6612–6625. [Google Scholar] [CrossRef]
- Ziveh, A.R.; Bakhtar, A.; Shayeghi, A.; Kalantari, Z.; Bavani, A.M.; Ghajarnia, N. Spatio-temporal performance evaluation of 14 global precipitation estimation products across river basins in southwest Iran. J. Hydrol. Reg. Stud. 2022, 44, 101269. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rientjes, T.H.M.; Haile, A.T.; Makurira, H.; Reggiani, P. Performance of bias-correction schemes for CMORPH rainfall estimates in the Zambezi River basin. Hydrol. Earth Syst. Sci. 2019, 23, 2915–2938. [Google Scholar] [CrossRef]
- Yasuda, H.; Panda, S.N.; Abd Elbasit, M.A.M.; Kawai, T.; Elgamri, T.; Fenta, A.A.; Nawata, H. Teleconnection of rainfall time series in the central Nile Basin with sea surface temperature. Paddy Water Environ. 2018, 16, 805–821. [Google Scholar] [CrossRef]
- Alhamshry, A.; Fenta, A.A.; Yasuda, H.; Shimizu, K.; Kawai, T. Prediction of summer rainfall over the source region of the Blue Nile by using teleconnections based on sea surface temperatures. Theor. Appl. Climatol. 2019, 137, 3077–3087. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Chura, O.; López-Moreno, J.I.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Aguilar, E.; Morán-Tejeda, E.; Trujillo, F.; Martínez, R.; Nieto, J.J. Spatio-temporal variability of droughts in Bolivia: 1955–2012. Int. J. Climatol. 2015, 35, 3024–3040. [Google Scholar] [CrossRef]
- Quispe, L.A.; Paxi, E.; Lujano, E. Evaluation of GPM IMERG Performance Over the Lake Titicaca Basin at Different Time Scales. Environ. Sci. Proc. 2023, 25, 65. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Godoy, M.R.V.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Popovych, V.F.; Dunaieva, I.A. Assessment of the GPM IMERG and CHIRPS precipitation estimations for the steppe region of Crimea. Meteorol. Hydrol. Water Management. Res. Oper. Appl. 2021, 9, 1–13. [Google Scholar]
- Geleta, C.D.; Deressa, T.A. Evaluation of climate hazards group infrared precipitation station (CHIRPS) satellite-based rainfall estimates over Finchaa and Neshe Watersheds, Ethiopia. Eng. Rep. 2021, 3, e12338. [Google Scholar] [CrossRef]
- López-Bermeo, C.; Montoya, R.D.; Caro-Lopera, F.J.; Díaz-García, J.A. Validation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South America. Phys. Chem. Earth Parts A/B/C 2022, 127, 103184. [Google Scholar] [CrossRef]
- Ureña, J.E.; Vallejos, A.G.; Saavedra, O.C.; Escalera, A.C. Evaluación de la precipitación distribuida en la cuenca katari basado en tecnología satelital y productos derivados. Investig. Desarro. 2018, 18, 35–51. [Google Scholar] [CrossRef]
- Wang, N.-Y.; Liu, C.; Ferraro, R.; Wolff, D.; Zipser, E.; Kummerow, C. TRMM 2A12 land precipitation product-status and future plans. Meteorol. J. 2009, 87, 237–253. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Connor, S.J. Challenges of satellite rainfall estimation over mountainous and arid parts of east Africa. Int. J. Remote Sens. 2011, 32, 5965–5979. [Google Scholar] [CrossRef]
Region | Mean Altitude (m) | Mean Air Temperature (°C) | Maximum Air Temperature (°C) | Minimum Air Temperature (°C) | % of Total Area |
---|---|---|---|---|---|
Altiplano | 3770 | 15.0 | 19.2 | −4.7 | 28 |
Valles | 2405 | 21.8 | 34.9 | 6.6 | 13 |
Llanos | 267 | 27.3 | 35.8 | 13.4 | 59 |
Statistics | Equation | Range | Best Value |
---|---|---|---|
POD | 0 to 1 | 1 | |
FAR | 0 to 1 | 0 | |
FBI | 0 to | 1 | |
HSS | to 1 | 1 |
Statistics | Equation | Range | Best Value |
---|---|---|---|
ME | −∞ to +∞ | 0 | |
MAE | 0 to +∞ | 0 | |
d | 0 to 1 | 1 | |
Bias | −∞ to +∞ | 0 |
Statistics | Equation |
---|---|
Hit bias (HB) | |
Miss bias (MB) | |
False bias (FB) |
CHIRPS | IMERG | ||||||||
---|---|---|---|---|---|---|---|---|---|
Station | POD | FAR | FBI | HSS | POD | FAR | FBI | HSS | |
Highland | Laykacota (N = 6839) | 0.45 | 0.41 | 0.76 | 0.28 | 0.67 | 0.54 | 1.45 | 0.08 |
Oruro (N = 6771) | 0.44 | 0.49 | 0.85 | 0.30 | 0.57 | 0.60 | 1.44 | 0.16 | |
Potosí (N = 5692) | 0.47 | 0.57 | 1.09 | 0.29 | 0.55 | 0.70 | 1.79 | 0.10 | |
Average | 0.46 | 0.49 | 0.90 | 0.29 | 0.60 | 0.61 | 1.56 | 0.11 | |
Midland | Cochabamba (N = 6894) | 0.48 | 0.49 | 0.94 | 0.30 | 0.65 | 0.59 | 1.58 | 0.18 |
Tarija (N = 6771) | 0.41 | 0.52 | 0.86 | 0.27 | 0.54 | 0.58 | 1.29 | 0.21 | |
Sucre (N = 6921) | 0.46 | 0.53 | 0.97 | 0.27 | 0.53 | 0.63 | 1.43 | 0.10 | |
Average | 0.45 | 0.51 | 0.92 | 0.28 | 0.57 | 0.60 | 1.43 | 0.16 | |
Lowland | Santa Cruz (N = 6874) | 0.37 | 0.36 | 0.58 | 0.26 | 0.52 | 0.46 | 0.97 | 0.19 |
Trinidad (N = 6870) | 0.49 | 0.34 | 0.74 | 0.34 | 0.60 | 0.51 | 1.22 | 0.11 | |
Cobija (N = 6798) | 0.48 | 0.32 | 0.71 | 0.29 | 0.61 | 0.42 | 1.05 | 0.12 | |
Average | 0.45 | 0.34 | 0.68 | 0.30 | 0.58 | 0.46 | 1.08 | 0.14 |
CHIRPS | IMERG | ||||||||
---|---|---|---|---|---|---|---|---|---|
Station | ME | MAE | d | Bias | ME | MAE | d | Bias | |
Highland | Laykacota (N = 6839) | 0.17 | 1.71 | 0.58 | 1.13 | 0.77 | 2.08 | 0.58 | 1.54 |
Oruro (N = 6771) | −0.18 | 1.33 | 0.57 | 0.84 | 0.13 | 1.56 | 0.59 | 1.10 | |
Potosí (N = 5692) | −0.14 | 1.21 | 0.57 | 0.87 | 0.09 | 1.50 | 0.56 | 1.09 | |
Average | −0.05 | 1.42 | 0.57 | 0.95 | 0.33 | 1.71 | 0.58 | 1.24 | |
Midland | Cochabamba (N = 6894) | 0.15 | 1.60 | 0.52 | 1.13 | 0.93 | 2.31 | 0.48 | 1.75 |
Tarija (N = 6771) | 0.15 | 1.98 | 0.57 | 1.10 | 0.22 | 2.11 | 0.60 | 1.14 | |
Sucre (N = 6921) | −0.03 | 1.98 | 0.64 | 0.98 | −0.23 | 2.12 | 0.59 | 0.87 | |
Average | 0.09 | 1.85 | 0.58 | 1.07 | 0.31 | 2.18 | 0.56 | 1.25 | |
Lowland | Santa Cruz (N = 6874) | −0.71 | 3.94 | 0.57 | 0.79 | 0.34 | 4.78 | 0.60 | 1.09 |
Trinidad (N = 6870) | 0.13 | 5.23 | 0.66 | 1.03 | 0.67 | 5.77 | 0.71 | 1.13 | |
Cobija (N = 6798) | 0.23 | 5.77 | 0.59 | 1.05 | −0.12 | 5.76 | 0.67 | 0.98 | |
Average | −0.12 | 4.98 | 0.61 | 0.96 | 0.30 | 5.44 | 0.66 | 1.07 |
CHIRPS | IMERG | ||||||||
---|---|---|---|---|---|---|---|---|---|
Station | ME | MAE | d | Bias | ME | MAE | d | Bias | |
Highland | Laykacota (N = 228) | 5.63 | 12.36 | 0.95 | 1.13 | 23.25 | 24.37 | 0.89 | 1.55 |
Oruro (N = 228) | −5.58 | 12.48 | 0.93 | 0.85 | 29.11 | 32.43 | 0.81 | 1.79 | |
Potosí (N = 213) | −0.71 | 10.76 | 0.93 | 0.98 | 7.11 | 10.21 | 0.96 | 1.24 | |
Average | −0.22 | 11.87 | 0.94 | 0.99 | 19.82 | 22.34 | 0.89 | 1.53 | |
Midland | Cochabamba (N = 228) | 4.9 | 15.27 | 0.93 | 1.13 | 28.28 | 28.86 | 0.90 | 1.75 |
Tarija (N = 228) | 5.66 | 16.38 | 0.94 | 1.12 | 7.17 | 14.34 | 0.96 | 1.15 | |
Sucre (N = 228) | −1.08 | 17.35 | 0.44 | 0.98 | −7.15 | 17.07 | 0.44 | 0.87 | |
Average | 3.16 | 16.33 | 0.77 | 1.08 | 9.43 | 20.09 | 0.77 | 1.26 | |
Lowland | Santa Cruz (N = 228) | −23.17 | 40.25 | 0.83 | 0.79 | 10.85 | 26.67 | 0.95 | 1.1 |
Trinidad (N = 228) | 5.65 | 40.81 | 0.95 | 1.04 | 21.62 | 35.09 | 0.97 | 1.14 | |
Cobija (N = 228) | 8.79 | 42.3 | 0.58 | 1.06 | −2.4 | 33.46 | 0.58 | 0.98 | |
Average | −2.91 | 41.12 | 0.79 | 0.96 | 10.02 | 31.74 | 0.83 | 1.07 |
CHIRPS | IMERG | ||||||
---|---|---|---|---|---|---|---|
Station | HB | MB | FB | HB | MB | FB | |
Highland | Laykacota (N = 6839) | 15.3 | −37.2 | 34.8 | 8.6 | −1.3 | 46.6 |
Oruro (N = 6771) | −10.9 | −37.5 | 32.5 | −19.9 | −4.1 | 34.2 | |
Potosí (N = 5692) | −24.1 | −28.0 | 38.8 | −32.3 | −9.4 | 50.1 | |
Average | −6.6 | −34.2 | 35.4 | −14.5 | −4.9 | 43.6 | |
Midland | Cochabamba (N = 6894) | 10.6 | −38.1 | 40.4 | 22.5 | −4.1 | 56.1 |
Tarija (N = 6771) | 2.6 | −36.2 | 43.8 | −15.5 | −8.6 | 37.9 | |
Sucre (N = 6921) | −10.9 | −30.3 | 39.3 | −40.0 | −8.2 | 35.0 | |
Average | 0.8 | −34.9 | 41.2 | −11.0 | −7.0 | 43.0 | |
Lowland | Santa Cruz (N = 6874) | 1.9 | −43.3 | 20.0 | 10.5 | −18.2 | 17.1 |
Trinidad (N = 6870) | 6.5 | −28.2 | 24.6 | −3.3 | −4.6 | 21.1 | |
Cobija (N = 6798) | 9.4 | −30.6 | 26.0 | −16.9 | −3.8 | 18.4 | |
Average | 5.9 | −34.0 | 23.6 | −3.3 | −8.9 | 18.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, S.R.M.; Fenta, A.A.; Meshesha, T.M.; Belay, A.S. Unveiling the Accuracy of New-Generation Satellite Rainfall Estimates across Bolivia’s Complex Terrain. Remote Sens. 2024, 16, 2211. https://doi.org/10.3390/rs16122211
Gutierrez SRM, Fenta AA, Meshesha TM, Belay AS. Unveiling the Accuracy of New-Generation Satellite Rainfall Estimates across Bolivia’s Complex Terrain. Remote Sensing. 2024; 16(12):2211. https://doi.org/10.3390/rs16122211
Chicago/Turabian StyleGutierrez, Silvia Roxana Mattos, Ayele Almaw Fenta, Taye Minichil Meshesha, and Ashebir Sewale Belay. 2024. "Unveiling the Accuracy of New-Generation Satellite Rainfall Estimates across Bolivia’s Complex Terrain" Remote Sensing 16, no. 12: 2211. https://doi.org/10.3390/rs16122211
APA StyleGutierrez, S. R. M., Fenta, A. A., Meshesha, T. M., & Belay, A. S. (2024). Unveiling the Accuracy of New-Generation Satellite Rainfall Estimates across Bolivia’s Complex Terrain. Remote Sensing, 16(12), 2211. https://doi.org/10.3390/rs16122211