Influence of Image Compositing and Multisource Data Fusion on Multitemporal Land Cover Mapping of Two Philippine Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data and Preprocessing
2.3. Feature Generation and Classification
2.3.1. Optical Features and Composites
2.3.2. Radar and Topographic Features
2.3.3. Feature Normalization and Standardization
2.4. RF Model Evaluation
2.4.1. Accuracy Metrics
2.4.2. Statistical Analysis
2.5. Optimization and Postprocessing
2.6. Land Cover Mapping
3. Results
3.1. Comparison of Model Performance
3.2. Land Cover Maps
4. Discussion
4.1. Impacts of Multisource Data Integration
4.2. Impacts of Compositing
4.3. Generated Land Cover
4.4. Limitations and Further Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohan Rajan, S.N.; Loganathan, A.; Manoharan, P. Survey on Land Use/Land Cover (LU/LC) Change Analysis in Remote Sensing and GIS Environment: Techniques and Challenges. Environ. Sci. Pollut. Res. 2020, 27, 29900–29926. [Google Scholar] [CrossRef]
- Pandey, P.C.; Koutsias, N.; Petropoulos, G.P.; Srivastava, P.K.; Ben Dor, E. Land Use/Land Cover in View of Earth Observation: Data Sources, Input Dimensions, and Classifiers—A Review of the State of the Art. Geocarto Int. 2021, 36, 957–988. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Review of Soil Salinity Assessment for Agriculture across Multiple Scales Using Proximal and/or Remote Sensors. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 158, pp. 1–130. ISBN 978-0-12-817412-8. [Google Scholar]
- Edokossi, K.; Calabia, A.; Jin, S.; Molina, I. GNSS-Reflectometry and Remote Sensing of Soil Moisture: A Review of Measurement Techniques, Methods, and Applications. Remote Sens. 2020, 12, 614. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of Remote Sensing in Agriculture—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Belgiu, M.; Stein, A. Spatiotemporal Image Fusion in Remote Sensing. Remote Sens. 2019, 11, 818. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; He, L.; Chen, J.; Plaza, A. Spatio-Temporal Fusion for Remote Sensing Data: An Overview and New Benchmark. Sci. China Inf. Sci. 2020, 63, 140301. [Google Scholar] [CrossRef]
- Ghamisi, P.; Gloaguen, R.; Atkinson, P.M.; Benediktsson, J.A.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; et al. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef]
- Schmitt, M.; Zhu, X.X. Data Fusion and Remote Sensing: An Ever-Growing Relationship. IEEE Geosci. Remote Sens. Mag. 2016, 4, 6–23. [Google Scholar] [CrossRef]
- Mahyoub, S.; Fadil, A.; Mansour, E.M.; Rhinane, H.; Al-Nahmi, F. Fusing of optical and Synthetic Aperture Radar (SAR) remote sensing data: A systematic literature review (SLR). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 127–138. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop Type Classification Using a Combination of Optical and Radar Remote Sensing Data: A Review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Wu, X. Big Data Classification of Remote Sensing Image Based on Cloud Computing and Convolutional Neural Network. Soft Comput. 2022. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Fan, X.; Giuliani, G.; Hu, Z.; Wang, W.; Liu, J.; Wang, T.; Yan, Z.; Zhu, J.; et al. Cloud-Based Storage and Computing for Remote Sensing Big Data: A Technical Review. Int. J. Digit. Earth 2022, 15, 1417–1445. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud Cover throughout the Agricultural Growing Season: Impacts on Passive Optical Earth Observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Jiang, R.; Sanchez-Azofeifa, A.; Laakso, K.; Xu, Y.; Zhou, Z.; Luo, X.; Huang, J.; Chen, X.; Zang, Y. Cloud Cover throughout All the Paddy Rice Fields in Guangdong, China: Impacts on Sentinel 2 MSI and Landsat 8 OLI Optical Observations. Remote Sens. 2021, 13, 2961. [Google Scholar] [CrossRef]
- Laborde, H.; Douzal, V.; Ruiz Piña, H.A.; Morand, S.; Cornu, J.-F. Landsat-8 Cloud-Free Observations in Wet Tropical Areas: A Case Study in South East Asia. Remote Sens. Lett. 2017, 8, 537–546. [Google Scholar] [CrossRef]
- Mao, K.; Yuan, Z.; Zuo, Z.; Xu, T.; Shen, X.; Gao, C. Changes in Global Cloud Cover Based on Remote Sensing Data from 2003 to 2012. Chin. Geogr. Sci. 2019, 29, 306–315. [Google Scholar] [CrossRef]
- Mo, Y.; Xu, Y.; Chen, H.; Zhu, S. A Review of Reconstructing Remotely Sensed Land Surface Temperature under Cloudy Conditions. Remote Sens. 2021, 13, 2838. [Google Scholar] [CrossRef]
- Pu, D.C.; Sun, J.Y.; Ding, Q.; Zheng, Q.; Li, T.T.; Niu, X.F. Mapping Urban Areas Using Dense Time Series of Landsat Images and Google Earth Engine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 403–409. [Google Scholar] [CrossRef]
- Schmitt, M.; Hughes, L.H.; Qiu, C.; Zhu, X.X. Aggregating Cloud-Free Sentinel-2 Images with Google Earth Engine. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 145–152. [Google Scholar] [CrossRef]
- Salwa Thasveen, M.; Suresh, S. Land—Use and Land—Cover Classification Methods: A Review. In Proceedings of the 2021 Fourth International Conference on Microelectronics, Signals & Systems (ICMSS), IEEE, Kollam, India, 18 November 2021; pp. 1–6. [Google Scholar]
- Kumar, N.; Manhas, J.; Sharma, V. A Comparative Analysis to Visualize the Behavior of Different Machine Learning Algorithms for Normalized and Un-Normalized Data in Predicting Alzheimer’s Disease. J. Comput. Theor. Nanosci. 2019, 16, 3840–3848. [Google Scholar] [CrossRef]
- Maurya, K.; Mahajan, S.; Chaube, N. Remote Sensing Techniques: Mapping and Monitoring of Mangrove Ecosystem—A Review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Piao, Y.; Jeong, S.; Park, S.; Lee, D. Analysis of Land Use and Land Cover Change Using Time-Series Data and Random Forest in North Korea. Remote Sens. 2021, 13, 3501. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Sellami, E.M.; Rhinane, H. A new approach for mapping land use/land cover using google earth engine: A comparison of composition images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 343–349. [Google Scholar] [CrossRef]
- FAO. Terms and Definitions: FRA 2020; Forest Resources Assessment Working Paper 188; FAO: Rome, Italy, 2018. [Google Scholar]
- FAO; UNEP. The State of the World’s Forests 2020; FAO: Rome, Italy; UNEP: Nairobi, Kenya, 2020; ISBN 978-92-5-132419-6. [Google Scholar]
- Ecosystems and People. The Philippine Millennium Ecosystem Assessment; Ecosystems and People: Abingdon, UK, 2005. [Google Scholar]
- Jalil, A.A.; Caguiat, L.S.; Khaing, K.T.; Alos, B.M.; Moreno, N.A. Augmentation of Agrometeorological Stations Network in Southern Luzon, Philippines. EPRA Int. J. Multidiscip. Res. 2021, 7, 187–197. [Google Scholar] [CrossRef]
- Cruz, R.V.O.; Pillas, M.; Castillo, H.C.; Hernandez, E.C. Pagsanjan-Lumban Catchment, Philippines: Summary of Biophysical Characteristics of the Catchment, Background to Site Selection and Instrumentation. Agric. Water Manag. 2012, 106, 3–7. [Google Scholar] [CrossRef]
- Philippine Statistics Authority. 2020 Census of Population and Housing (2020 CPH) Population Counts; Philippine Statistics Authority: Quezon City, Philippines, 2021. [Google Scholar]
- National Economic and Development Authority of the Philippines. CALABARZON Regional Development Plan 2023–2028; National Economic and Development Authority of the Philippines: Mandaluyong City, Philippines, 2023. [Google Scholar]
- Encisa-Garcia, J.; Pulhin, J.; Cruz, R.V.; Simondac-Peria, A.; Ramirez, M.A.; De Luna, C. Land Use/Land Cover Changes Assessment and Forest Fragmentation Analysis in the Baroro River Watershed, La Union, Philippines. J. Environ. Sci. Manag. 2020, 2, 14–27. [Google Scholar] [CrossRef]
- National Economic and Development Authority of the Philippines. Region 1 Regional Development Plan 2023–2028; National Economic and Development Authority of the Philippines: Mandaluyong City, Philippines, 2023. [Google Scholar]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic Land-Cover Mapping Using Landsat Time-Series Data Based on Google Earth Engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS Land Cover Product to Derive a Consistent Continental Scale 30 m Landsat Land Cover Classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G.; Coulston, J.W.; Wilson, B.T. Random Forests and Stochastic Gradient Boosting for Predicting Tree Canopy Cover: Comparing Tuning Processes and Model Performance. Can. J. For. Res. 2016, 46, 323–339. [Google Scholar] [CrossRef]
- Jun, M.-J. A Comparison of a Gradient Boosting Decision Tree, Random Forests, and Artificial Neural Networks to Model Urban Land Use Changes: The Case of the Seoul Metropolitan Area. Int. J. Geogr. Inf. Sci. 2021, 35, 2149–2167. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon. Sensors 2017, 17, 2428. [Google Scholar] [CrossRef] [PubMed]
- Sahin, E.K. Assessing the Predictive Capability of Ensemble Tree Methods for Landslide Susceptibility Mapping Using XGBoost, Gradient Boosting Machine, and Random Forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to Broadband Conversions of Land Surface Albedo I. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Smith, R.B. The Heat Budget of the Earth’s Surface Deduced from Space; Yale: New Haven, CT, USA, 2010. [Google Scholar]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a Spectral Index to Estimate Vegetation Water Content from Remote Sensing Data: Part 1. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Chidthaisong, A.; Kieu Diem, P.; Huo, L.-Z. A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land 2021, 10, 231. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- De Alban, J.; Connette, G.; Oswald, P.; Webb, E. Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sens. 2018, 10, 306. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Kim, D. Prediction Performance of Support Vector Machines on Input Vector Normalization Methods. Int. J. Comput. Math. 2004, 81, 547–554. [Google Scholar] [CrossRef]
- Saboor, A.; Usman, M.; Ali, S.; Samad, A.; Abrar, M.F.; Ullah, N. A Method for Improving Prediction of Human Heart Disease Using Machine Learning Algorithms. Mob. Inf. Syst. 2022, 2022, 1410169. [Google Scholar] [CrossRef]
- De Leeuw, J.; Jia, H.; Yang, L.; Liu, X.; Schmidt, K.; Skidmore, A.K. Comparing Accuracy Assessments to Infer Superiority of Image Classification Methods. Int. J. Remote Sens. 2006, 27, 223–232. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–634. [Google Scholar] [CrossRef]
- Lee, M.R.; Sankar, V.; Hammer, A.; Kennedy, W.G.; Barb, J.J.; McQueen, P.G.; Leggio, L. Using Machine Learning to Classify Individuals with Alcohol Use Disorder Based on Treatment Seeking Status. eClinicalMedicine 2019, 12, 70–78. [Google Scholar] [CrossRef]
- Li, H.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Verma, P.; Raghubanshi, A.; Srivastava, P.K.; Raghubanshi, A.S. Appraisal of Kappa-Based Metrics and Disagreement Indices of Accuracy Assessment for Parametric and Nonparametric Techniques Used in LULC Classification and Change Detection. Model. Earth Syst. Environ. 2020, 6, 1045–1059. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the Unsuitability of the Kappa Coefficient in the Assessment and Comparison of the Accuracy of Thematic Maps Obtained by Image Classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Kerr, G.H.G.; Fischer, C.; Reulke, R. Reliability Assessment for Remote Sensing Data: Beyond Cohen’s Kappa. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 4995–4998. [Google Scholar]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; Losada, D.E., Fernández-Luna, J.M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3408, pp. 345–359. ISBN 978-3-540-25295-5. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In AI 2006: Advances in Artificial Intelligence; Sattar, A., Kang, B., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4304, pp. 1015–1021. ISBN 978-3-540-49787-5. [Google Scholar]
- Khan, Z.; Gul, N.; Faiz, N.; Gul, A.; Adler, W.; Lausen, B. Optimal Trees Selection for Classification via Out-of-Bag Assessment and Sub-Bagging. IEEE Access 2021, 9, 28591–28607. [Google Scholar] [CrossRef]
- Ramosaj, B.; Pauly, M. Consistent Estimation of Residual Variance with Random Forest Out-Of-Bag Errors. Stat. Probab. Lett. 2019, 151, 49–57. [Google Scholar] [CrossRef]
- Fay, M.P.; Proschan, M.A.; Brittain, E. Combining One-Sample Confidence Procedures for Inference in the Two-Sample Case: Combining One-Sample Confidence Procedures. Biometrics 2015, 71, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Fay, M.P.; Hunsberger, S.A. Practical Valid Inferences for the Two-Sample Binomial Problem. Statist. Surv. 2021, 15, 72–110. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-374856-0. [Google Scholar]
- Yang, L.; Cervone, G. Analysis of Remote Sensing Imagery for Disaster Assessment Using Deep Learning: A Case Study of Flooding Event. Soft Comput. 2019, 23, 13393–13408. [Google Scholar] [CrossRef]
- Cui, G.; Lv, Z.; Li, G.; Atli Benediktsson, J.; Lu, Y. Refining Land Cover Classification Maps Based on Dual-Adaptive Majority Voting Strategy for Very High Resolution Remote Sensing Images. Remote Sens. 2018, 10, 1238. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Liu, C.; Li, S. Recent Advances on Spectral–Spatial Hyperspectral Image Classification: An Overview and New Guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [Google Scholar] [CrossRef]
- Xin, H.; Qikai, L.; Liangpei, Z.; Plaza, A. New Postprocessing Methods for Remote Sensing Image Classification: A Systematic Study. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7140–7159. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A Review on Change Detection Method and Accuracy Assessment for Land Use Land Cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Perera, S.; Allali, M.; Linstead, E.; El-Askary, H. Landuse Landcover Change Detection in the Mediterranean Region Using a Siamese Neural Network and Image Processing. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, Brussels, Belgium, 11 July 2021; pp. 4368–4371. [Google Scholar]
- Abdikan, S. Exploring Image Fusion of ALOS/PALSAR Data and LANDSAT Data to Differentiate Forest Area. Geocarto Int. 2018, 33, 21–37. [Google Scholar] [CrossRef]
- Cass, A.; Petropoulos, G.P.; Ferentinos, K.P.; Pavlides, A.; Srivastava, P.K. Exploring the Synergy between Landsat and ASAR towards Improving Thematic Mapping Accuracy of Optical EO Data. Appl. Geomat. 2019, 11, 277–288. [Google Scholar] [CrossRef]
- Ding, Q.; Shao, Z.; Huang, X.; Altan, O.; Fan, Y. Improving Urban Land Cover Mapping with the Fusion of Optical and SAR Data Based on Feature Selection Strategy. Photogramm. Eng. Remote Sens. 2022, 88, 17–28. [Google Scholar] [CrossRef]
- Idol, T.; Haack, B.; Mahabir, R. Comparison and Integration of Spaceborne Optical and Radar Data for Mapping in Sudan. Int. J. Remote Sens. 2015, 36, 1551–1569. [Google Scholar] [CrossRef]
- Tavares, P.; Beltrão, N.; Guimarães, U.; Teodoro, A. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belém, Eastern Brazilian Amazon. Sensors 2019, 19, 1140. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, R. Exploring the Optimal Integration Levels between SAR and Optical Data for Better Urban Land Cover Mapping in the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 87–95. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping Pan-European Land Cover Using Landsat Spectral-Temporal Metrics and the European LUCAS Survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Mitchell, M.W. Bias of the Random Forest Out-of-Bag (OOB) Error for Certain Input Parameters. Open J. Stat. 2011, 1, 205–211. [Google Scholar] [CrossRef]
- Janitza, S.; Hornung, R. On the Overestimation of Random Forest’s out-of-Bag Error. PLoS ONE 2018, 13, e0201904. [Google Scholar] [CrossRef] [PubMed]
- Almarinez, B.J.M.; Barrion, A.T.; Navasero, M.V.; Navasero, M.M.; Cayabyab, B.F.; Carandang, J.S.R.; Legaspi, J.C.; Watanabe, K.; Amalin, D.M. Biological Control: A Major Component of the Pest Management Program for the Invasive Coconut Scale Insect, Aspidiotus Rigidus Reyne, in the Philippines. Insects 2020, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Tsendbazar, N.; Herold, M.; Li, L.; Tarko, A.; De Bruin, S.; Masiliunas, D.; Lesiv, M.; Fritz, S.; Buchhorn, M.; Smets, B.; et al. Towards Operational Validation of Annual Global Land Cover Maps. Remote Sens. Environ. 2021, 266, 112686. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover, 10 m 2021 V200; International Institute for Applied Systems Analysis: London, UK, 2022.
- Nembrini, S.; König, I.R.; Wright, M.N. The Revival of the Gini Importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef]
Image Collection [Spatial Resolution] | Reference Year | Image Dates (Number of Images) |
---|---|---|
Landsat5 Collection2 Level2 Tier1 [30 m] | 2000 | January 1998–December 2000 (83 images) |
2005 | January 2004–December 2006 (63 images) | |
2010 | January 2009–December 2011 (53 images) | |
Landsat8 Collection2 Level2 Tier1 [30 m] | 2015 | January 2014–December 2015 (113 images) |
2020 | January 2019–December 2020 (123 images) | |
ALOS Palsar1/Palsar2 Yearly Mosaic [25 m] | 2015 | January 2015–December 2015 (1 raster grid) |
2020 | January 2020–December 2020 (1 raster grid) | |
ALOS GDSM (AW3D30) v3.2 [25 m] | All years (static) | January 2021 update (1 raster grid) |
General Variable | Annual Metric Composites | Seasonal Median Composites | |||
---|---|---|---|---|---|
20th Percentile | 50th Percentile | 80th Percentile | Rainy Season | Dry Season | |
Green | Green_p20 | Green_p50 | Green_p80 | Green_rain | Green_dry |
Blue | Blue_p20 | Blue_p50 | Blue_p80 | Blue_rain | Blue_dry |
Red | Red_p20 | Red_p50 | Red_p80 | Red_rain | Red_dry |
NIR | NIR_p20 | NIR_p50 | NIR_p80 | NIR_rain | NIR_dry |
SWIR1 | SWIR1_p20 | SWIR1_p50 | SWIR1_p80 | SWIR1_rain | SWIR1_dry |
SWIR2 | SWIR2_p20 | SWIR2_p50 | SWIR2_p80 | SWIR2_rain | SWIR2_dry |
ALB | ALB_p20 | ALB_p50 | ALB_p80 | ALB_rain | ALB_dry |
EVI | EVI_p20 | EVI_p50 | EVI_p80 | EVI_rain | EVI_dry |
EVI2 | EVI2_p20 | EVI2_p50 | EVI2_p80 | EVI2_rain | EVI2_dry |
GCI | GCI_p20 | GCI_p50 | GCI_p80 | GCI_rain | GCI_dry |
GVMI | GVMI_p20 | GVMI_p50 | GVMI_p80 | GVMI_rain | GVMI_dry |
MBI | MBI_p20 | MBI_p50 | MBI_p80 | MBI_rain | MBI_dry |
NDBI | NDBI_p20 | NDBI_p50 | NDBI_p80 | NDBI_rain | NDBI_dry |
NDVI | NDVI_p20 | NDVI_p50 | NDVI_p80 | NDVI_rain | NDVI_dry |
NDWI | NDWI_p20 | NDWI_p50 | NDWI_p80 | NDWI_rain | NDWI_dry |
SAVI | SAVI_p20 | SAVI_p50 | SAVI_p80 | SAVI_rain | SAVI_dry |
General Variable | Band Polarization (Return) | |
---|---|---|
Horizontal | Vertical | |
Single Band | HH | HV |
Simple Band Ratio | RAT | |
ASM | HH_ASM | HV_ASM |
CON | HH_CON | HV_CON |
CORR | HH_CORR | HV_CORR |
DISS | HH_DISS | HV_DISS |
ENT | HH_ENT | HV_ENT |
IDM | HH_IDM | HV_IDM |
SAVG | HH_SAVG | HV_SAVG |
VAR | HH_VAR | HV_VAR |
Metric | PLW | BW | ||||
---|---|---|---|---|---|---|
2010 | 2015 | 2020 | 2010 | 2015 | 2020 | |
OA | 0.9284 | 0.9243 | 0.9276 | 0.9517 | 0.9485 | 0.9504 |
κ | 0.9092 | 0.9033 | 0.9083 | 0.9334 | 0.9300 | 0.9322 |
F1 | 0.8845 | 0.9107 | 0.9306 | 0.8586 | 0.8805 | 0.8734 |
OOBE | 0.1869 | 0.1792 | 0.1784 | 0.0806 | 0.0776 | 0.0781 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarines, N.R.; Hashimoto, S.; Pulhin, J.M.; Tiburan, C.L., Jr.; Magpantay, A.T.; Saito, O. Influence of Image Compositing and Multisource Data Fusion on Multitemporal Land Cover Mapping of Two Philippine Watersheds. Remote Sens. 2024, 16, 2167. https://doi.org/10.3390/rs16122167
Almarines NR, Hashimoto S, Pulhin JM, Tiburan CL Jr., Magpantay AT, Saito O. Influence of Image Compositing and Multisource Data Fusion on Multitemporal Land Cover Mapping of Two Philippine Watersheds. Remote Sensing. 2024; 16(12):2167. https://doi.org/10.3390/rs16122167
Chicago/Turabian StyleAlmarines, Nico R., Shizuka Hashimoto, Juan M. Pulhin, Cristino L. Tiburan, Jr., Angelica T. Magpantay, and Osamu Saito. 2024. "Influence of Image Compositing and Multisource Data Fusion on Multitemporal Land Cover Mapping of Two Philippine Watersheds" Remote Sensing 16, no. 12: 2167. https://doi.org/10.3390/rs16122167
APA StyleAlmarines, N. R., Hashimoto, S., Pulhin, J. M., Tiburan, C. L., Jr., Magpantay, A. T., & Saito, O. (2024). Influence of Image Compositing and Multisource Data Fusion on Multitemporal Land Cover Mapping of Two Philippine Watersheds. Remote Sensing, 16(12), 2167. https://doi.org/10.3390/rs16122167