Exploring the Potential of PRISMA Satellite Hyperspectral Image for Estimating Soil Organic Carbon in Marvdasht Region, Southern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. PRISMA Hyperspectral Data
2.3. Denoising PRISMA Image
2.3.1. Savitzky–Golay and First-Order Derivative
2.3.2. Wavelet Shinrkage (VishShrink)
2.3.3. Standard Total Variation
2.4. Feature Generation
2.5. Different Methods and Scenarios
2.6. Machine Learning
2.7. Model Evaluation
3. Results
3.1. General Statistics of SOC Data
3.2. Different Methods’ Results
3.2.1. Method One (M#1)
3.2.2. Method Two (M#2)
3.2.3. Method Three (M#3)
3.2.4. Method Four (M#4)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RS | Remote sensing |
SOC | Soil organic carbon |
SOM | Soil organic matter |
TV | Total variation |
HS | Hyperspectral |
PCA | Principal Component Analysis |
ICA | Independent Component Analysis |
ML | Machine learning |
SG | Savitzky–Golay |
FOD | First-order derivative |
SNR | Signal-to-noise ratio |
SURE | Stein’s Unbiased Risk Estimate |
HFC | Harsanyi–Farrand–Chang |
ADC | Analog-to-digital conversion |
PC | Principle component |
IC | Independent component |
RF | Random Forest |
LightGBM | Light gradient-boosting machine |
GBRT | Gradient-Boosting Regression Tree |
db-1 | Daubechies wavelet mother function, level one |
S#x | Scenario number x |
M#x | Method number x |
RB | Reflectance Band |
OM | Organic matter |
MAE | Mean absolute error |
RMSE | Root mean squared error |
PLSR | Partial least-square regression |
XGBoost | Extreme Gradient Boosting |
References
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Sreenivas, K.; Dadhwal, V.K.; Kumar, S.; Harsha, G.S.; Mitran, T.; Sujatha, G.; Suresh, G.J.R.; Fyzee, M.A.; Ravisankar, T. Digital mapping of soil organic and inorganic carbon status in India. Geoderma 2016, 269, 160–173. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, L. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, S.; Yang, Y.; Zhao, R.; Shi, Z.; Viscarra Rossel, R.A. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma 2019, 335, 47–56. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Dvorakova, K.; Heiden, U.; van Wesemael, B. Sentinel-2 exposed soil composite for soil organic carbon prediction. Remote Sens. 2021, 13, 1791. [Google Scholar] [CrossRef]
- Castaldi, F.; Wetterlind, M.H.K.J.; Vinci, R.Ž.I.; Savaş, A.Ö.; Kıvrak, C.; Tunçay, T.; Volungevičius, J.; Obber, S.; Ragazzi, F.; Malo, D.; et al. Assessing the capability of Sentinel-2 time-series to estimate soil organic carbon and clay content at local scale in croplands. ISPRS J. Photogramm. Remote Sens. 2023, 199, 40–60. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Lu, Q.; Zhang, H.; Wang, S. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Lin, C.; Zhu, A.-X.; Wang, Z.; Wang, X.; Ma, R. The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102094. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M. A new end-to-end multi-dimensional CNN framework for land cover/land use change detection in multi-source remote sensing datasets. Remote Sens. 2020, 12, 2010. [Google Scholar] [CrossRef]
- Datt, B.; McVicar, T.; Van Niel, T.G.; Jupp, D.; Pearlman, J. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259. [Google Scholar] [CrossRef]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. Prisma: The Italian Hyperspectral Mission. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 175–178. [Google Scholar]
- Guarini, R.; Loizzo, R.; Facchinetti, C.; Longo, F.; Ponticelli, B.; Faraci, M.; Dami, M.; Cosi, M.; Amoruso, L.; De Pasquale, V.; et al. Prisma Hyperspectral Mission Products. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 179–182. [Google Scholar]
- Seydi, S.T.; Hasanlou, M.; Chanussot, J. DSMNN-Net: A deep siamese morphological neural network model for burned area mapping using multispectral sentinel-2 and hyperspectral PRISMA images. Remote Sens. 2021, 13, 5138. [Google Scholar] [CrossRef]
- Peón, J.; Recondo, C.; Fernandez, S.; Calleja, J.F.; De Miguel, E.; Caretero, L. Prediction of topsoil organic carbon using airborne and satellite hyperspectral imagery. Remote Sens. 2017, 9, 1211. [Google Scholar] [CrossRef]
- Mzid, N.; Castaldi, F.; Tolomio, M.; Pascucci, S.; Casa, R.; Pignatti, S. Evaluation of agricultural bare soil properties retrieval from Landsat 8, Sentinel-2 and PRISMA satellite data. Remote Sens. 2022, 14, 714. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; El Gharous, M. Using PRISMA hyperspectral satellite imagery and GIS approaches for soil fertility mapping (FertiMap) in northern Morocco. Remote Sens. 2022, 14, 4080. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Chabrillat, S.; Pignatti, S.; Milewski, R.; Karyotis, K.; Brell, M.; Ruhtz, T.; Bichtis, D.; Zalidis, G. Evaluation of airborne hyspex and spaceborne PRISMA hyperspectral remote sensing data for soil organic matter and carbonates estimation. Remote Sens. 2023, 15, 1106. [Google Scholar] [CrossRef]
- Ou, D.; Tan, K.; Li, J.; Wu, Z.; Zhao, L.; Ding, J.; Wang, X.; Zou, B. Prediction of soil organic matter by Kubelka-Munk based airborne hyperspectral moisture removal model. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103493. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1205–1218. [Google Scholar] [CrossRef]
- Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise reduction in hyperspectral imagery: Overview and application. Remote Sens. 2018, 10, 482. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Ye, Q.; Liu, H.; Zhang, X.; Tang, H.; Zhang, X. Soil organic matter prediction model with satellite hyperspectral image based on optimized denoising method. Remote Sens. 2021, 13, 2273. [Google Scholar] [CrossRef]
- Fodor, I.K.; Kamath, C. Denoising through wavelet shrinkage: An empirical study. J. Electron. Imaging 2003, 12, 151–160. [Google Scholar] [CrossRef]
- Om, H.; Biswas, M. An improved image denoising method based on wavelet thresholding. J. Signal Inf. Process. 2012, 3, 17686. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, Y. A comparative study on thresholding methods in wavelet-based image denoising. Procedia Eng. 2011, 15, 3998–4003. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Rasti, B.; Ulfarsson, M.O.; Sveinsson, J.R. Hyperspectral feature extraction using total variation component analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6976–6985. [Google Scholar] [CrossRef]
- Chang, C.-I.; Du, Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 608–619. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water quality retrieval from PRISMA hyperspectral images: First experience in a turbid lake and comparison with sentinel-2. Remote Sens. 2020, 12, 3984. [Google Scholar] [CrossRef]
- Waters, J. 2.3. Absorption and Emission by Atmospheric Gases. In Methods in Experimental Physics; Elsevier: Amsterdam, The Netherlands, 1976; Volume 12, pp. 142–176. [Google Scholar]
- Kim, S.J.; Pollefeys, M. Robust radiometric calibration and vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Udelhoven, T.; Schlerf, M.; Segl, K.; Mallick, K.; Bossung, C.; Retzlaff, R.; Rock, G.; Fischer, P.; Muller, A.; Storch, T.; et al. A satellite-based imaging instrumentation concept for hyperspectral thermal remote sensing. Sensors 2017, 17, 1542. [Google Scholar] [CrossRef] [PubMed]
- Letexier, D.; Bourennane, S. Noise removal from hyperspectral images by multidimensional filtering. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2061–2069. [Google Scholar] [CrossRef]
- Dey, S.; Chiuso, A.; Schenato, L. Remote estimation with noisy measurements subject to packet loss and quantization noise. IEEE Trans. Control. Netw. Syst. 2014, 1, 204–217. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, W.; Su, X.; Xu, Z. Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain. Remote Sens. 2021, 13, 1858. [Google Scholar] [CrossRef]
- Shen, L.; Gao, M.; Yan, J.; Li, Z.-L.; Leng, P.; Yang, Q.; Duan, S.-B. Hyperspectral estimation of soil organic matter content using different spectral preprocessing techniques and PLSR method. Remote Sens. 2020, 12, 1206. [Google Scholar] [CrossRef]
- Haider, N.S.; Periyasamy, R.; Joshi, D.; Singh, B. Savitzky-Golay filter for denoising lung sound. Braz. Arch. Biol. Technol. 2018, 61, 203. [Google Scholar] [CrossRef]
- Van Fleet, P.J. Wavelet Shrinkage: An Application to Denoising. In Discrete Wavelet Transformations; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 231–260. ISBN 978-1-119-55541-4. [Google Scholar]
- Hampel, F.R. The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 1974, 69, 383–393. [Google Scholar] [CrossRef]
- Chen, G.; Bui, T.D.; Krzyzak, A. Denoising of three-dimensional data cube using bivariate wavelet shrinking. Int. J. Pattern Recognit. Artif. Intell. 2011, 25, 403–413. [Google Scholar] [CrossRef]
- Sun, K.; Simon, S. Bilateral spectrum weighted total variation for noisy-image super-resolution and image denoising. IEEE Trans. Signal Process. 2021, 69, 6329–6341. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; He, W.; Zhang, L. Hyperspectral image denoising with total variation regularization and nonlocal low-rank tensor decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3071–3084. [Google Scholar] [CrossRef]
- Wei, W.; Feng, X. Accelerated Chambolle Projection Algorithms for Image Restoration. Electronics 2022, 11, 3751. [Google Scholar] [CrossRef]
- Liu, G.; Huang, T.-Z.; Liu, J.; Lv, X.-G. Total variation with overlapping group sparsity for image deblurring under impulse noise. PLoS ONE 2015, 10, e0122562. [Google Scholar] [CrossRef] [PubMed]
- Duran, J.; Coll, B.; Sbert, C. Chambolle’s projection algorithm for total variation denoising. Image Process. Line 2013, 2013, 311–331. [Google Scholar] [CrossRef]
- Kumar, B.; Dikshit, O.; Gupta, A.; Singh, M.K. Feature extraction for hyperspectral image classification: A review. Int. J. Remote Sens. 2020, 41, 6248–6287. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2013, 31, 45–54. [Google Scholar] [CrossRef]
- Plaza, A.; Martínez, P.; Pérez, R.; Plaza, J. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 650–663. [Google Scholar] [CrossRef]
- Fernandez-Beltran, R.; Pla, F.; Plaza, A. Endmember extraction from hyperspectral imagery based on probabilistic tensor moments. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2120–2124. [Google Scholar] [CrossRef]
- McCarty, D.A.; Kim, H.W.; Lee, H.K. Evaluation of light gradient boosted machine learning technique in large scale land use and land cover classification. Environments 2020, 7, 84. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Chou, T.-Y.; Hoang, T.-V.; Fang, Y.-M.; Mu, C.-Y.; Huang, P.-H.; Pham, V.-D.; Nguyen, Q.-H.; Mu, C.-Y.; Huang, P.-H.; et al. Gradient boosting machine and object-based CNN for land cover classification. Remote Sens. 2021, 13, 2709. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Ma, X. Improving the Accuracy of Soil Organic Carbon Estimation: CWT-Random Frog-XGBoost as a Prerequisite Technique for In Situ Hyperspectral Analysis. Remote Sens. 2023, 15, 5294. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Xu, Z.; Yu, Y.; Zhang, S.; Dai, R. Exploring appropriate preprocessing techniques for hyperspectral soil organic matter content estimation in black soil area. Remote Sens. 2020, 12, 3765. [Google Scholar] [CrossRef]
- Francos, N.; Nasta, P.; Allocca, C.; Sica, B.; Mazzitelli, C.; Lazzaro, U.; D’Uros, G.; Belfiore, O.R.; Crimaldi, M.; Sarghini, F.; et al. Mapping Soil Organic Carbon Stock Using Hyperspectral Remote Sensing: A Case Study in the Sele River Plain in Southern Italy. Remote Sens. 2024, 16, 897. [Google Scholar] [CrossRef]
- Gomez, C.; Rossel, R.A.V.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Zarei, A.; Hasanlou, M.; Mahdianpari, M. A comparison of machine learning models for soil salinity estimation using multi-spectral earth observation data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 3, 257–263. [Google Scholar] [CrossRef]
- Ye, Z.; Sheng, Z.; Liu, X.; Ma, Y.; Wang, R.; Ding, S.; Liu, M.; Li, Z.; Wang, Q. Using machine learning algorithms based on GF-6 and Google Earth engine to predict and map the spatial distribution of soil organic matter content. Sustainability 2021, 13, 14055. [Google Scholar] [CrossRef]
Property | VNIR | SWIR | Panchromatic |
---|---|---|---|
Spectral range | 400–1010 nm | 920–2505 nm | 400–700 nm |
Spectral resolution | <12 nm | <12 nm | -- |
SNR | 200 in the range of 0.4–1.0 µm | 200 in the range 1.0–1.75 >400 at 1.55 µm 100 in the range of 1.95–2.35 µm >200 at 2.1 µm | 240 |
Spectral bands | 66 | 173 | 1 |
Data quantization | 12 bit | ||
IFOV | 48.34 µrad | ||
Spatial resolution | 30 m | 30 m | 5 m |
Mother Function | Level of Decomposition | |||
---|---|---|---|---|
Level2 (R2) | Level3 (R2) | Level4 (R2) | Level5 (R2) | |
db-1-sigma | 59.85 | 62.77 | 61.29 | 60.27 |
db-1-sigma/2 | 48.81 | 50.75 | 52.35 | 51.67 |
db-2-sigma | 39.17 | 42.30 | 44.25 | 43.11 |
db-2-sigma/2 | 41.32 | 38.42 | 39.73 | 39.28 |
db-3-sigma | 39.87 | 44.68 | 46.02 | 44.52 |
db-3-sigma/2 | 41.03 | 41.36 | 41.37 | 40.39 |
db-4-sigma | 41.9 | 43.34 | 44.42 | 42.73 |
db-4-sigma/2 | 44.4 | 41.72 | 41.59 | 41.01 |
db-5-sigma | 45.18 | 47.59 | 48.33 | 48.42 |
db-5-sigma/2 | 43.46 | 48.14 | 43.55 | 45.41 |
bior-1.3-sigma | 55.29 | 55.83 | 58.81 | 57.95 |
bior-1.3-sigma/2 | 47.68 | 49.11 | 47.50 | 48.11 |
bior-1.5-sigma | 54.95 | 56.31 | 54.95 | 57.54 |
bior-1.5-sigma/2 | 47.36 | 46.67 | 46.41 | 43.06 |
bior-2.2-sigma | 49.2 | 50.0 | 49.54 | 50.34 |
bior-2.2-sigma/2 | 46.3 | 47.97 | 47.22 | 47.49 |
coif-1-sigma | 49.15 | 48.35 | 52.40 | 51.24 |
coif-1-sigma/2 | 47.21 | 45.65 | 46.52 | 47.12 |
coif-2-sigma | 51.11 | 52.70 | 52.61 | 53.80 |
coif-2-sigma/2 | 47.72 | 48.51 | 49.53 | 49.64 |
coif -3-sigma | 47.79 | 49.11 | 50.43 | 48.11 |
coif-3-sigma/2 | 48.16 | 48.20 | 47.37 | 48.31 |
Method | Different Scenarios | ||
---|---|---|---|
Scenario One (S#1) | Scenario Two (S#2) | Scenario One (S#3) | |
Reflectance bands (Method One or M#1) | Reflectance bands (184 features) | Reflectance bands + 10 PCs (184 + 10 features) | Reflectance bands + 10 ICs (184 + 10 features) |
SG + FOD (Method Two or M#2) | Denoised reflectance bands (184 features) | ----- | ----- |
VisuShrink (Method Three or M#3) | Denoised reflectance bands with VisuShrink (db1-level3) (184 features) | Denoised reflectance bands with VisuShrink (db1-level3) + 10 PCs (184 + 10 features) | Denoised reflectance bands with VisuShrink (db1-level3) + 10 ICs (184 + 10 features) |
Total variation (Method Four or M#4) | Denoised reflectance bands with TV-0.1 (184 features) | Denoised reflectance bands with TV-0.1 + 10 PCs (184 + 10 features) | Denoised reflectance bands with TV-0.1 + 10 ICs (184 + 10 features) |
Number of Points | Mean (%) | Std (%) | Median (%) | Q1 (%) | Q3 (%) | Min (%) | Max (%) |
---|---|---|---|---|---|---|---|
123 | 1.03 | 0.35 | 0.98 | 0.90 | 1.15 | 0.13 | 2.2 |
ML Algorithm | M#1–S#1 | M#1–S#2 | M#1–S#3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (%) | MAE (%) | R2 (%) | RPIQ | RMSE (%) | MAE (%) | R2 (%) | RPIQ | RMSE (%) | MAE (%) | R2 (%) | RPIQ | |
RF | 0.05 | 0.2 | 38.4 | 4.40 | 0.04 | 0.17 | 57.5 | 5.00 | 0.04 | 0.17 | 57.9 | 4.92 |
GBRT | 0.05 | 0.21 | 38.1 | 4.38 | 0.04 | 0.16 | 60.8 | 4.95 | 0.04 | 0.17 | 56.9 | 4.91 |
LightGBM | 0.05 | 0.19 | 40.1 | 4.42 | 0.04 | 0.15 | 65.05 | 5.10 | 0.04 | 0.15 | 63.2 | 5.05 |
Method | ML Algorithm | Different Scenarios | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S#1 | S#2 | S#3 | |||||||||||
RMSE (%) | MAE (%) | R2 (%) | RPIQ | RMSE (%) | MAE (%) | R2 (%) | RPIQ | RMSE (%) | MAE (%) | R2 (%) | RPIQ | ||
Method Two (M#2) | RF | 0.05 | 0.19 | 46.9 | 4.62 | -- | -- | -- | -- | -- | -- | -- | -- |
GBRT | 0.05 | 0.17 | 56.86 | 4.87 | -- | -- | -- | -- | -- | -- | -- | -- | |
LightGBM | 0.05 | 0.17 | 54.92 | 4.82 | -- | -- | -- | -- | -- | -- | -- | -- | |
Method Three (M#3) | RF | 0.04 | 0.14 | 60.47 | 5.10 | 0.04 | 0.14 | 65.43 | 5.16 | 0.05 | 0.14 | 64.26 | 5.19 |
GBRT | 0.04 | 0.13 | 63.04 | 5.19 | 0.04 | 0.12 | 68.61 | 5.28 | 0.04 | 0.12 | 69.58 | 5.42 | |
LightGBM | 0.04 | 0.13 | 64.03 | 5.23 | 0.04 | 0.11 | 70.04 | 5.38 | 0.04 | 0.12 | 68.81 | 5.38 | |
Method Four (M#4) | RF | 0.04 | 0.14 | 64.99 | 5.55 | 0.04 | 0.11 | 78.08 | 6.15 | 0.04 | 0.1 | 78.73 | 6.20 |
GBRT | 0.04 | 0.13 | 65.50 | 5.60 | 0.04 | 0.10 | 78.76 | 6.21 | 0.03 | 0.1 | 80.66 | 6.26 | |
LightGBM | 0.04 | 0.13 | 66.95 | 5.81 | 0.03 | 0.09 | 81.74 | 6.29 | 0.03 | 0.09 | 81.57 | 6.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golkar Amoli, M.; Hasanlou, M.; Taghizadeh Mehrjardi, R.; Samadzadegan, F. Exploring the Potential of PRISMA Satellite Hyperspectral Image for Estimating Soil Organic Carbon in Marvdasht Region, Southern Iran. Remote Sens. 2024, 16, 2149. https://doi.org/10.3390/rs16122149
Golkar Amoli M, Hasanlou M, Taghizadeh Mehrjardi R, Samadzadegan F. Exploring the Potential of PRISMA Satellite Hyperspectral Image for Estimating Soil Organic Carbon in Marvdasht Region, Southern Iran. Remote Sensing. 2024; 16(12):2149. https://doi.org/10.3390/rs16122149
Chicago/Turabian StyleGolkar Amoli, Mehdi, Mahdi Hasanlou, Ruhollah Taghizadeh Mehrjardi, and Farhad Samadzadegan. 2024. "Exploring the Potential of PRISMA Satellite Hyperspectral Image for Estimating Soil Organic Carbon in Marvdasht Region, Southern Iran" Remote Sensing 16, no. 12: 2149. https://doi.org/10.3390/rs16122149
APA StyleGolkar Amoli, M., Hasanlou, M., Taghizadeh Mehrjardi, R., & Samadzadegan, F. (2024). Exploring the Potential of PRISMA Satellite Hyperspectral Image for Estimating Soil Organic Carbon in Marvdasht Region, Southern Iran. Remote Sensing, 16(12), 2149. https://doi.org/10.3390/rs16122149