Landslide Hazard Analysis Combining BGA-Net-Based Landslide Susceptibility Perception and Small Baseline Subset Interferometric Synthetic Aperture Radar in the Baige Section in the Upper Reaches of Jinsha River
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Research Data
3. Landslide Susceptibility Prediction Based on BGA-Net
3.1. Basic Framework of Landslide Susceptibility Prediction (LSP) Model Based on CNN
3.1.1. BGA-Net Network Structure
3.1.2. Context Embedding Block (CEB)
3.1.3. Bilateral Guided Aggregation (BGA)
3.2. Validation
3.3. Deformation Monitoring Based on SBAS-InSAR
4. Landslide Hazard Analysis Using Joint SBAS-InSAR Technology
4.1. Model Building and Training
4.1.1. Model Building
4.1.2. Model Training
4.2. Satellite-Borne SBAS-InSAR Surface Deformation Monitoring
4.3. Results of Landslide Susceptibility Prediction (LSP)
4.4. Joint Risk Assessment Based on Landslide Susceptibility and Surface Deformation
5. Discussion
5.1. Accuracy and Superiority of BGA-Net for LSP
5.2. Eeffectiveness of Landslide Risk Assessment Jointly Based on LSP and SBAS-InSAR
5.3. Deformation and High-Risk Zonation-Forming Mechanism Inference
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.F.; Metcalfe, I.; Jian, P.; He, L.Q.; Wang, C.S. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, age and evolution. J. Asian Earth Sci. 2000, 18, 675–690. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kerle, N. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.C.; Xu, X.W.; Lee, Y.H. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 2012, 145, 70–80. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.M.; Jung, H.S. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; Natural Hazards; United Nations: Paris, France, 1984. [Google Scholar]
- Peng, H.; Zhaocheng, G.; Chunling, L.; Jienan, T.; Shanshan, W.; Jiemin, X. Evaluation Research on the Landslide Disaster Liability in Zha Da Region of Tibet. Sci. Technol. Eng. 2016, 16, 193–200. [Google Scholar]
- Wang, Y.; Wen, H.J.; Sun, D.L.; Li, Y.C. Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector. Remote Sens. 2021, 13, 2625. [Google Scholar] [CrossRef]
- Zhang, K.X.; Wu, X.L.; Niu, R.Q.; Yang, K.; Zhao, L.R. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ. Earth Sci. 2017, 76, 405. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Yamani, M.; Pourghasemi, H.R.; Lombardo, L. Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degrad. Dev. 2018, 29, 4035–4049. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Ilia, I. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. CATENA 2016, 145, 164–179. [Google Scholar] [CrossRef]
- Xiong, J.; Zhu, J.; Su, P.; Gong, Y.; Zhao, Y.; Li, J.; Li, W. Risk Assessment of Landslide in the Xiluodu Reservoir Area Based on GIS and Information Value Method. Resour. Environ. Yangtze Basin 2019, 28, 700–711. [Google Scholar]
- Kangping, S.I.; Yuan, T.; Daming, W.; Lun, W.U.; Yalin, Z.H.U. Comparison of Three Statistical Methods on Landslide Susceptibility Analysis: A Case Study of Shenzhen City. Acta Sci. Nat. Univ. Pekin. 2009, 45, 639–646. [Google Scholar]
- Niu, R.; Wu, X.; Yao, D.; Peng, L.; Ai, L.; Peng, J. Susceptibility Assessment of Landslides Triggered by the Lushan Earthquake, April 20, 2013, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3979–3992. [Google Scholar] [CrossRef]
- Wu, X.L.; Chen, X.Y.; Zhan, F.B.; Hong, S. Global research trends in landslides during 1991–2014: A bibliometric analysis. Landslides 2015, 12, 1215–1226. [Google Scholar] [CrossRef]
- Wu, X.L.; Ren, F.; Niu, R.Q. Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environ. Earth Sci. 2014, 71, 4725–4738. [Google Scholar] [CrossRef]
- Pham, M.-V.; Kim, Y.-T. Debris flow detection and velocity estimation using deep convolutional neural network and image processing. Landslides 2022, 19, 2473–2488. [Google Scholar] [CrossRef]
- Li, H.; Hu, B.X.; Lin, B.; Zhu, S.; Meng, F.; Li, Y. Collapse Susceptibility Assessment in Taihe Town Based on Convolutional Neural Network and Information Value Method. Water 2024, 16, 709. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Ming, D.P.; Yu, J.C.; Xu, L.; Ma, Y.N.; Li, Y.; Ling, X.; Zhu, Y.Q. Susceptibility-Guided Landslide Detection Using Fully Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 998–1018. [Google Scholar] [CrossRef]
- Li, Y.; Ming, D.; Zhang, L.; Niu, Y.; Chen, Y. Seismic Landslide Susceptibility Assessment Using Newmark Displacement Based on a Dual-Channel Convolutional Neural Network. Remote Sens. 2024, 16, 566. [Google Scholar] [CrossRef]
- Chen, J.; Cui, Z.; Chen, R.; Zheng, X. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River. Earth Sci. Front. 2021, 28, 85–93. [Google Scholar]
- Fan, X.M.; Xu, Q.; Alonso-Rodriguez, A.; Subramanian, S.S.; Li, W.L.; Zheng, G.; Dong, X.J.; Huang, R.Q. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response. Landslides 2019, 16, 1003–1020. [Google Scholar] [CrossRef]
- Ling, X.; Zhu, Y.Q.; Ming, D.P.; Chen, Y.Y.; Zhang, L.; Du, T.Y. Feature Engineering of Geohazard Susceptibility Analysis Based on the Random Forest Algorithm: Taking Tianshui City, Gansu Province, as an Example. Remote Sens. 2022, 14, 5658. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.Y.; Ming, D.P.; Zhu, Y.Q.; Ling, X.; Zhang, X.Y.; Lian, X.Y. Landslide hazard analysis based on SBAS-InSAR and MCE-CNN model: A case study of Kongtong, Pingliang. Geocarto Int. 2022, 38, 1–22. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, K.R.; Pirasteh, S.; Li, R.P.; Xiang, J.M.; Li, Z.H. InSAR Spatial-Heterogeneity Tropospheric Delay Correction in Steep Mountainous Areas Based on Deep Learning for Landslides Monitoring. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5215014. [Google Scholar] [CrossRef]
- Deng, J.; Dai, K.R.; Liang, R.B.; Chen, L.C.; Wen, N.L.; Zheng, G.; Xu, H. Interferometric Synthetic Aperture Radar Applicability Analysis for Potential Landslide Identification in Steep Mountainous Areas with C/L Band Data. Remote Sens. 2023, 15, 4538. [Google Scholar] [CrossRef]
- Dai, K.R.; Li, Z.Y.; Xu, Q.; Tomas, R.; Li, T.; Jiang, L.M.; Zhang, J.Y.; Yin, T.; Wang, H. Identification and evaluation of the high mountain upper slope potential landslide based on multi-source remote sensing: The Aniangzhai landslide case study. Landslides 2023, 20, 1405–1417. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, K.R.; Tang, X.C.; Xiang, J.M.; Li, R.P.; Wu, M.T.; Peng, Y.R.; Li, Z.H. Time-Series InSAR with Deep-Learning-Based Topography-Dependent Atmospheric Delay Correction for Potential Landslide Detection. Remote Sens. 2023, 15, 5287. [Google Scholar] [CrossRef]
- Dai, K.R.; Deng, J.; Xu, Q.; Li, Z.H.; Shi, X.L.; Hancock, C.; Wen, N.L.; Zhang, L.L.; Zhuo, G.C. Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements. Giscience Remote Sens. 2022, 59, 1226–1242. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, W.; Kang, W.; Zhang, T.; Li, Y. The Study on Land Subsidence in Kunming by Integrating PS, SBAS and DS InSAR. Remote Sens. Technol. Appl. 2022, 37, 460–473. [Google Scholar]
- Chen, Y.Y.; Ming, D.P.; Ling, X.; Lv, X.W.; Zhou, C.H. Landslide Susceptibility Mapping Using Feature Fusion-Based CPCNN-ML in Lantau Island, Hong Kong. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3625–3639. [Google Scholar] [CrossRef]
- Dai, C.; Li, W.L.; Lu, H.Y.; Zhang, S. Landslide Hazard Assessment Method Considering the Deformation Factor: A Case Study of Zhouqu, Gansu Province, Northwest China. Remote Sens. 2023, 15, 596. [Google Scholar] [CrossRef]
Slide Name | Time | Triggering Factor | Impact |
---|---|---|---|
Temi ancient landslide | about 1.4 ka BP | Earthquake-triggered | Barrier lakes formed; the terrain changed |
Laojuntan landslide | 1965 | Rainfall-triggered | Significant loss of life and property |
Baige landslide | 2018 | Gravity-triggered | Direct losses of about CNY 153 million; serious consequences, resulting in multiple deaths and injuries |
Index | Data Source | Data Type | Data Usage |
---|---|---|---|
1 | Sentinel-1A satellite data | Radar data | Large-scale surface deformation monitoring |
2 | Field geological survey data | Geological survey textual and image records | Analyze landslide and slope development and disaster mechanisms |
3 | High-Resolution Gaofen-2 data | Optical remote sensing image data | Analyze surface characteristics and extract disaster-bearing bodies in hazardous areas |
4 | SRTM DEM | DEM | Assist with Sentinel-1A satellite data preprocessing; extract hazard factors: elevation, slope, aspect, curvature, TWI, and TRI |
5 | Road vector | Vector data | Extract typical disaster-bearing bodies; extract hazard factor: distance to road |
6 | River vector | Vector data | Extract hazard factor: distance to river |
7 | Fault vector | Vector data | Extract hazard factors: distance to fault and fault distribution density |
8 | CHIRSP Pentad data | Meteorological satellite inversion data | Extract hazard factor: annual average precipitation |
9 | Global 30 m resolution land use type data | Land use type classification data | Extract hazard factor: land use type |
10 | Landsat 8 OTL satellite data | NDVI | Extract hazard factor: NDVI |
Surface Deformation Hazard | Extremely Low | Low | Moderate | High | Extremely High | |
---|---|---|---|---|---|---|
LSP | ||||||
Extremely Low | Extremely Low | Extremely Low | Low | Moderate | High | |
Low | Extremely Low | Low | Moderate | Moderate | High | |
Moderate | Low | Low | Moderate | High | Extremely High | |
High | Moderate | Moderate | High | High | Extremely High | |
Extremely High | High | High | High | Extremely High | Extremely High |
Model | High | Extremely High | Ratio (%) |
---|---|---|---|
BGA-Net | 10 | 312 | 95.27 |
CNN | 2 | 305 | 90.83 |
ResNet | 17 | 253 | 79.88 |
Model | Dataset Type | OA | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|---|
BGA-Net | Training set | 0.946 | 0.971 | 0.92 | 0.945 | 0.923 |
Validation set | 0.855 | 0.870 | 0.835 | 0.852 | 0.856 | |
CNN | Training set | 0.897 | 0.877 | 0.852 | 0.897 | 0.898 |
Validation set | 0.749 | 0.755 | 0.717 | 0.736 | 0.748 | |
Res-Net | Training set | 0.888 | 0.912 | 0.862 | 0.886 | 0.888 |
Validation set | 0.744 | 0.753 | 0.707 | 0.729 | 0.743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, L.; Zhang, L.; Gui, Y.; Li, Y.; Zhang, Z.; Xu, L.; Ming, D. Landslide Hazard Analysis Combining BGA-Net-Based Landslide Susceptibility Perception and Small Baseline Subset Interferometric Synthetic Aperture Radar in the Baige Section in the Upper Reaches of Jinsha River. Remote Sens. 2024, 16, 2125. https://doi.org/10.3390/rs16122125
Su L, Zhang L, Gui Y, Li Y, Zhang Z, Xu L, Ming D. Landslide Hazard Analysis Combining BGA-Net-Based Landslide Susceptibility Perception and Small Baseline Subset Interferometric Synthetic Aperture Radar in the Baige Section in the Upper Reaches of Jinsha River. Remote Sensing. 2024; 16(12):2125. https://doi.org/10.3390/rs16122125
Chicago/Turabian StyleSu, Leyi, Liang Zhang, Yuannan Gui, Yan Li, Zhi Zhang, Lu Xu, and Dongping Ming. 2024. "Landslide Hazard Analysis Combining BGA-Net-Based Landslide Susceptibility Perception and Small Baseline Subset Interferometric Synthetic Aperture Radar in the Baige Section in the Upper Reaches of Jinsha River" Remote Sensing 16, no. 12: 2125. https://doi.org/10.3390/rs16122125
APA StyleSu, L., Zhang, L., Gui, Y., Li, Y., Zhang, Z., Xu, L., & Ming, D. (2024). Landslide Hazard Analysis Combining BGA-Net-Based Landslide Susceptibility Perception and Small Baseline Subset Interferometric Synthetic Aperture Radar in the Baige Section in the Upper Reaches of Jinsha River. Remote Sensing, 16(12), 2125. https://doi.org/10.3390/rs16122125